

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	78K/0
Core Size	8-Bit
Speed	20MHz
Connectivity	3-Wire SIO, I ² C, LINbus, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	23
Program Memory Size	24KB (24K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	30-LSSOP (0.240", 6.10mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/upd78f0502amc-cab-ax

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

(e) SIA0

This is a serial interface CSIA0 serial data input pin.

(f) SOA0

This is a serial interface CSIA0 serial data output pin.

(g) SCKA0

This is a serial interface CSIA0 serial clock I/O pin.

(h) STB0

This is a serial interface CSIA0 strobe output pin.

2.2.12 AVREF, AVSS, VDD, EVDD, VSS, EVSS

	78K0/KB2	78K0/KC2 78K0/KD2		78K0	78K0/KF2		
				Products whose flash memory is less than 32 KB	Products whose flash memory is at least 48 KB		
AVREF	\checkmark	٦	I	\checkmark			
AVss	\checkmark	٦			\checkmark		
VDD	\checkmark	٦	I	√			
EVDD	\sqrt{Note}	_		√			
Vss	\checkmark			√			
EVss	√ ^{Note}	-	_	√			

Note This is not mounted onto 30-pin products of the 78K0/KB2.

Remark $\sqrt{:}$ Mounted, -: Not mounted

(a) AVREF

This is the A/D converter reference voltage input pin and the positive power supply pin of P20 to P27 and A/D converter.

When the A/D converter is not used, connect this pin directly to EV_{DD} or V_{DD}^{Note} .

Note Make the AVREF pin the same potential as the VDD pin when port 2 is used as a digital port.

(b) AVss

This is the A/D converter ground potential pin. Even when the A/D converter is not used, always use this pin with the same potential as the Vss pin.

Figure 3-1. Memory Map (µPD78F0500 and 78F0500A)

Notes 1. When boot swap is not used: Set the option bytes to 0080H to 0084H.

When boot swap is used: Set the option bytes to 0080H to 0084H and 1080H to 1084H.

- 2. Writing boot cluster 0 can be prohibited depending on the setting of security (see 27.8 Security Settings).
- **Remark** The flash memory is divided into blocks (one block = 1 KB). For the address values and block numbers, see **Table 3-3 Correspondence Between Address Values and Block Numbers in Flash Memory**.

Figure 3-19. Correspondence Between Data Memory and Addressing (μPD78F0527, 78F0527A, 78F0537, 78F0537A, 78F0547, 78F0547A, 78F0527D, 78F0527DA, 78F0537D, 78F0537DA, 78F0547D and 78F0547DA)

- **Notes 1.** The buffer RAM is incorporated only in the μ PD78F0547, 78F0547A, 78F0547D and 78F0547DA (78K0/KF2). The area from FA00H to FA1FH cannot be used with the μ PD78F0527, 78F0527A, 78F0527A, 78F0527DA, 78F0537D and 78F0537DA.
 - 2. To branch to or address a memory bank that is not set by the memory bank select register (BANK), change the setting of the memory bank by using BANK.

RENESAS

Figure 3-23. Data to Be Saved to Stack Memory

(a) PUSH rp instruction (when SP = FEE0H)

(b) CALL, CALLF, CALLT instructions (when SP = FEE0H)

(c) Interrupt, BRK instructions (when SP = FEE0H)

(4) Prescaler mode register 0n (PRM0n)

PRM0n is the register that sets the TM0n count clock and Tl00n and Tl01n pin input valid edges. Rewriting PRM0n is prohibited during operation (when TMC0n3 and TMC0n2 = other than 00). PRM0n can be set by a 1-bit or 8-bit memory manipulation instruction. Reset signal generation clears PRM0n to 00H.

- Cautions 1. Do not apply the following setting when setting the PRM0n1 and PRM0n0 bits to 11 (to specify the valid edge of the TI00n pin as a count clock).
 - Clear & start mode entered by the TI00n pin valid edge
 - Setting the TI00n pin as a capture trigger
 - 2. If the operation of the 16-bit timer/event counter 0n is enabled when the TI00n or TI01n pin is at high level and when the valid edge of the TI00n or TI01n pin is specified to be the rising edge or both edges, the high level of the TI00n or TI01n pin is detected as a rising edge. Note this when the TI00n or TI01n pin is pulled up. However, the rising edge is not detected when the timer operation has been once stopped and then is enabled again.
 - 3. The valid edge of TI010 and timer output (TO00) cannot be used for the P01 pin at the same time, and the valid edge of TI011 and timer output (TO01) cannot be used for the P06 pin at the same time. Select either of the functions.
- **Remark** n = 0: 78K0/KE2 products whose flash memory is less than 32 KB, and 78K0/KB2, 78K0/KC2, 78K0/KD2 products
 - n = 0, 1: 78K0/KE2 products whose flash memory is at least 48 KB, and 78K0/KF2 products

Figure 7-49. Example of Register Settings for One-Shot Pulse Output Operation (1/2)

(a) 16-bit timer mode control register 0n (TMC0n)

n = 0, 1: 78K0/KE2 products whose flash memory is at least 48 KB, and 78K0/KF2 products

CHAPTER 10 WATCH TIMER

	78K0/KB2	78K0/KC2	78K0/KD2	78K0/KE2	78K0/KF2	
Watch timer	_	\checkmark				

Remark $\sqrt{}$: Mounted, -: Not mounted

10.1 Functions of Watch Timer

The watch timer has the following functions.

- Watch timer
- Interval timer

The watch timer and the interval timer can be used simultaneously. Figure 10-1 shows the watch timer block diagram.

Figure 10-1. Block Diagram of Watch Timer

- **Remark** fprs: Peripheral hardware clock frequency
 - fsub: Subsystem clock frequency
 - fw: Watch timer clock frequency (fprs/2⁷ or fsub)
 - fwx: fw or fw/ 2^9

(c) Transmission

If bit 7 (POWER0) of asynchronous serial interface operation mode register 0 (ASIM0) is set to 1 and bit 6 (TXE0) of ASIM0 is then set to 1, transmission is enabled. Transmission can be started by writing transmit data to transmit shift register 0 (TXS0). The start bit, parity bit, and stop bit are automatically appended to the data.

When transmission is started, the start bit is output from the TxD0 pin, and the transmit data is output followed by the rest of the data in order starting from the LSB. When transmission is completed, the parity and stop bits set by ASIM0 are appended and a transmission completion interrupt request (INTST0) is generated.

Transmission is stopped until the data to be transmitted next is written to TXS0.

Figure 14-8 shows the timing of the transmission completion interrupt request (INTST0). This interrupt occurs as soon as the last stop bit has been output.

Caution After transmit data is written to TXS0, do not write the next transmit data before the transmission completion interrupt signal (INTST0) is generated.

Figure 14-8. Transmission Completion Interrupt Request Timing

1. Stop bit length: 1

Caution Make sure POWER6 = 0 when rewriting TPS63 to TPS60.

Remarks 1. fPRs: Peripheral hardware clock frequency

2. TMC506: Bit 6 of 8-bit timer mode control register 50 (TMC50) TMC501: Bit 1 of TMC50

(5) Baud rate generator control register 6 (BRGC6)

This register sets the division value of the 8-bit counter of serial interface UART6. BRGC6 can be set by an 8-bit memory manipulation instruction. Reset signal generation sets this register to FFH.

4

MDL65 MDL64

З

MDL63

Figure 15-9. Format of Baud Rate Generator Control Register 6 (BRGC6)

2

MDL62

1

MDL61

0

MDL60

Address: FF57H After reset: FFH R/W 7

MDL67

6

MDL66

5

Symbol BRGC6

MDL67	MDL66	MDL65	MDL64	MDL63	MDL62	MDL61	MDL60	k	Output clock selection of 8-bit counter
0	0	0	0	0	0	×	×	×	Setting prohibited
0	0	0	0	0	1	0	0	4	fxclk6/4
0	0	0	0	0	1	0	1	5	fxclk6/5
0	0	0	0	0	1	1	0	6	fxclk6/6
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
1	1	1	1	1	1	0	0	252	fxclк6/252
1	1	1	1	1	1	0	1	253	fxclk6/253
1	1	1	1	1	1	1	0	254	fxclк6/254
1	1	1	1	1	1	1	1	255	fxclk6/255

Cautions 1. Make sure that bit 6 (TXE6) and bit 5 (RXE6) of the ASIM6 register = 0 when rewriting the MDL67 to MDL60 bits.

- 2. k: Value set by MDL67 to MDL60 bits (k = 4, 5, 6, ..., 255)
- 3. x: Don't care

Remark BRGC6 can be refreshed (the same value is written) by software during a communication operation (when bits 7 and 6 (POWER6, TXE6) of ASIM6 = 1 or bits 7 and 5 (POWER6, RXE6) of ASIM6 = 1).

^{2.} The baud rate is the output clock of the 8-bit counter divided by 2.

Remarks 1. fxclk6: Frequency of base clock selected by the TPS63 to TPS60 bits of CKSR6 register

(b) Parity types and operation

The parity bit is used to detect a bit error in communication data. Usually, the same type of parity bit is used on both the transmission and reception sides. With even parity and odd parity, a 1-bit (odd number) error can be detected. With zero parity and no parity, an error cannot be detected.

Caution Fix the PS61 and PS60 bits to 0 when the device is used in LIN communication operation.

(i) Even parity

Transmission

Transmit data, including the parity bit, is controlled so that the number of bits that are "1" is even. The value of the parity bit is as follows.

If transmit data has an odd number of bits that are "1": 1 If transmit data has an even number of bits that are "1": 0

Reception

The number of bits that are "1" in the receive data, including the parity bit, is counted. If it is odd, a parity error occurs.

(ii) Odd parity

Transmission

Unlike even parity, transmit data, including the parity bit, is controlled so that the number of bits that are "1" is odd.

If transmit data has an odd number of bits that are "1": 0 If transmit data has an even number of bits that are "1": 1

• Reception

The number of bits that are "1" in the receive data, including the parity bit, is counted. If it is even, a parity error occurs.

(iii) 0 parity

The parity bit is cleared to 0 when data is transmitted, regardless of the transmit data.

The parity bit is not detected when the data is received. Therefore, a parity error does not occur regardless of whether the parity bit is "0" or "1".

(iv) No parity

No parity bit is appended to the transmit data.

Reception is performed assuming that there is no parity bit when data is received. Because there is no parity bit, a parity error does not occur.

	Hardware	Status After Reset Acknowledgment ^{Note 1}
Memory bank select registe	er (BANK)	00H
Clock operation mode sele	ct register (OSCCTL)	00H
Processor clock control reg	01H	
Internal oscillation mode re	gister (RCM)	80H
Main OSC control register	(MOC)	80H
Main clock mode register (MCM)	00H
Oscillation stabilization time	e counter status register (OSTC)	00H
Oscillation stabilization time	e select register (OSTS)	05H
16-bit timer/event	Timer counters 00, 01 (TM00, TM01)	0000H
counters 00, 01	Capture/compare registers 000, 010, 001, 011 (CR000, CR010, CR001, CR011)	0000H
	Mode control registers 00, 01 (TMC00, TMC01)	00H
	Prescaler mode registers 00, 01 (PRM00, PRM01)	00H
	Capture/compare control registers 00, 01 (CRC00, CRC01)	00H
	Timer output control registers 00, 01 (TOC00, TOC01)	00H
8-bit timer/event counters	Timer counters 50, 51 (TM50, TM51)	00H
50, 51	Compare registers 50, 51 (CR50, CR51)	00H
	Timer clock selection registers 50, 51 (TCL50, TCL51)	00H
	Mode control registers 50, 51 (TMC50, TMC51)	00H
8-bit timers H0, H1	Compare registers 00, 10, 01, 11 (CMP00, CMP10, CMP01, CMP11)	00H
	Mode registers (TMHMD0, TMHMD1)	00H
	Carrier control register 1 (TMCYC1)Note 2	00H
Watch timer	Operation mode register (WTM)	00H
Clock output/buzzer output controller	Clock output selection register (CKS)	00H
Watchdog timer	Enable register (WDTE)	1AH/9AH ^{Note 3}
A/D converter	10-bit A/D conversion result register (ADCR)	0000H
	8-bit A/D conversion result register (ADCRH)	00H
	Mode register (ADM)	00H
	Analog input channel specification register (ADS)	00H
	A/D port configuration register (ADPC)	00H
Serial interface UART0	Receive buffer register 0 (RXB0)	FFH
	Transmit shift register 0 (TXS0)	FFH
	Asynchronous serial interface operation mode register 0 (ASIM0)	01H
	Asynchronous serial interface reception error status register 0 (ASIS0)	00H
	Baud rate generator control register 0 (BRGC0)	1FH

Notes 1. During reset signal generation or oscillation stabilization time wait, only the PC contents among the hardware statuses become undefined. All other hardware statuses remain unchanged after reset.

- 2. 8-bit timer H1 only.
- 3. The reset value of WDTE is determined by the option byte setting.
- Remark The special function register (SFR) mounted depend on the product. See 3.2.3 Special function registers (SFRs).

23.1 Register for Confirming Reset Source

Many internal reset generation sources exist in the 78K0/Kx2 microcontrollers. The reset control flag register (RESF) is used to store which source has generated the reset request.

RESF can be read by an 8-bit memory manipulation instruction.

RESET input, reset by power-on-clear (POC) circuit, and reading RESF set RESF to 00H.

Figure 23-5. Format of Reset Control Flag Register (RESF)

Address: FFA	ACH After	reset: 00H ^{Note}	R					
Symbol	7	6	5	4	3	2	1	0
RESF	0	0	0	WDTRF	0	0	0	LVIRF

WDTRF	Internal reset request by watchdog timer (WDT)
0	Internal reset request is not generated, or RESF is cleared.
1	Internal reset request is generated.

LVIRF	Internal reset request by low-voltage detector (LVI)
0	Internal reset request is not generated, or RESF is cleared.
1	Internal reset request is generated.

Note The value after reset varies depending on the reset source.

Caution Do not read data by a 1-bit memory manipulation instruction.

The status of RESF when a reset request is generated is shown in Table 23-3.

Table 23-3. RESF Status When Reset Request Is Generated

Reset Source	RESET Input	Reset by POC	Reset by WDT	Reset by LVI
Flag				
WDTRF	Cleared (0)	Cleared (0)	Set (1)	Held
LVIRF			Held	Set (1)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage level	VLVIO		4.14	4.24	4.34	V
voltage		VLVI1		3.99	4.09	4.19	V
		VLVI2		3.83	3.93	4.03	V
		VLVI3		3.68	3.78	3.88	V
		VLVI4		3.52	3.62	3.72	V
		VLVI5		3.37	3.47	3.57	V
		VLVI6		3.22	3.32	3.42	V
		VLVI7		3.06	3.16	3.26	V
		VLVI8		2.91	3.01	3.11	V
		VLVI9		2.75	2.85	2.95	V
		VLVI10		2.60	2.70	2.80	V
		VLVI11		2.45	2.55	2.65	V
		VLVI12		2.29	2.39	2.49	V
		VLVI13		2.14	2.24	2.34	V
		VLVI14		1.98	2.08	2.18	V
		VLVI15		1.83	1.93	2.03	V
	External input pin ^{Note 1}	EXLVI	EXLVI < V _{DD} , 1.8 V \leq V _{DD} \leq 5.5 V	1.11	1.21	1.31	V
Minimum pu	lse width	t∟w		200			μs
Operation st	abilization wait time ^{Note 2}	t lwait		10			μs

LVI Circuit Characteristics (TA = -40 to +85°C, VPOC \leq VDD = EVDD \leq 5.5 V, AVREF \leq VDD, VSS = EVSS = 0 V)

Notes 1. The EXLVI/P120/INTP0 pin is used.

2. Time required from setting bit 7 (LVION) of the low-voltage detection register (LVIM) to 1 to operation stabilization

Remark $V_{LVI(n-1)} > V_{LVIn}$: n = 1 to 15

LVI Circuit Timing

Parameter	Symbol	Conditi	ons		MIN.	TYP.	MAX.	Unit
Output voltage, low	Vol1	P00 to P06, P10 to P17, P30 to P33, P40 to P47,	4.0 V ≤ lol1 = 8.	V _{DD} ≤ 5.5 V, 5 mA			0.7	V
		P50 to P57, P64 to P67, P70 to P77, P120, P130,	2.7 V ≤ lol1 = 5.	V _{DD} < 4.0 V, 0 mA			0.7	V
		P140 to P145	1.8 V ≤ lol1 = 2.	V _{DD} < 2.7 V, 0 mA			0.5	V
			1.8 V ≤ Iol1 = 0.	V _{DD} < 2.7 V, 5 mA			0.4	V
	Vol2	P20 to P27	AVREF =	· V _{DD} , 4 mA			0.4	V
		P121 to P124	IOL2 = 0.	4 mA			0.4	V
	Vol3	P60 to P63	4.0 V ≤ lol1 = 1	Vɒɒ ≤ 5.5 V, 5.0 mA			2.0	V
			4.0 V ≤ lol1 = 5.	V _{DD} ≤ 5.5 V, 0 mA			0.4	V
			2.7 V ≤ Iol1 = 5.	V _{DD} < 4.0 V, 0 mA			0.6	V
			$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \\ I_{\text{OL1}} = 3.0 \ mA \end{array} \end{array} \label{eq:DD}$				0.4	V
			$\begin{array}{l} 1.8 \ V \leq V_{\text{DD}} < 2.7 \ V, \\ I_{\text{OL1}} = 2.0 \ mA \end{array} \end{array} \label{eq:DD}$				0.4	V
Input leakage current, high	ILIH1	P00 to P06, P10 to P17, P30 to P33, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P120, P140 to P145, FLMD0, RESET	VI = VDI	Vi = Vdd			1	μΑ
		P20 to P27	VI = AV	ref = Vdd			1	μA
	Ілнз	P121 to 124	V1 =	V _I = I/O port mode			1	μA
		(X1, X2, XT1, XT2)	Vdd	OSC mode			20	μA
Input leakage current, low	ILIL1	P00 to P06, P10 to P17, P30 to P33, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P120, P140 to P145, FLMD0, RESET	VI = Vss	3			-1	μΑ
		P20 to P27	VI = Vss	$s, AV_{REF} = V_{DD}$			-1	μA
	Ililis	P121 to 124	V1 =	I/O port mode			-1	μA
		(X1, X2, XT1, XT2)	Vss	OSC mode			-20	μA
Pull-up resistor	Rυ	VI = Vss		·	10	20	100	kΩ
FLMD0 supply voltage	VIL	In normal operation mode			0		0.2VDD	V
	VIH	In self-programming mode	0.8VDD		VDD	V		

DC Characteristics (3/4)

(TA = -40 to +85°C, 1.8 V \leq Vdd = EVdd \leq 5.5 V, AVREF \leq Vdd, Vss = EVss = AVss = 0 V)

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

Parameter	Symbol		Conditions	Ratings	Unit
Output current, high	Іон	Per pin	P00 to P06, P10 to P17, P30 to P33, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P120, P130, P140 to P145	-10	mA
		Total of all pins -80 mA	P00 to P04, P40 to P47, P120, P130, P140 to P145	-25	mA
			P05, P06, P10 to P17, P30 to P33, P50 to P57, P64 to P67, P70 to P77	-55	mA
		Per pin	P20 to P27	-0.5	mA
		Total of all pins		-2	mA
		Per pin	P121 to P124	-1	mA
		Total of all pins		-4	mA
Output current, low	lol	Per pin	P00 to P06, P10 to P17, P30 to P33, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P120, P130, P140 to P145	30	mA
		Total of all pins 200 mA	P00 to P04, P40 to P47, P120, P130, P140 to P145	60	mA
			P05, P06, P10 to P17, P30 to P33, P50 to P57, P60 to P67, P70 to P77	140	mA
		Per pin	P20 to P27	1	mA
		Total of all pins		5	mA
		Per pin	P121 to P124	4	mA
		Total of all pins		10	mA
Operating ambient temperature	Та			-40 to +110	°C
Storage temperature	Tstg			-65 to +150	°C

Absolute Maximum Ratings (T_A = 25°C) (2/2)

- Cautions 1. Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
 - 2. The value of the current that can be run per pin must satisfy the value of the current per pin and the total value of the currents of all pins.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOC		1.44	1.59	1.74	V
Power supply voltage rise inclination	tртн	V_{DD} : 0 V \rightarrow change inclination of V_{POC}	0.5			V/ms
Minimum pulse width	tpw		200			μS

1.59 V POC Circuit Characteristics (T_A = -40 to +110°C, Vss = EVss = 0 V)

1.59 V POC Circuit Timing

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage level	VLVIO		4.14	4.24	4.34	V
voltage		VLVI1		3.99	4.09	4.19	V
		VLVI2		3.83	3.93	4.03	V
		V LVI3		3.68	3.78	3.88	V
		VLVI4		3.52	3.62	3.72	V
		VLVI5		3.37	3.47	3.57	V
		VLVI6		3.22	3.32	3.42	V
		VLVI7		3.06	3.16	3.26	V
		VLVI8		2.91	3.01	3.11	V
		VLVI9		2.75	2.85	2.95	V
	External input pinNote 1	EXLVI	$\text{EXLVI} < \text{V}_{\text{DD}}, 2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	1.11	1.21	1.31	V
Minimum pulse width		t∟w		200			μs
Operation stabilization wait time ^{Note 2}		t lwait		10			μs

LVI Circuit Characteristics (TA = -40 to +110°C, VPOC \leq VDD = EVDD \leq 5.5 V, AVREF \leq VDD, VSS = EVSS = 0 V)

Notes 1. The EXLVI/P120/INTP0 pin is used.

2. Time required from setting bit 7 (LVION) of the low-voltage detection register (LVIM) to 1 to operation stabilization

Remark $V_{LVI(n-1)} > V_{LVIn}$: n = 1 to 9

LVI Circuit Timing

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOC		1.44	1.59	1.74	V
Power supply voltage rise inclination	tртн	V_{DD} : 0 $V \rightarrow$ change inclination of V_{POC}	0.5			V/ms
Minimum pulse width	tew		200			μs

1.59 V POC Circuit Characteristics (T_A = -40 to +125°C, Vss = EVss = 0 V)

1.59 V POC Circuit Timing

							(2/30)
Chapter	Classification	Function	Details of Function	Cautions		Pa	ge
Chapter 4	Soft	Memory bank switching function (products	BANK: Memory bank select register	Be sure to change the value of the BANK register in the common area (0000H to 7FFFH). If the value of the BANK register is changed in the bank area (8000H to BFFFH), an inadvertent program loop occurs in the CPU. Therefore, never change the value of the BANK register in the bank area.	p.	150	
	'	whose flash	Memory bank	Instructions cannot be fetched between different memory banks.	p.	151	
		memory is at least 96 KB only)		Branching and accessing cannot be directly executed between different memory banks. Execute branching or accessing between different memory banks via the common area.	p.	151	
	'			Allocate interrupt servicing in the common area.	p.	151	
				An instruction that extends from 7FFFH to 8000H can only be executed in memory bank 0.	p.	151	
hapter 5	Soft	Fort function	P02/ <u>SO11,</u> P04/SCK11	To use P02/SO11 and P04/SCK11 as general-purpose ports, set serial operation mode register 11 (CSIM11) and serial clock selection register 11 (CSIC11) to the default status (00H).	p.	164	
U U			P10/SCK10/TxD0, P12/SO10	To use P10/SCK10/TxD0 and P12/SO10 as general-purpose ports, set serial operation mode register 10 (CSIM10) and serial clock selection register 10 (CSIC10) to the default status (00H)	p.	175	
			P13/TxD6	To use P13/TxD6 as general-purpose port, clear bit 0 (TXDLV6) of synchronous serial interface control register 6 (ASICL6) to 0 (normal output of TxD6).	p.	175	
	Hard		Port 2	Make the AV_{\text{REF}} pin the same potential as the V_DD pin when port 2 is used as a digital port.	p.	181	
	Soft			For the 38-pin products of 78K0/KC2, be sure to set bits 6 and 7 of PM2 to "1", and bits 6 and 7 of P2 to "0".	p.	182	
	Hard		P31/INTP2/ OCD1A	In the product with an on-chip debug function (μ PD78F05xxD and 78F05xxDA), be sure to pull the P31/INTP2/OCD1A pin down before a reset release, to prevent malfunction.	p.	183	
				Process the P31/INTP2/OCD1A pin of the products mounted with the on-chip debug function (μ PD78F05xxD and 78F05xxDA) as follows, when it is not used when it is connected to a flash memory programmer or an on-chip debug emulator (see the table on p.183).	p.	183	
	Soft		Port 4	For the 38-pin products of 78K0/KC2, be sure to set bits 0 and 1 of PM4 and P4 to "0".	p.	187	
	Hard		P60, P61	A through current flows through P60 and P61 if an intermediate potential is input to these pins, because the input buffer is also turned on when P60 and P61 are in output mode. Consequently, do not input an intermediate potential when P60 and P61 are in output mode.	p.	190	
			P62	A through current flows through P62 if an intermediate potential is input to this pin, because the input buffer is also turned on when P62 is in output mode. Consequently, do not input an intermediate potential when P62 is in output mode.	p.	191	
	Soft		Port 7	For the 38-pin products of 78K0/KC2, be sure to set bits 2 and 3 of PM7 and P7 to "0".	p.	195	

					(29/	30)
Chapter	Classification	Function	Details of Function	Cautions	Page	
1, 32, 33	Hard	Electrical specifications	Value of the current	The value of the current that can be run per pin must satisfy the value of the current per pin and the total value of the currents of all pins.	pp. 775, 805, 833, 862	
Chapters 30, 31,			X1 oscillator characteristics	 When using the X1 oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance. Keep the wiring length as short as possible. Do not cross the wiring with the other signal lines. Do not route the wiring near a signal line through which a high fluctuating current flows. Always make the ground point of the oscillator capacitor the same potential as Vss. Do not ground the capacitor to a ground pattern through which a high current flows. Do not fetch signals from the oscillator. 	pp. 776, 806, 834, 863	
				Since the CPU is started by the internal high-speed oscillation clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.	pp. 776, 806, 834, 863	
			XT1 oscillator characteristics	 When using the XT1 oscillator, wire as follows in the area enclosed by the broken lines in the above figure to avoid an adverse effect from wiring capacitance Keep the wiring length as short as possible. Do not cross the wiring with the other signal lines. Do not route the wiring near a signal line through which a high fluctuating current flows. Always make the ground point of the oscillator capacitor the same potential as Vss. Do not ground the capacitor to a ground pattern through which a high current flows. Do not fetch signals from the oscillator. 	pp. 777, 807, 835, 864	
				The XT1 oscillator is designed as a low-amplitude circuit for reducing power consumption, and is more prone to malfunction due to noise than the X1 oscillator. Particular care is therefore required with the wiring method when the XT1 clock is used.	pp. 777, 807, 835, 864	
			Recommended oscillator constants	The oscillator constants shown above are reference values based on evaluation in a specific environment by the resonator manufacturer. If it is necessary to optimize the oscillator characteristics in the actual application, apply to the resonator manufacturer for evaluation on the implementation circuit. The oscillation voltage and oscillation frequency only indicate the oscillator characteristic. Use the 78K0/Kx2 so that the internal operation conditions are within the specifications of the DC and AC characteristics.	pp. 778, 779	

