E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	86
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 17x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f302vet6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 45.	I ² S slave timing diagram (Philips protocol) ⁽¹⁾
Figure 46.	I ² S master timing diagram (Philips protocol) ⁽¹⁾
Figure 47.	USB timings: definition of data signal rise and fall time
Figure 48.	ADC typical current consumption on VDDA pin 129
Figure 49.	ADC typical current consumption on VREF+ pin
Figure 50.	ADC accuracy characteristics
Figure 51.	Typical connection diagram using the ADC
Figure 52.	12-bit buffered /non-buffered DAC
Figure 53.	OPAMP voltage noise versus frequency 145
Figure 54.	LQFP144 package outline
Figure 55.	Recommended footprint for the LQFP144 package
Figure 56.	LQFP144 marking example (package top view)150
Figure 57.	UFBGA100 package outline
Figure 58.	Recommended footprint for the UFBGA100 package
Figure 59.	UFBGA100 marking example (package top view) 153
Figure 60.	LQFP100 package outline
Figure 61.	Recommended footprint for the LQFP100 package
Figure 62.	LQFP100 marking example (package top view)156
Figure 63.	WLCSP100 package outline157
Figure 64.	Recommended footprint for the WLCSP100 package
Figure 65.	WLCSP100 marking example (package top view) 159
Figure 66.	LQFP64 package outline
Figure 67.	Recommended footprint for the LQFP64 package
Figure 68.	LQFP64 marking example (package top view)162
Figure 69.	LQFP100 P _D max vs. T _A

1 Introduction

This datasheet provides the ordering information and mechanical device characteristics of the STM32F302xD/E microcontrollers.

This STM32F302xD/E datasheet should be read in conjunction with the reference manual of STM32F302xB/C/D/E, STM32F302x6/8 devices (RM0365) available on STMicroelectronics website at *www.st.com*.

For information on the ARM[®] Cortex[®]-M4 core with FPU, refer to the following documents:

- Cortex[®] -M4 with FPU Technical Reference Manual, available from the www.arm.com website
- STM32F3 and STM32F4 Series Cortex[®] -M4 programming manual (PM0214) available on STMicroelectronics website at <u>www.st.com</u>.

3.7.4 Low-power modes

The STM32F302xD/E supports three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources:

• Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and wake up the CPU when an interrupt/event occurs.

• Stop mode

Stop mode achieves the lowest power consumption while retaining the content of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low-power mode.

The device can be woken up from Stop mode by any of the EXTI line. The EXTI line source can be one of the 16 external lines, the PVD output, the USB wakeup, the RTC alarm, COMPx, I2Cx or U(S)ARTx.

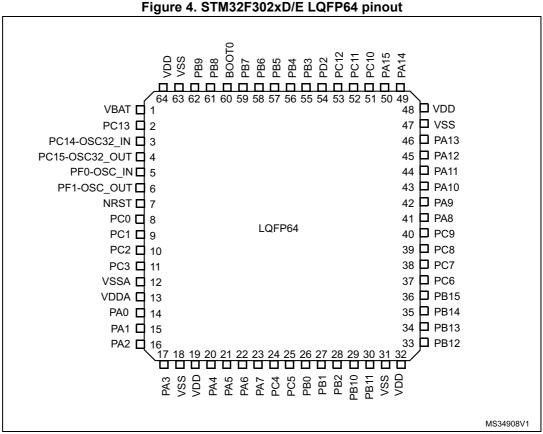
Standby mode

The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.8 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, SRAM and register contents are lost except for registers in the Backup domain and Standby circuitry.

The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pin or an RTC alarm occurs.

Note: The RTC, the IWDG and the corresponding clock sources are not stopped by entering Stop or Standby mode.

3.8 Interconnect matrix


Several peripherals have direct connections between them. This allows autonomous communication between peripherals, saving CPU resources thus power supply consumption. In addition, these hardware connections allow fast and predictable latency.

Interconnect source	Interconnect destination	Interconnect action
	TIMx	Timers synchronization or chaining
TIMx	ADCx DAC1	Conversion triggers
	DMA	Memory to memory transfer trigger
	Compx	Comparator output blanking
COMPx	OMPx TIMx Timer input: OCREF_C	
ADCx	TIMx	Timer triggered by analog watchdog

Table 4. STM32F302xD/E peripheral interconnect matrix

Pinout and pin description 4

STM32F302xD STM32F302xE

6 1 2 3 4 5 7 8 9 10 (vss А (vss (PC12) (PD2 (рвз PB5 воото PE1 (vdd (vdd` в vss (PA15) (PD0) (PD3 (PB4) (PB6) (PE0) (VDD) (PE5 (VDD PC14 OSC32IN (PA14 С PF6 (PD1 (PD4 (PB7 PB9 (PE4 (PC13) (vss PC15 05C320UT (vdd (PC11 PE2 D PA12 PD7 (PB8) (PE3 (VBAT PF9 (PA11 NRST PE8 (PA13 (PC10) (PE6 (PF10) Е PA10 PA9 (PF2 OSCOUT (PF0 QSCIN F PC7 PC5 (PE7 PC9 PA8 (PA2 PC8 PC6 (PD14 (PC4) (PD13 (PC0 G (PD15 (PD9 (PE12) (раз (PC2) (PC1) (PD11 н (PB15) (PA6 (PA5 (vssa) PC3 PD12 (PD10 (PE11) (PA0 (PA4 VREF (РВ14) (РВ13) (PB12) (VDD (рво (PA1 (VDDA) J vss κ (vss (PB11 (PB10 (рв2 PB1 (PA7 (VDD (vss (vss vss MSv40453V1

Figure 7. STM32F302xD/E WLCSP100 ballout

	Pin n	umbe	r						
LQFP64	LQFP100	WLCSP100	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	-	90	PG5	I/O	FT	(1)	EVENTOUT, FMC_A15	-
-	-	-	91	PG6	I/O	FT	(1)	EVENTOUT, FMC_INT2	-
-	-	-	92	PG7	I/O	FT	(1)	EVENTOUT, FMC_INT3	-
-	-	-	93	PG8	I/O	FT	(1)	EVENTOUT	-
-	-	-	94	VSS	S	-	(1)	-	-
-	-	-	95	VDD	S	-	(1)	-	-
37	63	F4	96	PC6	I/O	FT	-	EVENTOUT, TIM3_CH1, I2S2_MCK, COMP6_OUT	-
38	64	F2	97	PC7	I/O	FT	-	EVENTOUT, TIM3_CH2, I2S3_MCK	-
39	65	F1	98	PC8	I/O	FT	-	EVENTOUT, TIM3_CH3	-
40	66	F3	99	PC9	I/O	FTf	-	EVENTOUT, TIM3_CH4, I2C3_SDA, I2SCKIN	-
41	67	F5	100	PA8	I/O	FTf	-	MCO, I2C3_SCL, I2C2_SMBAL, I2S2_MCK, TIM1_CH1, USART1_CK, TIM4_ETR, EVENTOUT	-
42	68	E5	101	PA9	I/O	FTf	-	I2C3_SMBAL, TSC_G4_IO1, I2C2_SCL, I2S3_MCK, TIM1_CH2, USART1_TX, TIM15_BKIN, TIM2_CH3, EVENTOUT	-
43	69	E1	102	PA10	I/O	FTf	-	TIM17_BKIN, TSC_G4_IO2, I2C2_SDA, SPI2_MISO/I2S2ext_SD, TIM1_CH3, USART1_RX, COMP6_OUT, TIM2_CH4, EVENTOUT	-
44	70	E2	103	PA11	I/O	FT	-	SPI2_MOSI/I2S2_SD, TIM1_CH1N, USART1_CTS, COMP1_OUT, CAN_RX, TIM4_CH1, TIM1_CH4, TIM1_BKIN2, EVENTOUT	USB_DM

Table 13. STM32F302xD/E pin definitions (continued)

54/168

DocID026900 Rev 4

	Table 14. STM32F302xD/E alternate function mapping (continued)																
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
Port		SYS_AF	TIM2/15/ 16/17/E VENT	12C3/TIM1 /2/3/4/8/20 /15/GPCO MP1	12C3//15/ TSC	I2C1/2/TI M1/8/16/ 17	SPI1/SPI2 /I2S2/SPI3 /I2S3/SPI4 /UART4/5/ Infrared	SPI2/I2S2/ SPI3/I2S3/ TIM1/8/20/ Infrared	USART1/2 /3/CAN/GP COMP6	I2C3/GPC OMP1/2/3/ 4/5/6	CAN/TIM1 /8/15	TIM2/3/ 4/8/17	TIM1/8	FSMC /TIM1	-	-	EVENT
	PC10	-	EVENT OUT	-	-	-	UART4_ TX	SPI3_SCK /I2S3_CK	USART3_ TX	-	-	-	-	-	-	-	-
	PC11	-	EVENT OUT	-	-	-	UART4_ RX	SPI3_MIS O/I2S3ext _SD	USART3_ RX	-	-	-	-	-	-	-	-
Port C	PC12	-	EVENT OUT	-	-	-	UART5_ TX	SPI3_MO SI/I2S3_ SD	USART3_ CK	-	-	-	-	-	-	-	-
	PC13	-	EVENT OUT	-	-	TIM1_ CH1N	-	-	-	-	-	-	-	-	-	-	-
	PC14	-	EVENT OUT	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	PC15	-	EVENT OUT	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	PD0	-	EVENT OUT	-	-	-	-	-	CAN_RX	-	-	-	-	FMC_D2	-	-	-
	PD1	-	EVENT OUT	-	-	-		-	CAN_TX	-	-	-	-	FMC_D3	-	-	-
Port D	PD2	-	EVENT OUT	TIM3_ ETR	-	-	UART5_ RX	-	-	-	-	-	-	-	-	-	-
Ē	PD3	-	EVENT OUT	TIM2_CH 1/TIM2_ ETR	-	-	-	-	USART2_ CTS	-	-	-	-	FMC_ CLK	-	-	-
	PD4	-	EVENT OUT	TIM2_ CH2	-	-	-	-	USART2_ RTS	-	-	-	-	FMC_ NOE	-	-	-

Pinout and pin description

STM32F302xD STM32F302xE

	15. Memory map, peripheral register	-	
Bus	Boundary address	Size (bytes)	Peripheral
	0x4001 2C00 - 0x4001 2FFF	1 K	TIM1
APB2	0x4001 0800 - 0x4001 2BFF	9 K	Reserved
AFDZ	0x4001 0400 - 0x4001 07FF	1 K	EXTI
	0x4001 0000 - 0x4001 03FF	1 K	SYSCFG + COMP + OPAMP
-	0x4000 7C00 - 0x4000 FFFF	32 K	Reserved
	0x4000 7800 - 0x4000 7BFF	1 K	I2C3
	0x4000 7400 - 0x4000 77FF	1 K	DAC
	0x4000 7000 - 0x4000 73FF	1 K	PWR
	0x4000 6800 - 0x4000 6FFF	2 K	Reserved
	0x4000 6400 - 0x4000 67FF	1 K	bxCAN
	0x4000 6000 - 0x4000 63FF	1 K	USB/CAN SRAM
	0x4000 5C00 - 0x4000 5FFF	1 K	USB device FS
	0x4000 5800 - 0x4000 5BFF	1 K	I2C2
	0x4000 5400 - 0x4000 57FF	1 K	I2C1
	0x4000 5000 - 0x4000 53FF	1 K	UART5
	0x4000 4C00 - 0x4000 4FFF	1 K	UART4
	0x4000 4800 - 0x4000 4BFF	1 K	USART3
	0x4000 4400 - 0x4000 47FF	1 K	USART2
	0x4000 4000 - 0x4000 43FF	1 K	I2S3ext
APB1	0x4000 3C00 - 0x4000 3FFF	1 K	SPI3/I2S3
	0x4000 3800 - 0x4000 3BFF	1 K	SPI2/I2S2
	0x4000 3400 - 0x4000 37FF	1 K	I2S2ext
	0x4000 3000 - 0x4000 33FF	1 K	IWDG
	0x4000 2C00 - 0x4000 2FFF	1 K	WWDG
	0x4000 2800 - 0x4000 2BFF	1 K	RTC
	0x4000 1800 - 0x4000 27FF	4 K	Reserved
	0x4000 1000 - 0x4000 13FF	1 K	TIM6
	0x4000 0C00 - 0x4000 0FFF	1 K	Reserved
	0x4000 0800 - 0x4000 0BFF	1 K	TIM4
	0x4000 0400 - 0x4000 07FF	1 K	TIM3
	0x4000 0000 - 0x4000 03FF	1 K	TIM2

Table 15.	. Memory map	peripheral	register boundary	v addresses	(continued)

Symbol	Ratings	Max.	Unit
ΣI_{VDD}	Total current into sum of all VDD_x power lines (source)	160	
ΣI_{VSS}	Total current out of sum of all VSS_x ground lines (sink)	-160	
I _{VDD}	Maximum current into each V _{DD_x} power line (source) ⁽¹⁾	100	
I _{VSS}	Maximum current out of each V_{SS_x} ground line (sink) ⁽¹⁾	100	
1	Output current sunk by any I/O and control pin	25	
I _{IO(PIN)}	Output current source by any I/O and control pin	-25	
ΣI	Total output current sunk by sum of all IOs and control pins ⁽²⁾	80	- mA
$\Sigma I_{IO(PIN)}$	Total output current sourced by sum of all IOs and control pins ⁽²⁾	-80	
	Injected current on FT, FTf, and B pins ⁽³⁾	-5/+0	1
I _{INJ(PIN)}	Injected current on TC and RST pin ⁽⁴⁾	±5	1
	Injected current on TTa pins ⁽⁵⁾	±5	1
$\Sigma I_{INJ(PIN)}$	Total injected current (sum of all I/O and control pins) ⁽⁶⁾	±25	1

Table 17. Current characteristics

1. All main power (V_{DD} , V_{DDA}) and ground (V_{SS} and V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages.

3. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value.

4. A positive injection is induced by V_{IN} > V_{DD} while a negative injection is induced by V_{IN} < V_{SS}. I_{INJ(PIN)} must never be exceeded. Refer to *Table 16: Voltage characteristics* for the maximum allowed input voltage values.

 A positive injection is induced by V_{IN} > V_{DDA} while a negative injection is induced by V_{IN} < V_{SS}. I_{INJ}(PIN) must never be exceeded. Refer also to *Table 16: Voltage characteristics* for the maximum allowed input voltage values. Negative injection disturbs the analog performance of the device. See note ⁽²⁾ below *Table 81*.

 When several inputs are submitted to a current injection, the maximum ΣI_{INJ(PIN)} is the absolute sum of the positive and negative injected currents (instantaneous values).

Table 18. Thermal characteristics

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	-65 to +150	°C
TJ	Maximum junction temperature	150	°C

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 4 to 32 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in *Table 38*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions ⁽¹⁾	Min ⁽²⁾	Тур	Max ⁽²⁾	Unit
f _{OSC_IN}	Oscillator frequency	-	4	8	32	MHz
R _F	Feedback resistor	-	-	200	-	kΩ
		During startup ⁽³⁾	-	-	8.5	
		V _{DD} = 3.3 V, Rm= 30Ω, CL=10 pF@8 MHz	-	0.4	-	
		V _{DD} = 3.3 V, Rm= 45Ω, CL=10 pF@8 MHz	-	0.5	-	
I _{DD}	HSE current consumption	V _{DD} = 3.3 V, Rm= 30Ω, CL=5 pF@32 MHz	-	0.8	-	mA
		V _{DD} = 3.3 V, Rm= 30Ω CL=10 pF@32 MHz	-	1	-	
		V _{DD} = 3.3 V, Rm= 30Ω CL=20 pF@32 MHz	-	1.5	-	
9 _m	Oscillator transconductance	Startup	10	-	-	mA/V
$t_{\rm SU(HSE)}^{(4)}$	Startup time	V _{DD} is stabilized	-	2	-	ms

Table 38	. HSE	oscillator	characteristics
----------	-------	------------	-----------------

1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.

2. Guaranteed by design, not tested in production.

3. This consumption level occurs during the first 2/3 of the $t_{SU(HSE)}$ startup time.

 t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

For C_{L1} and C_{L2} , it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (Typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 17*). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2} .

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website <u>www.st.com</u>.

Symbol	ol Parameter		Мах	Unit
t _{v(BL_NE)}	FMC_NEx low to FMC_BL valid	-	2	
t _{su(Data_NE)}	Data to FMC_NEx high setup time	THCLK	-	
t _{su(Data_NOE)}	Data to FMC_NOE high setup time	THCLK+1	-	ns
t _{h(Data_NE)}	Data hold time after FMC_NEx high	0	-	
t _{h(Data_NOE)}	Data hold time after FMC_NOE high	0	-	

Table 50. Asynchronous multiplexed PSRAM/NOR read timings⁽¹⁾ (continued)

1. Based on characterization, not tested in production.

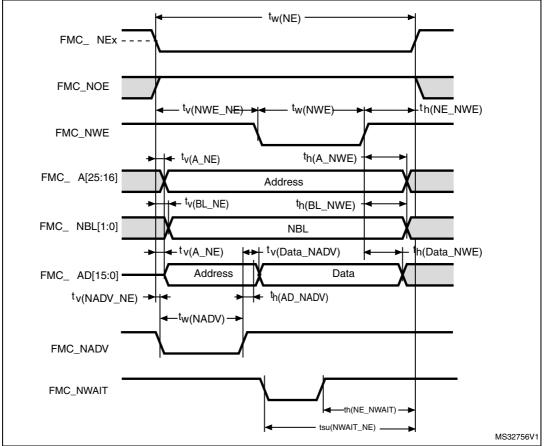


Figure 23. Asynchronous multiplexed PSRAM/NOR write timings

Symbol	Parameter	Min	Мах	Unit
t _{w(NE)}	FMC_NE low time	4THCLK-1	4THCLK+1	
t _{v(NWE_NE)}	FMC_NEx low to FMC_NWE low	THCLK	THCLK+0.5	
t _{w(NWE)}	FMC_NWE low time	2THCLK-0.5	2THCLK+1	
t _{h(NE_NWE)}	FMC_NWE high to FMC_NE high hold time	THCLK-0.5	-	
t _{v(A_NE)}	FMC_NEx low to FMC_A valid	-	5	
t _{v(NADV_NE)}	FMC_NEx low to FMC_NADV low	1	2.5	
t _{w(NADV)}	FMC_NADV low time	THCLK-2	THCLK+2	ns
t _{h(AD_NADV)}	DV) FMC_AD(adress) valid hold time after FMC_NADV high)		-	
t _{h(A_NWE)}	Address hold time after FMC_NWE high	THCLK-1	-	
t _{h(BL_NWE)}	FMC_BL hold time after FMC_NWE high	THCLK-0.5 -		
t _{v(BL_NE)}	FMC_NEx low to FMC_BL valid	-	1	
t _{v(Data_NADV)}	FMC_NADV high to Data valid	-	THCLK +3.5	
t _{h(Data_NWE)}	Data hold time after FMC_NWE high	THCLK +0.5	-	

Table 51. Asynchronous multiplexed PSRAM/NOR write timings⁽¹⁾

1. Based on characterization, not tested in production.

Symbol	Parameter	Min	Мах	Unit		
t _{w(NE)}	FMC_NE low time	9THCLK	9THCLK+0.5			
t _{w(NWE)}	FMC_NWE low time	6THCLK	6THCLK+2	20		
t _{su(NWAIT_NE)}	NE) FMC_NWAIT valid before FMC_NEx high		-	ns		
t _{h(NE_NWAIT)}	FMC_NEx hold time after FMC_NWAIT invalid	5THCLK-5	-			

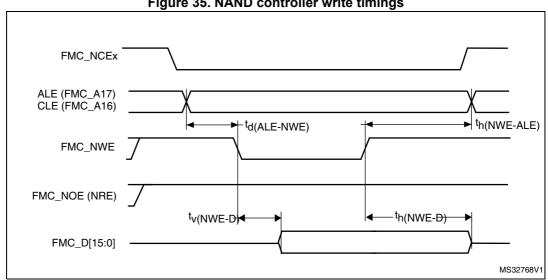
1. Based on characterization, not tested in production.

Synchronous waveforms and timings

Figure 24 and *Figure 27* present the synchronous waveforms and *Table 53* to *Table 56* provide the corresponding timings. The results shown in these tables are obtained with the following FSMC configuration:

- BurstAccessMode = FMC_BurstAccessMode_Enable;
- MemoryType = FMC_MemoryType_CRAM;
- WriteBurst = FMC_WriteBurst_Enable;
- CLKDivision = 1;
- DataLatency = 2 for NOR Flash; DataLatency = 0 for PSRAM

In all timing tables, the THCLK is the HCLK clock period (with maximum FMC_CLK = 36 MHz).



Symbol	Parameter	Min	Мах	Unit	
t _{w(NOE)}	FMC_NOE low width	6THCLK	6THCLK + 2		
t _{su(D-NOE)}	FMC_D[15-0] valid data before FMC_NOE high	THCLK+5	-		
t _{h(NOE-D)}	FMC_D[15-0] valid data after FMC_NOE high	0	-	ns	
t _{d(ALE-NOE)}	FMC_ALE valid before FMC_NOE low	- 6THCLK -0.5			
t _{h(NOE-ALE)}	FMC_NWE high to FMC_ALE invalid	6THCLK-1	-		

Table 59. Switching characteristics for NAND Flash read cycles^{(1) (2)}

1. Based on characterization, not tested in production.

2. CL = 30 pF

Figure 35. NAND controller write timings

Table 60. Switching characteristics for NAND Flash write cycles⁽¹⁾

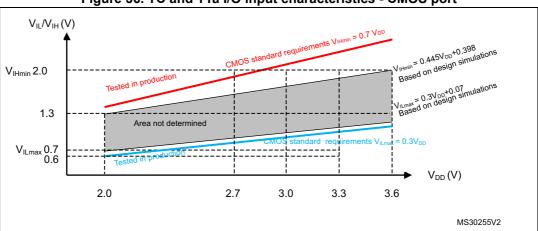
Symbol	Parameter	Min Max		Unit	
t _{w(NWE)}	FMC_NWE low width	4THCLK-0.5			
t _{v(NWE-D)}	FMC_NWE low to FMC_D[15-0] valid	-			
t _{h(NWE-D)}	FMC_NWE high to FMC_D[15-0] invalid	3THCLK -1.5	HCLK -1.5 -		
t _{d(D-NWE)}	FMC_D[15-0] valid before FMC_NWE high	5THCLK – 3 -		ns	
t _{d(ALE_NWE)}	FMC_ALE valid before FMC_NWE low	-	4THCLK+2		
t _{h(NWE-ALE)}	FMC_NWE high to FMC_ALE invalid	2THCLK-1	-		

1. Based on characterization, not tested in production.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
		TC, FT and FTf I/O TTa I/O in digital mode V _{SS} ≤V _{IN} ≤V _{DD}	-	-	±0.1	
l _{lkg}	Input leakage current ⁽³⁾	TTa I/O in digital mode V _{DD} ≤V _{IN} ≤V _{DDA}	-	-	1	
		TTa I/O in analog mode V _{SS} ≤V _{IN} ≤V _{DDA}	-	-	±0.2	μA
		FT and FTf I/O ⁽⁴⁾ V _{DD} ≤V _{IN} ≤5 V	-	-	10	
R _{PU}	Weak pull-up equivalent resistor ⁽⁵⁾	$V_{IN} = V_{SS}$	25	40	55	kΩ
R _{PD}	Weak pull-down equivalent resistor ⁽⁵⁾	$V_{IN} = V_{DD}$	25	40	55	kΩ
C _{IO}	I/O pin capacitance	-	-	5	-	pF

Table 66. I/O static characteristics (continued)

1. Data based on design simulation.


2. Tested in production.

3. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins. Refer to Table 65: I/O current injection susceptibility.

4. To sustain a voltage higher than V_{DD} +0.3 V, the internal pull-up/pull-down resistors must be disabled.

5. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This PMOS/NMOS contribution to the series resistance is minimum (~10% order).

All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements is shown in *Figure 36* and *Figure 37* for standard I/Os.

Figure 36. TC and TTa I/O input characteristics - CMOS port

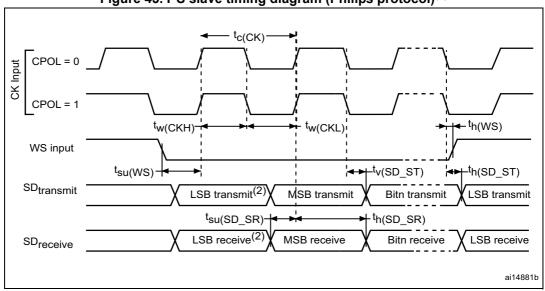
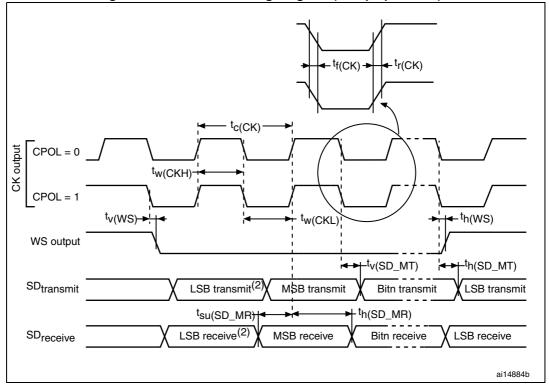



Figure 45. I²S slave timing diagram (Philips protocol)⁽¹⁾

- 1. Measurement points are done at $0.5V_{DD}$ and with external C_L=30 pF.
- 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

Figure 46. I²S master timing diagram (Philips protocol)⁽¹⁾

- 1. Measurement points are done at $0.5V_{DD}$ and with external CL=30 pF.
- 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit		
		Single-ended mode, 5 MSPS	-	104	139			
		Single-ended mode, 1 MSPS	-	20.4	37			
	Current on VREF+ pin	Single-ended mode, 200 KSPS	-	3.3	11.3			
I _{REF}	(see Figure 49)	Differential mode, 5 MSPS	-	174	235	μA		
		Differential mode, 1 MSPS	-	34.6	52.6			
		Differential mode, 200 KSPS	-	6	13.6			
V _{REF+}	Positive reference voltage	-	2	-	V _{DDA}	V		
f _{ADC}	ADC clock frequency	-	0.14	-	72	MHz		
		Resolution = 12 bits, Fast Channel	0.01	-	5.14			
f (1)	Sampling rate	Resolution = 10 bits, Fast Channel	0.012	-	6	MSPS		
f _S ⁽¹⁾		Resolution = 8 bits, Fast Channel	0.014	-	7.2	101353		
		Resolution = 6 bits, Fast Channel	0.0175	-	9			
f _{TRIG} ⁽¹⁾	External trigger frequency	f _{ADC} = 72 MHz Resolution = 12 bits	-	-	5.14	MHz		
		Resolution = 12 bits	-	-	14	1/f _{ADC}		
V _{AIN}	Conversion voltage range ⁽²⁾	-	0	-	V _{REF+}	V		
R _{AIN} ⁽¹⁾	External input impedance	-	-	-	100	kΩ		
C _{ADC} ⁽¹⁾	Internal sample and hold capacitor	-	-	5	-	pF		
t _{STAB} ⁽¹⁾	Power-up time	-	0	0	1	μs		
t _{CAL} ⁽¹⁾	Calibration time	f _{ADC} = 72 MHz	1.56			μs		
^L CAL	Calibration time	-		112		1/f _{ADC}		
	Trigger conversion latency	CKMODE = 00	1.5	2	2.5	1/f _{ADC}		
t _{latr} (1)	Trigger conversion latency Regular and injected	CKMODE = 01	-	-	2	1/f _{ADC}		
	channels without conversion abort	CKMODE = 10	-	-	2.25	1/f _{ADC}		
		CKMODE = 11	-	-	2.125	1/f _{ADC}		
		CKMODE = 00	2.5	3	3.5	1/f _{ADC}		
t(1)	Trigger conversion latency Injected channels aborting a	CKMODE = 01	-	-	3	1/f _{ADC}		
launin	regular conversion	CKMODE = 10	-	-	3.25	1/f _{ADC}		
		CKMODE = 11	-	-	3.125	1/f _{ADC}		

Table 79. ADC characteristics (continued)

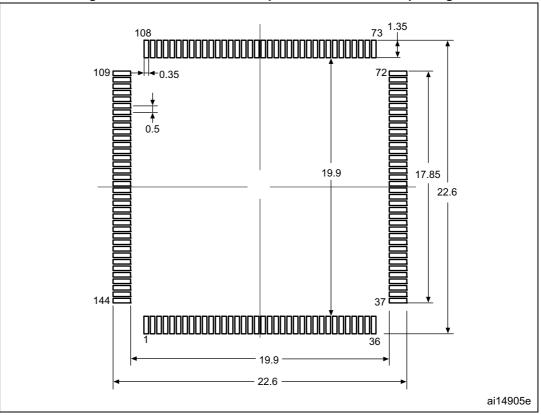
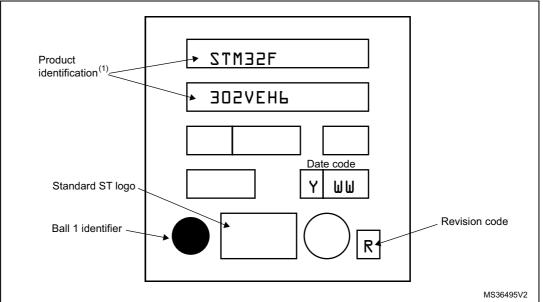


Figure 55. Recommended footprint for the LQFP144 package

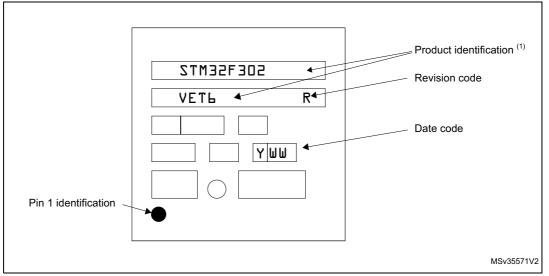

- 1. Drawing is not to scale.
- 2. Dimensions are expressed in millimeters.

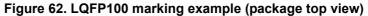
Device marking for UFBGA100

The following figure gives an example of topside marking orientation versus ball A1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Figure 59. UFBGA100 marking example (package top view)


 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.



Device marking for LQFP100

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

8 Part numbering

For a list of available options (memory, package, and so on) or for further information on any aspect of this device, contact the nearest ST sales office.

Table 100. Ordering information scheme

Example:	STM32	F	302	V	E	Т	6	х
Device family								
STM32 = ARM-based 32-bit microcontroller								
Product type								
F = General-purpose								
Sub-family								
302 = STM32F302xx								
Pin count								
R = 64 pins								
V = 100 pins								
Z = 144 pins								
Code size								
D = 384 Kbytes of Flash memory								
E = 512 Kbytes of Flash memory								
Package								
H = UFBGA								
T = LQFP								
Y = WLCSP								
Temperature range								
6 = -40 to 85 °C								
7 = -40 to 105 °C								
Options								

xxx = programmed parts TR = tape and reel

