

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

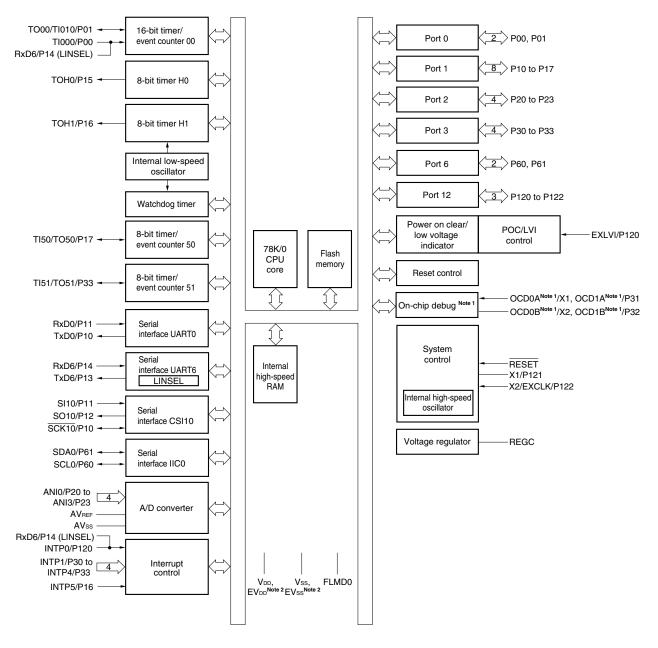
Product Status	Last Time Buy
Core Processor	78K/0
Core Size	8-Bit
Speed	20MHz
Connectivity	3-Wire SIO, I ² C, LINbus, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	23
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	30-LSSOP (0.240", 6.10mm Width)
Supplier Device Package	30-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/upd78f0500mc-5a4-a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

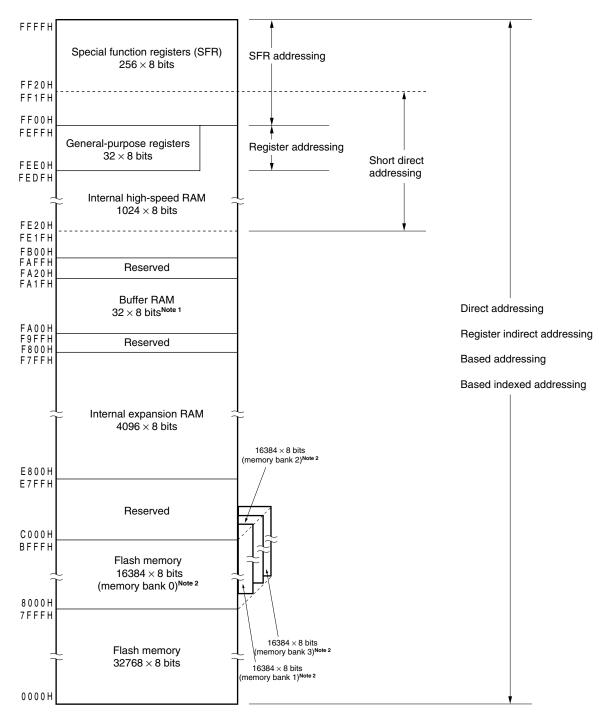
(1) Conventional-specification products (µPD78F05xx and 78F05xxD) (2/3)

<3> When high-speed system clock (X1 oscillation or external clock input) is used and entry RAM is located outside short direct addressing range


Library	/ Name	Processing Time (µs)				
		Normal Model	of C Compiler	Static Model of C Compiler/Assembler		
		Min.	Max.	Min.	Max.	
Self programming start l	ibrary		34/	fcpu		
Initialize library			49/fcpu +	485.8125		
Mode check library		35/f сри н	- 374.75	29/f сри -	- 374.75	
Block blank check library	/	174/fcpu +	6382.0625	134/fсри +	6382.0625	
Block erase library		174/fcpu +	174/fcpu +	134/fcpu +	134/fcpu +	
		31093.875	298948.125	31093.875	298948.125	
Word write library		318 (321)/fcpu +	318 (321)/fcpu +	262 (265)/fcpu +	262 (265)/fcpu +	
		644.125	1491.625	644.125	1491.625	
Block verify library		174/fcpu + 13448.5625 134/fcpu + 13448.5625				
Self programming end li	brary		34/	fcpu		
Get information library	Option value: 03H	171 (172)/fcr	•∪ + 432.4375	129 (130)/fcpu + 432.4375		
	Option value: 04H	181 (182)/f c	ри + 427.875	139 (140)/fcpu + 427.875		
	Option value: 05H		ри + 496.125	362 (369)/fcpu + 496.125		
Set information library		75/fcpu +	75/fcpu + 652400	67fcpu +	67fcpu + 652400	
		79157.6875		79157.6875		
EEPROM write library		318 (321)/fcpu +	318 (321)/fcpu +	262 (265)/fcpu +	262 (265)/fcpu +	
		799.875	1647.375	799.875	1647.375	

- **Remarks 1.** Values in parentheses indicate values when a write start address structure is located other than in the internal high-speed RAM.
 - 2. The above processing times are those during stabilized operation of the internal high-speed oscillator (RSTS = 1).
 - 3. fcpu: CPU operation clock frequency
 - 4. RSTS: Bit 7 of the internal oscillation mode register (RCM)

1.7 Block Diagram


1.7.1 78K0/KB2

Notes 1. Available only in the products with on-chip debug function.

2. Available only in the 36-pin products.

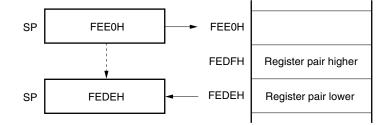


Figure 3-18. Correspondence Between Data Memory and Addressing (μPD78F0526, 78F0526A, 78F0536, 78F0536A, 78F0546, and 78F0546A)

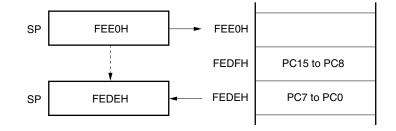
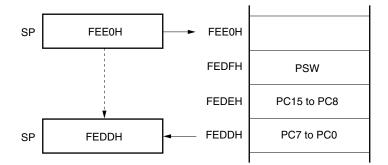

- **Notes 1.** The buffer RAM is incorporated only in the μ PD78F0546 and 78F0546A (78K0/KF2). The area from FA00H to FA1FH cannot be used with the μ PD78F0526, 78F0526A, 78F0536 and 78F0536A.
 - 2. To branch to or address a memory bank that is not set by the memory bank select register (BANK), change the setting of the memory bank by using BANK.

Figure 3-23. Data to Be Saved to Stack Memory


(a) PUSH rp instruction (when SP = FEE0H)

(b) CALL, CALLF, CALLT instructions (when SP = FEE0H)

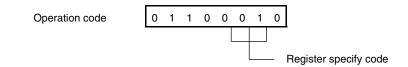
(c) Interrupt, BRK instructions (when SP = FEE0H)

3.4.2 Register addressing

[Function]

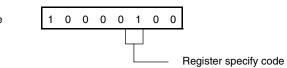
The general-purpose register to be specified is accessed as an operand with the register bank select flags (RBS0 to RBS1) and the register specify codes of an operation code.

Register addressing is carried out when an instruction with the following operand format is executed. When an 8-bit register is specified, one of the eight registers is specified with 3 bits in the operation code.


[Operand format]

Identifier	Description
r	X, A, C, B, E, D, L, H
rp	AX, BC, DE, HL

'r' and 'rp' can be described by absolute names (R0 to R7 and RP0 to RP3) as well as function names (X, A, C, B, E, D, L, H, AX, BC, DE, and HL).


[Description example]

MOV A, C; when selecting C register as r

INCW DE; when selecting DE register pair as rp

Operation code

(b) To stop X1 oscillation (disabling external clock input) by setting MSTOP to 1

<1> Confirming the CPU clock status (PCC and MCM registers)

Confirm with CLS and MCS that the CPU is operating on a clock other than the high-speed system clock. When CLS = 0 and MCS = 1, the high-speed system clock is supplied to the CPU, so change the CPU clock to a clock other than the high-speed system clock.

• 78K0/KB2

MCS	CPU Clock Status			
0	Internal high-speed oscillation clock			
1	High-speed system clock			

• 78K0/KC2, 78K0/KD2, 78K0/KE2, and 78K0/KF2

CLS	MCS	CPU Clock Status			
0	0	nternal high-speed oscillation clock			
0	1	ligh-speed system clock			
1	×	ubsystem clock			

<2> Stopping the high-speed system clock (MOC register) When MSTOP is set to 1, X1 oscillation is stopped (the input of the external clock is disabled).

Caution Be sure to confirm that MCS = 0 or CLS = 1 when setting MSTOP to 1. In addition, stop peripheral hardware that is operating on the high-speed system clock.

6.6.2 Example of controlling internal high-speed oscillation clock

The following describes examples of clock setting procedures for the following cases.

- (1) When restarting oscillation of the internal high-speed oscillation clock
- (2) When using internal high-speed oscillation clock as CPU clock, and internal high-speed oscillation clock or highspeed system clock as peripheral hardware clock
- (3) When stopping the internal high-speed oscillation clock

(3) Port mode registers 1 and 3 (PM1, PM3)

These registers set port 1 and 3 input/output in 1-bit units.

When using the P17/TO50/TI50 and P33/TO51/TI51/INTP4 pins for timer output, clear PM17 and PM33 and the output latches of P17 and P33 to 0.

When using the P17/TO50/TI50 and P33/TO51/TI51/INTP4 pins for timer input, set PM17 and PM33 to 1. The output latches of P17 and P33 at this time may be 0 or 1.

PM1 and PM3 can be set by a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation sets these registers to FFH.

Figure 8-9. Format of Port Mode Register 1 (PM1)

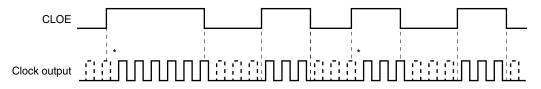
Address:	FF21H	After reset: FI	H R/W					
Symbol	7	6	5	4	3	2	1	0
PM1	PM17	PM16	PM15	PM14	PM13	PM12	PM11	PM10

PM1n	P1n pin I/O mode selection (n = 0 to 7)				
0	Output mode (output buffer on)				
1	Input mode (output buffer off)				

Figure 8-10. Format of Port Mode Register 3 (PM3)

Address: F	F23H	After reset: FF	H R/W					
Symbol	7	6	5	4	3	2	1	0
PM3	1	1	1	1	PM33	PM32	PM31	PM30

PM3n	P3n pin I/O mode selection (n = 0 to 3)			
0	Output mode (output buffer on)			
1	Input mode (output buffer off)			


12.4 Operations of Clock Output/Buzzer Output Controller

12.4.1 Operation as clock output

The clock pulse is output as the following procedure.

- <1> Select the clock pulse output frequency with bits 0 to 3 (CCS0 to CCS3) of the clock output selection register (CKS) (clock pulse output in disabled status).
- <2> Set bit 4 (CLOE) of CKS to 1 to enable clock output.
- **Remark** The clock output controller is designed not to output pulses with a small width during output enable/disable switching of the clock output. As shown in Figure 12-6, be sure to start output from the low period of the clock (marked with * in the figure). When stopping output, do so after the high-level period of the clock.

Figure 12-6. Remote Control Output Application Example

12.4.2 Operation as buzzer output

The buzzer frequency is output as the following procedure.

- <1> Select the buzzer output frequency with bits 5 and 6 (BCS0, BCS1) of the clock output selection register (CKS) (buzzer output in disabled status).
- <2> Set bit 7 (BZOE) of CKS to 1 to enable buzzer output.

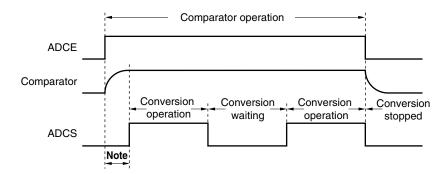


Figure 13-4. Timing Chart When Comparator Is Used

- **Note** To stabilize the internal circuit, the time from the rising of the ADCE bit to the falling of the ADCS bit must be 1 μ s or longer.
- Cautions 1. A/D conversion must be stopped before rewriting bits FR0 to FR2, LV1, and LV0 to values other than the identical data.
 - 2. If data is written to ADM, a wait cycle is generated. Do not write data to ADM when the peripheral hardware clock (fPRs) is stopped. For details, see CHAPTER 36 CAUTIONS FOR WAIT.

The setting methods are described below.

- <1> Set bit 0 (ADCE) of the A/D converter mode register (ADM) to 1.
- <2> Set the channel to be used in the analog input mode by using bits 3 to 0 (ADPC3 to ADPC0) of the A/D port configuration register (ADPC) and bits 7 to 0 (PM27 to PM20) of port mode register 2 (PM2).
- <3> Select conversion time by using bits 5 to 1 (FR2 to FR0, LV1, and LV0) of ADM.
- <4> Select a channel to be used by using bits 2 to 0 (ADS2 to ADS0) of the analog input channel specification register (ADS).
- <5> Set bit 7 (ADCS) of ADM to 1 to start A/D conversion.
- <6> When one A/D conversion has been completed, an interrupt request signal (INTAD) is generated.
- <7> Transfer the A/D conversion data to the A/D conversion result register (ADCR, ADCRH).

<Change the channel>

- <8> Change the channel using bits 2 to 0 (ADS2 to ADS0) of ADS to start A/D conversion.
- <9> When one A/D conversion has been completed, an interrupt request signal (INTAD) is generated.
- <10> Transfer the A/D conversion data to the A/D conversion result register (ADCR, ADCRH).

<Complete A/D conversion>

<11> Clear ADCS to 0.

<12> Clear ADCE to 0.

Cautions 1. Make sure the period of <1> to <5> is 1 μ s or more.

- 2. <1> may be done between <2> and <4>.
- 3. <1> can be omitted. However, ignore data of the first conversion after <5> in this case.
- The period from <6> to <9> differs from the conversion time set using bits 5 to 1 (FR2 to FR0, LV1, LV0) of ADM. The period from <8> to <9> is the conversion time set using FR2 to FR0, LV1, and LV0.

(7) Automatic data transfer address count register 0 (ADTC0)

This is a register used to indicate buffer RAM addresses during automatic transfer. When automatic transfer is stopped, the data position when transfer stopped can be ascertained by reading ADTC0 register value. This register can be read by an 8-bit memory manipulation instruction.

Reset signal generation clears this register to 00H. However, reading from ADTC0 is prohibited when bit 0 (TSF0) of serial status register 0 (CSIS0) = 1.

Figure 17-8. Format of Automatic Data Transfer Address Count Register 0 (ADTC0)

Address: FF97H After reset: 00H R

Symbol	7	6	5	4	3	2	1	0
ADTC0	0	0	0	ADTC04	ADTC03	ADTC02	ADTC01	ADTP00

(8) Port mode register 14 (PM14)

This register sets port 14 input/output in 1-bit units.

When using P142/SCKA0 pin as the clock output of the serial interface, clear PM142 to 0 and set the output latch of P142 to 1.

When using P144/SOA0 and P145/STB0 pins as the data output or strobe output of the serial interface, clear PM144, PM145, and the output latches of P144 and P145 to 0.

When using P141/BUSY0, P142/SCKA0, and P143/SIA0 pins as the busy input, clock input, or data input of the serial interface, set PM141, PM142, and PM143 to 1. At this time, the output latches of P141, P142, and P143 may be 0 or 1.

PM14 can be set by a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation sets this register to FFH.

Figure 17-9. Format of Port Mode Register 14 (PM14)

Address: FF2EH After reset: FFH R/W

Symbol 7 6 5 4 3 2 1 0 PM140 PM145 PM144 PM143 PM142 PM141 **PM14** 1 1

PM14n	P14n pin I/O mode selection (n = 0 to 5)					
0	Output mode (output buffer on)					
1	Input mode (output buffer off)					

(2) Automatic transmit/receive data setting

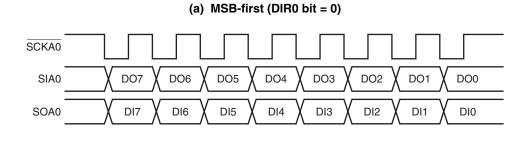
Here is an example of the procedure for successively transmitting/receiving data as the master.

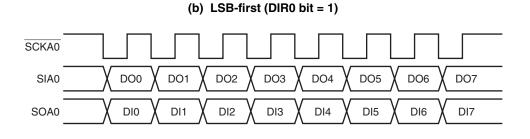
- <1> Enable CSIA0 to operate by setting bit 7 (CSIAE0) of serial operation mode specification register 0 (CSIMA0) to 1 (the buffer RAM can now be accessed).
- <2> Select a serial clock by using serial status register 0 (CSIS0).
- <3> Set the division ratio of the serial clock by using division value selection register 0 (BRGCA0), and specify a communication rate.
- <4> Sequentially write data to be transmitted to the buffer RAM, starting from the least significant address FA00H, up to FA1FH. Data is transmitted from the lowest address, continuing on to higher addresses.
- <5> Set "number of data items to be transmitted 1" to automatic data transfer address point specification register 0 (ADTP0).
- <6> Set bits 6 (ATE0) and 4 (MASTER0) of CSIMA0 to select a master operation in the automatic communication mode.
- <7> Set bits 3 (TXEA0) and 2 (RXEA0) of CSIMA0 to 1 to enable transmission/reception.
- <8> Set the transmission interval of data to the automatic data transfer interval specification register (ADTI0).
- <9> Automatic transmit/receive processing is started when bit 0 (ATSTA0) of serial trigger register 0 (CSIT0) is set to 1.

Caution Take the relationship with the other communicating party into consideration when setting the port mode register and port register.

Operations <1> to <9> execute the following operation.

- After the buffer RAM data indicated by automatic data transfer address count register 0 (ADTC0) is transferred to SIOA0, transmission is carried out (start of automatic transmission/reception).
- The received data is written to the buffer RAM address indicated by ADTC0.
- ADTC0 is incremented and the next data transmission/reception is carried out. Data transmission/reception continues until the ADTC0 incremental output matches the set value of automatic data transfer address point specification register 0 (ADTP0) (end of automatic transmission/reception). However, if bit 5 (ATM0) of CSIMA0 is set to 1 (repeat mode), ADTC0 is cleared after a match between ADTP0 and ADTC0, and then repeated transmission/reception is started.
- When automatic transmission/reception is terminated, an interrupt request (INTACSI) is generated and bit 0 (TSF0) of CSIS0 is cleared.
- To continue transmitting the next data, set the new data to the buffer RAM, and set "number of data to be transmitted 1" to ADTP0. After setting the number of data, set ATSTA0 to 1.




(d) Data format

Data is changed in synchronization with the SCKA0 falling edge as shown below.

The data length is fixed to 8 bits and the data transfer direction can be switched by the specification of bit 1 (DIR0) of serial operation mode specification register 0 (CSIMA0).

Figure 17-21. Format of CSIA0 Transmit/Receive Data

Figure 18-6. Format of IIC Status Register 0 (IICS0) (2/3)

COI0	Detection of matching addresses					
0	Addresses do not match.					
1	Addresses match.					
Condition f	for clearing (COI0 = 0)	Condition for setting (COI0 = 1)				
 When a start condition is detected When a stop condition is detected Cleared by LREL0 = 1 (exit from communications) When IICE0 changes from 1 to 0 (operation stop) Reset 		• When the received address matches the local address (slave address register 0 (SVA0)) (set at the rising edge of the eighth clock).				

TRC0	Detection of transmit/receive status						
0	Receive status (other than transmit status). The SDA0 line is set for high impedance.						
1	Transmit status. The value in the SO0 latch is e falling edge of the first byte's ninth clock).	nabled for output to the SDA0 line (valid starting at the					
Condition for	or clearing (TRC0 = 0)	Condition for setting (TRC0 = 1)					
falling edge of the first byte's ninth clock). Condition for clearing (TRC0 = 0) <both and="" master="" slave=""> • When a stop condition is detected • Cleared by LREL0 = 1 (exit from communications) • When the IICE0 bit changes from 1 to 0 (operation stop) • Cleared by WREL0 = 1^{Note} (wait cancel) • When the ALD0 bit changes from 0 to 1 (arbitration)</both>		<master> When a start condition is generated When 0 (master transmission) is output to the LSB (transfer direction specification bit) of the first byte (during address transfer) <slave></slave> When 1 (slave transmission) is input to the LSB (transfer direction specification bit) of the first byte from the master (during address transfer) </master>					

Note When bit 3 (TRC0) of the IIC status register 0 (IICS0) is set to 1 (transmission status), bit 5 (WREL0) of the IIC control register 0 (IICC0) is set to 1 during the ninth clock and wait is canceled, after which the TRC0 bit is cleared (reception status) and the SDAA0 line is set to high impedance. Release the wait performed while TRC0 bit is 1 (transmission status) by writing to the IIC shift register.

Remark	LREL0:	Bit 6 of IIC control register 0 (IICC0)
	IICE0:	Bit 7 of IIC control register 0 (IICC0)

<R>

Address: FFI	E8H After r	eset: FFH I	R/W					
Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>
PR0L	SREPR6	PPR5	PPR4	PPR3	PPR2	PPR1	PPR0	LVIPR
Address: FFI	E9H After r	eset: FFH I	R/W					
Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>
PR0H	TMPR010	TMPR000	TMPR50	TMPRH0	TMPRH1	DUALPR0 CSIPR10 STPR0	STPR6	SRPR6
Address: FFI Symbol	EAH After r 7	eset: FFH <6>	R/W <5>	<4>	<3>	<2>	<1>	<0>
PR1L	, 1	PPR6 ^{Note 1}	WTPR	KRPR	TMPR51	WTIPR	SRPR0	ADPR
	I	11110	vv i i i t		11011101	vv m m		ADIT
Address: FFI	EBH After r	eset: FFH	R/W					
Symbol	7	6	5	4	3	2	1	<0>
PR1H	1	1	1	1	1	1	1	IICPR0 DMUPR ^{Note 2}
	XXPRX			Prio	rity level seled	ction		
	0	High priority	level		,			
	1	Low priority						

Figure 20-13. Format of Priority Specification Flag Registers (PR0L, PR0H, PR1L, PR1H) (78K0/KC2)

Notes 1. 48-pin products only.

2. Products whose flash memory is at least 48 KB only.

Cautions 1. Be sure to set bits 6 and 7 of PR1L to 1 in the 38-pin and 44-pin products.

Be sure to set bit 7 of PR1L to 1 in the 48-pin products.

2. Be sure to set bits 1 to 7 of PR1H to 1.

Caution The pins mounted depend on the product. Refer to Caution 2 at the beginning of this chapter.

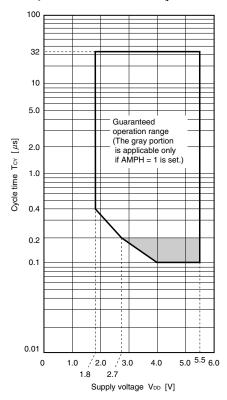
X1 Oscillator Characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} = \text{EV}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V})$

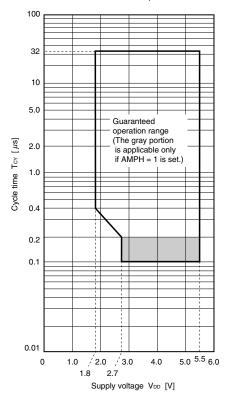
Resonator	Recommended Circuit	Parameter	Co	MIN.	TYP.	MAX.	Unit	
Ceramic resonator,	Vss X1 X2	X1 clock oscillation frequency (fx) ^{Note 1}	Conventional- specification Products (µPD78F05xx, 78F05xxD) Expanded- specification Products (µPD78F05xxA, 78F05xxDA)	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	1.0 ^{Note 2}		20.0	MHz
Crystal resonator				$2.7~V \leq V_{\text{DD}} < 4.0~V$	$\leq V_{DD} < 4.0 \text{ V}$ 1.0 ^{Note 2} 1	10.0	0	
				$1.8~V \leq V_{\text{DD}} < 2.7~V$	1.0		5.0	
				$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	1.0 ^{Note 2}		20.0	
	:			$1.8 \text{ V} \leq V_{\text{DD}} < 2.7 \text{ V}$	1.0		5.0	

Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.

2. It is 2.0 MHz (MIN.) when programming on the board via UART6.


Cautions 1. When using the X1 oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.

- Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor the same potential as Vss.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.
- 2. Since the CPU is started by the internal high-speed oscillation clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.


Caution The pins mounted depend on the product. Refer to Caution 2 at the beginning of this chapter.

TCY vs. VDD (Main System Clock Operation)

<1> Conventional-specification Products (µPD78F05xx, 78F05xxD)

<2> Expanded-specification Products (µPD78F05xxA, 78F05xxDA)

(2) Non-port functions

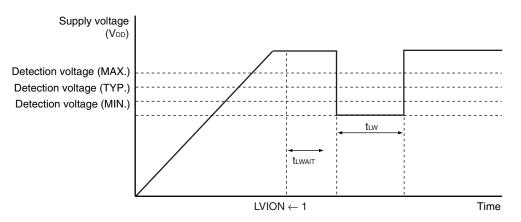
Port		78K0/KB2		78K0/KC2		78K0/KD2	78K0/KE2	78K0/KF2					
		30/36 Pins	38 Pins	44 Pins	48 Pins	52 Pins	64 Pins	80 Pins					
Power supply, ground		Vdd, EVdd ^{Note 1} , Vss, EVss ^{Note 1} , AVref, AVss	VDD, AVREF, VSS	s, AVss	Vdd, EVdd, Vss, EVss, AVref, AVss								
Reg	gulator	REGC											
Res	set	RESET											
Clo osc	ck illation	X1, X2, EXCLK											
	ting to h memory	FLMD0											
Inte	errupt	INTP0 to INTP	5		INTP0 to INTP	6	INTP0 to INTP3	7					
Key	v interrupt	-	KR0, KR1	KR0 to KR3		KR0 to KR7							
	ТМ00	TI000, TI010, T	ГО00										
	TM01			-			TI001 ^{Note 2} , TI01	1 ^{Note 2} , TO01 ^{Note 2}					
Timer	TM50	TI50, TO50											
Ę	TM51	TI51, TO51											
	тмно	ТОНО											
	TMH1	TOH1											
	UART0	RxD0, TxD0											
	UART6	RxD6, TxD6											
ce	IIC0	SCL0, SDA0 SCL0, SDA0, EXSCL0											
terfa	CSI10	SCK10, SI10, SO10											
Serial interface	CSI11	- SCK11 ^{Note 2} , SI11 ^{Note 2} , SO11 ^{Note 2} , SSI11 ^{Note 2}						$\frac{1}{1}^{Note 2}$, $1^{Note 2}$					
0)	CSIA0				_			SCKAO, SIAO, SOAO, BUSYO, STBO					
A/D converter		ANI0 to ANI3	ANI0 to ANI5	ANI0 to ANI7									
Clock output			_		PCL								
Buz	zer output			_			BUZ						
Low-voltage detector (LVI)		EXLVI											

Notes 1. This is not mounted onto 30-pin products.

2. This is not mounted onto the 78K0/KE2 products whose flash memory is less than 32 KB.

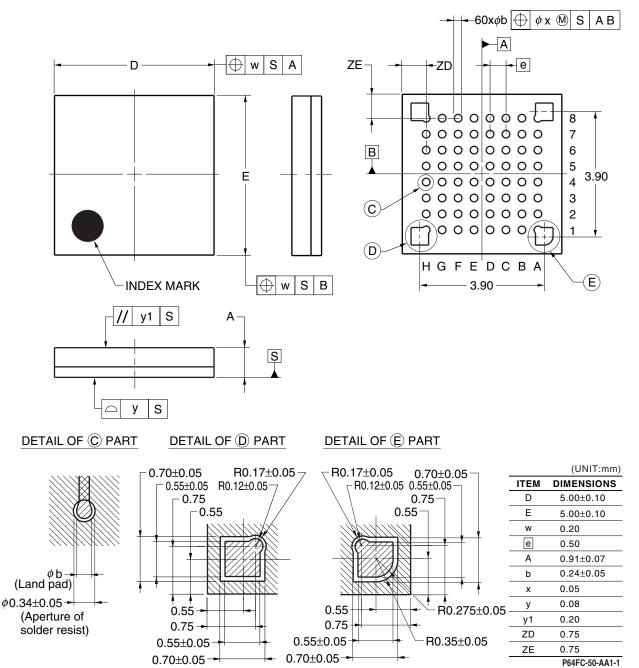
Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage level	VLVIO		4.14	4.24	4.34	V
voltage		VLVI1		3.99	4.09	4.19	V
		VLVI2		3.83	3.93	4.03	V
		VLVI3		3.68	3.78	3.88	v
		VLVI4		3.52	3.62	3.72	V
		VLVI5		3.37	3.47	3.57	v
		VLVI6		3.22	3.32	3.42	V
		VLVI7		3.06	3.16	3.26	V
		VLVI8		2.91	3.01	3.11	v
		VLVI9		2.75	2.85	2.95	V
	External input pinNote 1	EXLVI	EXLVI < VDD, 2.7 V \leq VDD \leq 5.5 V	1.11	1.21	1.31	V
Minimum pu	Minimum pulse width			200			μs
Operation s	Operation stabilization wait time ^{Note 2}			10			μs


LVI Circuit Characteristics (TA = -40 to +110°C, VPOC \leq VDD = EVDD \leq 5.5 V, AVREF \leq VDD, VSS = EVSS = 0 V)

Notes 1. The EXLVI/P120/INTP0 pin is used.

2. Time required from setting bit 7 (LVION) of the low-voltage detection register (LVIM) to 1 to operation stabilization


Remark $V_{LVI(n-1)} > V_{LVIn}$: n = 1 to 9

LVI Circuit Timing

- μPD78F0531FC-AA1-A, 78F0532FC-AA1-A, 78F0533FC-AA1-A, 78F0534FC-AA1-A, 78F0535FC-AA1-A, 78F0536FC-AA1-A, 78F0537DFC-AA1-A
- μPD78F0531AFC-AA1-A, 78F0532AFC-AA1-A, 78F0533AFC-AA1-A, 78F0534AFC-AA1-A, 78F0535AFC-AA1-A, 78F0535AFC-AA1-A, 78F0537DAFC-AA1-A

64-PIN PLASTIC FLGA(5x5)

