

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	78K/0
Core Size	8-Bit
Speed	20MHz
Connectivity	3-Wire SIO, I ² C, LINbus, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	31
Program Memory Size	16KB (16K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 6x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	38-TSSOP (0.240", 6.10mm Width)
Supplier Device Package	38-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/upd78f0511amc-gaa-ax

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

18.5.15 Cautions	
18.5.16 Communication operations	
18.5.17 Timing of I ² C interrupt request (INTIIC0) occurrence	593
18.6 Timing Charts	614
CHAPTER 19 MULTIPLIER/DIVIDER	
19.1 Functions of Multiplier/Divider	
19.2 Configuration of Multiplier/Divider	
19.3 Register Controlling Multiplier/Divider	
19.4 Operations of Multiplier/Divider	
19.4.1 Multiplication operation	626
19.4.2 Division operation	628
CHAPTER 20 INTERRUPT FUNCTIONS	
20.1 Interrupt Function Types	
20.2 Interrupt Sources and Configuration	
20.3 Registers Controlling Interrupt Functions	
20.4 Interrupt Servicing Operations	
20.4.1 Maskable interrupt acknowledgment	
20.4.2 Software interrupt request acknowledgment	
20.4.3 Multiple interrupt servicing	
20.4.4 Interrupt request hold	662
CHAPTER 21 KEY INTERRUPT FUNCTION	663
CHAPTER 21 KEY INTERRUPT FUNCTION	
CHAPTER 21 KEY INTERRUPT FUNCTION 21.1 Functions of Key Interrupt 21.2 Configuration of Key Interrupt	
CHAPTER 21 KEY INTERRUPT FUNCTION	663 663 664 665 665 666 666 666 667 669
CHAPTER 21 KEY INTERRUPT FUNCTION	663 664 664 665 665 666 666 666 666 667 669 669
CHAPTER 21 KEY INTERRUPT FUNCTION	663 664 664 665 665 666 666 666 667 669 669 669 669
CHAPTER 21 KEY INTERRUPT FUNCTION	663 664 665 665 666 666 666 666 667 669 669 674 681
CHAPTER 21 KEY INTERRUPT FUNCTION 21.1 Functions of Key Interrupt 21.2 Configuration of Key Interrupt 21.3 Register Controlling Key Interrupt CHAPTER 22 STANDBY FUNCTION 22.1 Standby Function and Configuration 22.1.1 Standby function 22.1.2 Registers controlling standby function 22.2 Standby Function Operation 22.2.1 HALT mode 22.2.2 STOP mode CHAPTER 23 RESET FUNCTION 23.1 Register for Confirming Reset Source	663 664 664 665 665 666 666 666 667 669 669 674 681 691
CHAPTER 21 KEY INTERRUPT FUNCTION 21.1 Functions of Key Interrupt 21.2 Configuration of Key Interrupt 21.3 Register Controlling Key Interrupt CHAPTER 22 STANDBY FUNCTION 22.1 Standby Function and Configuration 22.1.1 Standby function 22.1.2 Registers controlling standby function 22.2.1 HALT mode 22.2.2 STOP mode CHAPTER 23 RESET FUNCTION 23.1 Register for Confirming Reset Source CHAPTER 24 POWER-ON-CLEAR CIRCUIT.	663 664 664 665 665 666 666 666 667 669 669 674 681 691 692
CHAPTER 21 KEY INTERRUPT FUNCTION	663 664 665 665 666 666 666 667 669 669 669 674 681 691 692 692
CHAPTER 21 KEY INTERRUPT FUNCTION	663 664 664 665 666 666 666 667 669 669 674 681 691 691 692 692 693
CHAPTER 21 KEY INTERRUPT FUNCTION	663 664 664 665 666 666 666 666 667 669 669 674 681 691 691 692 693 693 693

				(5/6)
78K0/Kx2 Microcontrollers	Package	Product type	Quality grace	Part Number
78K0/KE2	64-pin plastic LQFP (12x12)	Conventional- specification products	Standard products	μPD78F0531GK-UET-A, 78F0532GK-UET-A, 78F0533GK-UET-A, 78F0534GK-UET-A, 78F0535GK-UET-A, 78F0536GK-UET-A, 78F0537GK-UET-A, 78F0537DGK-UET-A ^{№™}
			(A) grade products	μΡD78F0531GK(A)-GAJ-AX, 78F0532GK(A)-GAJ-AX, 78F0533GK(A)-GAJ-AX, 78F0534GK(A)-GAJ-AX, 78F0535GK(A)-GAJ-AX, 78F0536GK(A)-GAJ-AX, 78F0537GK(A)-GAJ-AX
			(A2) grade products	μΡD78F0531GK(A2)-GAJ-AX, 78F0532GK(A2)-GAJ-AX, 78F0533GK(A2)-GAJ-AX, 78F0534GK(A2)-GAJ-AX, 78F0535GK(A2)-GAJ-AX, 78F0536GK(A2)-GAJ-AX, 78F0537GK(A2)-GAJ-AX
		Expanded- specification products	Standard products	μ₽D78F0531AGK-GAJ-AX, 78F0532AGK-GAJ-AX, 78F0533AGK-GAJ-AX, 78F0534AGK-GAJ-AX, 78F0535AGK-GAJ-AX, 78F0536AGK-GAJ-AX, 78F0537AGK-GAJ-AX, 78F0537DAGK-GAJ-AX ^{№™}
			(A) grade products	μΡD78F0531AGKA-GAJ-G, 78F0532AGKA-GAJ-G, 78F0533AGKA-GAJ-G, 78F0534AGKA-GAJ-G, 78F0535AGKA-GAJ-G, 78F0536AGKA-GAJ-G, 78F0537AGKA-GAJ-G
			(A2) grade products	μΡD78F0531AGKA2-GAJ-G, 78F0532AGKA2-GAJ-G, 78F0533AGKA2-GAJ-G, 78F0534AGKA2-GAJ-G, 78F0535AGKA2-GAJ-G, 78F0536AGKA2-GAJ-G, 78F0537AGKA2-GAJ-G
	64-pin plastic TQFP (fine pitch) (7x7)	Conventional- specification products	Standard products	μΡD78F0531GA-9EV-A, 78F0532GA-9EV-A, 78F0533GA-9EV-A, 78F0534GA-9EV-A, 78F0535GA-9EV-A, 78F0536GA-9EV-A, 78F0537GA-9EV-A, 78F0537DGA-9EV-A ^{Note}
		Expanded- specification products	Standard products	μΡD78F0531AGA-HAB-AX, 78F0532AGA-HAB-AX, 78F0533AGA-HAB-AX, 78F0534AGA-HAB-AX, 78F0535AGA-HAB-AX, 78F0536AGA-HAB-AX, 78F0537AGA-HAB-AX, 78F0537DAGA-HAB-AX ^{Note}

Note The μPD78F0537D and 78F0537DA have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.

1.5.2 78K0/KC2

• 38-pin plastic SSOP (7.62 mm (300))

Note Products with on-chip debug function only

- Cautions 1. Make AVss the same potential as Vss.
 - 2. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).
 - 3. ANI0/P20 to ANI5/P25 are set in the analog input mode after release of reset.
- Remark For pin identification, see 1.6 Pin Identification.

3.1.4 Special function register (SFR) area

On-chip peripheral hardware special function registers (SFRs) are allocated in the area FF00H to FFFFH (see **Table 3-8 Special Function Register List** in **3.2.3 Special function registers (SFRs)**).

Caution Do not access addresses to which SFRs are not assigned.

3.1.5 Data memory addressing

Addressing refers to the method of specifying the address of the instruction to be executed next or the address of the register or memory relevant to the execution of instructions.

Several addressing modes are provided for addressing the memory relevant to the execution of instructions for the 78K0/Kx2 microcontrollers, based on operability and other considerations. For areas containing data memory in particular, special addressing methods designed for the functions of special function registers (SFR) and general-purpose registers are available for use. Figures 3-12 to 3-19 show correspondence between data memory and addressing. For details of each addressing mode, see **3.4 Operand Address Addressing**.

Figure 3-19. Correspondence Between Data Memory and Addressing (μPD78F0527, 78F0527A, 78F0537, 78F0537A, 78F0547, 78F0547A, 78F0527D, 78F0527DA, 78F0537D, 78F0537DA, 78F0547D and 78F0547DA)

- **Notes 1.** The buffer RAM is incorporated only in the μ PD78F0547, 78F0547A, 78F0547D and 78F0547DA (78K0/KF2). The area from FA00H to FA1FH cannot be used with the μ PD78F0527, 78F0527A, 78F0527A, 78F0527DA, 78F0537D and 78F0537DA.
 - 2. To branch to or address a memory bank that is not set by the memory bank select register (BANK), change the setting of the memory bank by using BANK.

RENESAS

3.2.3 Special function registers (SFRs)

Unlike a general-purpose register, each special function register has a special function. SFRs are allocated to the FF00H to FFFFH area.

Special function registers can be manipulated like general-purpose registers, using operation, transfer, and bit manipulation instructions. The manipulatable bit units, 1, 8, and 16, depend on the special function register type.

Each manipulation bit unit can be specified as follows.

• 1-bit manipulation

Describe the symbol reserved by the assembler for the 1-bit manipulation instruction operand (sfr.bit). This manipulation can also be specified with an address.

• 8-bit manipulation

Describe the symbol reserved by the assembler for the 8-bit manipulation instruction operand (sfr). This manipulation can also be specified with an address.

• 16-bit manipulation

Describe the symbol reserved by the assembler for the 16-bit manipulation instruction operand (sfrp). When specifying an address, describe an even address.

Table 3-8 gives a list of the special function registers. The meanings of items in the table are as follows.

Symbol

Symbol indicating the address of a special function register. It is a reserved word in the RA78K0, and is defined as an sfr variable using the #pragma sfr directive in the CC78K0. When using the RA78K0, ID78K0-QB, SM+ for 78K0, and SM+ for 78K0/KX2, symbols can be written as an instruction operand.

• R/W

Indicates whether the corresponding special function register can be read or written.

- R/W: Read/write enable
- R: Read only
- W: Write only
- Manipulatable bit units

Indicates the manipulatable bit unit (1, 8, or 16). "-" indicates a bit unit for which manipulation is not possible.

After reset

Indicates each register status upon reset signal generation.

4.4.4 Instruction branch to bank area by interrupt

When an interrupt occurs, instructions can branch to the memory bank specified by the BANK register by using the vector table, but it is difficult to identify the BANK register when the interrupt occurs.

Therefore, specify the branch destination address specified by the vector table in the common area (0000H to 7FFFH), specify the memory bank at the branch destination by using the BANK register in the common area, and execute the CALL instruction. At this time, save the BANK register value before the change to RAM, and restore the value of the BANK register before executing the RETI instruction.

Remark Allocate interrupt servicing that requires a quick response in the common area.

• Software example (when using interrupt request of 16-bit timer/event counter 00)

VCTBL	CSEG DW	AT 0020H BNKITM000	; Specifies an address at the timer interrupt destination.
Ramd R_BNKRN	DSEG I: DS	SADDR 1	; Secures RAM for saving the memory bank number before the interrupt occurs.
BNKC	CSEG	AT 7000H	
BNKITM0	00: PUSH	AX	; Inter-memory bank interrupt servicing routine ; Saves the contents of the AX register.
	MOV MOV CALL MOV MOV POP	A,BANK R_BNKRN,A BANK,#BANKNUM TEST !TEST A,R_BNKRN BANK,A	; Saves the memory bank number before the interrupt to RAM. ; Specifies the memory bank number of the interrupt routine. ; Calls the interrupt routine. ; Restores the memory bank number before the interrupt. ; Restores the contents of the AX register.
	RETI		
BN3 TEST:	CSEG MOV ···· :	BANK3	; Interrupt servicing routine
END	KET		

KB2	KC2	KD2	KES	KF2	Function Name	I/O	Function	After Reset	Alternate Function
\checkmark		\checkmark			P00	I/O	Port 0.	Input	TI000
\checkmark		\checkmark		\checkmark	P01		I/O port.	port	TI010/TO00
-	-	Note 1	Note 2	\checkmark	P02		Input/output can be specified in 1-bit units.		SO11
-	-	Note 1	Note 2	\checkmark	P03		a software setting.		SI11
_	-	-	Note 2	\checkmark	P04				SCK11
-	-	-	Note 2	\checkmark	P05				TI001/SSI11
_	-	-	Note 2	\checkmark	P06				TI011/TO01
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	P10	I/O	Port 1.	Input	SCK10/TxD0
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	P11		I/O port.	port	SI10/RxD0
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	P12		Use of an on-chip pull-up resistor can be specified by		SO10
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	P13		a software setting.		TxD6
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	P14				RxD6
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	P15				ТОН0
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	P16				TOH1/INTP5
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	P17				TI50/TO50
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	P20	I/O	Port 2.	Analog	ANIO
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	P21		I/O port.	input	ANI1
\checkmark		\checkmark		\checkmark	P22		inputoulput can be specified in 1-bit units.		ANI2
\checkmark		\checkmark			P23				ANI3
-		\checkmark		\checkmark	P24				ANI4
-		\checkmark		\checkmark	P25				ANI5
-	Note 3				P26				ANI6
-	Note 3			\checkmark	P27				ANI7
\checkmark		\checkmark		\checkmark	P30	I/O	Port 3.	Analog	INTP1
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	P31		I/O port. Input/output can be specified in 1-bit units.	input	INTP2/ OCD1A ^{Note 4}
V	V	\checkmark	V	V	P32		use of an on-chip pull-up resistor can be specified by a software setting.		INTP3/ OCD1B ^{Note 4}
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	P33				TI51/TO51/ INTP4

 Table 5-3.
 Port Functions (1/3)

Notes 1. The 78K0/KD2 products are only provided with port functions (P02 and P03) and not alternate functions.

- 2. The 78K0/KE2 products whose flash memory is less than 32 KB are only provided with port functions (P02 to P06) and not alternate functions. The 78K0/KE2 products whose flash memory is at least 48 KB are provided with port functions (P02 to P06) and alternate functions.
- **3.** This is not mounted onto 38-pin products of the 78K0/KC2. For the 38-pin products, be sure to set bits 6 and 7 of PM2 to "1" and bits 6 and 7 of P2 to "0".
- **4.** OCD1A and OCD1B are provided to the products with an on-chip debug function (μPD78F05xxD and 78F05xxDA) only.

Remark $\sqrt{:}$ Mounted, -: Not mounted

Symbol	7	6	5	4	3	2	1	0	Address	After reset	R/W
P0	0	P06	P05	P04	P03	P02	P01	P00	FF00H	00H (output latch)	R/W
P1	P17	P16	P15	P14	P13	P12	P11	P10	FF01H	00H (output latch)	R/W
									-		
P2	P27	P26	P25	P24	P23	P22	P21	P20	FF02H	00H (output latch)	R/W
									-		
P3	0	0	0	0	P33	P32	P31	P30	FF03H	00H (output latch)	R/W
P4	P47	P46	P45	P44	P43	P42	P41	P40	FF04H	00H (output latch)	R/W
									-		
P5	P57	P56	P55	P54	P53	P52	P51	P50	FF05H	00H (output latch)	R/W
P6	P67	P66	P65	P64	P63	P62	P61	P60	FF06H	00H (output latch)	R/W
									-		
P7	P77	P76	P75	P74	P73	P72	P71	P70	FF07H	00H (output latch)	R/W
			•	•					•		
P12	0	0	0	P124 ^{Note}	P123 ^{Note}	P122 ^{Note}	P121 ^{Note}	P120	FF0CH	00H (output latch)	R/W
									-		
P13	0	0	0	0	0	0	0	P130	FF0DH	00H (output latch)	R/W
	-			•			· · · · · ·		•		
P14	0	0	P145	P144	P143	P142	P141	P140	FFOEH	00H (output latch)	R/W
P14	0	0	P145	P144	P143	P142	P141	P140	FF0EH	00H (output latch)	F

Figure 5-38. Format of Port Register (78K0/KF2)

Pmn	m = 0 to 7, 12 to 14; n = 0 to 7					
	Output data control (in output mode)	Input data read (in input mode)				
0	Output 0	Input low level				
1	Output 1	Input high level				

Note "0" is always read from the output latch of P121 to P124 if the pin is in the external clock input mode.

(8) Oscillation stabilization time select register (OSTS)

This register is used to select the X1 clock oscillation stabilization wait time when the STOP mode is released. When the X1 clock is selected as the CPU clock, the operation waits for the time set using OSTS after the STOP mode is released.

When the internal high-speed oscillation clock is selected as the CPU clock, confirm with OSTC that the desired oscillation stabilization time has elapsed after the STOP mode is released. The oscillation stabilization time can be checked up to the time set using OSTC.

OSTS can be set by an 8-bit memory manipulation instruction.

Reset signal generation sets OSTS to 05H.

Figure 6-11. Format of Oscillation Stabilization Time Select Register (OSTS)

Address: FFA4H After reset: 05H R/W Symbol 5 2 0 7 6 4 з 1 OSTS 0 0 0 0 0 OSTS2 OSTS1 OSTS0

OSTS2	OSTS1	OSTS0	Oscill	ation stabilization time	selection
				fx = 10 MHz	fx = 20 MHz
0	0	1	2 ¹¹ /fx	204.8 <i>µ</i> s	102.4 <i>μ</i> s
0	1	0	2 ¹³ /fx	819.2 <i>μ</i> s	409.6 <i>μ</i> s
0	1	1	2 ¹⁴ /fx	1.64 ms	819.2 <i>μ</i> s
1	0	0	2 ¹⁵ /fx	3.27 ms	1.64 ms
1	0	1	2 ¹⁶ /fx	6.55 ms	3.27 ms
0	ther than abo	ve	Setting prohibited		

Cautions 1.	To set the STOP mode when the X1 clock is used as the CPU clock, set OSTS before
	executing the STOP instruction.

- 2. Do not change the value of the OSTS register during the X1 clock oscillation stabilization time.
- 3. The oscillation stabilization time counter counts up to the oscillation stabilization time set by OSTS. If the STOP mode is entered and then released while the internal high-speed oscillation clock is being used as the CPU clock, set the oscillation stabilization time as follows.
 - Desired OSTC oscillation stabilization time ≤ Oscillation stabilization time set by OSTS

Note, therefore, that only the status up to the oscillation stabilization time set by OSTS is set to OSTC after STOP mode is released.

4. The X1 clock oscillation stabilization wait time does not include the time until clock oscillation starts ("a" below).

Remark fx: X1 clock oscillation frequency

Address: FF	B7H After	reset: 00H	R/W						
Symbol	7	6	5	4	3	2		1	0
PRM01	ES111	ES110	ES011	ES010	0	0	PRM	/1011	PRM010
	ES111	ES110		TI	011 pin valio	d edge se	election		
	0	0	Falling edge						
	0	1	Rising edge						
	1	0	Setting prohi	bited					
	1	1	Both falling a	and rising edge	s				
			_						
	ES011	ES010		TI	001 pin valio	d edge se	election		
	0	0	Falling edge						
	0	1	Rising edge						
	1	0	Setting prohi	bited					
	1	1	Both falling a	and rising edge	s				
	PRM011	PRM010			Count clock	selection	n ^{Note 1}		
				fprs = 2 M	Hz fprs =	5 MHz	fprs = 10 N	1Hz	fprs = 20 MHz
	0	0	fprs ^{Note 2}	2 MHz	5 MHz		10 MHz	:	20 MHz ^{Note 3}

Figure 7-14. Format of Prescaler Mode Register 01 (PRM01)

0	1	fprs/2 ⁴	125 kHz	312.5 kHz	625 kHz	1.25 MHz	
1	0	fprs/2 ⁶	31.25 kHz	78.125 kHz	156.25 kHz	312.5 kHz	
1	1	TI001 valid edg	TI001 valid edge ^{Notes 4, 5}				

Notes 1. The frequency that can be used for the peripheral hardware clock (fPRs) differs depending on the power supply voltage and product specifications.

Supply Voltage	Conventional-specification Products (μPD78F05xx and 78F05xxD)	Expanded-specification Products (µPD78F05xxA and 78F05xxDA)
$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	$f_{PRS} \le 20 \text{ MHz}$	$f_{PRS} \le 20 \text{ MHz}$
$2.7~V \leq V_{\text{DD}} < 4.0~V$	$f_{PRS} \leq 10 \text{ MHz}$	
$\begin{array}{l} 1.8 \ V \leq V_{DD} < 2.7 \ V \\ (Standard products and \\ (A) \ grade \ products \ only) \end{array}$	fprs ≤ 5 MHz	$f_{PRS} \leq 5 MHz$

(The values shown in the table above are those when fPRS = fXH (XSEL = 1).)

- 2. If the peripheral hardware clock (fPRs) operates on the internal high-speed oscillation clock (fRH) (XSEL = 0), when $1.8 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}$, the setting of PRM011 = PRM010 = 0 (count clock: fPRs) is prohibited.
- 3. This is settable only if 4.0 V \leq V_{DD} \leq 5.5 V.
- 4. The external clock from the TI001 pin requires a pulse longer than twice the cycle of the peripheral hardware clock (fPRs).
- 5. Do not start timer operation with the external clock from the TI001 pin when the internal high-speed oscillation clock and high-speed system clock are stopped while the CPU operates with the subsystem clock, or when in the STOP mode.

Remark fPRs: Peripheral hardware clock frequency

13.5 How to Read A/D Converter Characteristics Table

Here, special terms unique to the A/D converter are explained.

(1) Resolution

This is the minimum analog input voltage that can be identified. That is, the percentage of the analog input voltage per bit of digital output is called 1LSB (Least Significant Bit). The percentage of 1LSB with respect to the full scale is expressed by %FSR (Full Scale Range).

1LSB is as follows when the resolution is 10 bits.

 $1LSB = 1/2^{10} = 1/1024$ = 0.098%FSR

Accuracy has no relation to resolution, but is determined by overall error.

(2) Overall error

This shows the maximum error value between the actual measured value and the theoretical value. Zero-scale error, full-scale error, integral linearity error, and differential linearity errors that are combinations of these express the overall error.

Note that the quantization error is not included in the overall error in the characteristics table.

(3) Quantization error

When analog values are converted to digital values, a $\pm 1/2$ LSB error naturally occurs. In an A/D converter, an analog input voltage in a range of $\pm 1/2$ LSB is converted to the same digital code, so a quantization error cannot be avoided. Note that the quantization error is not included in the overall error, zero-scale error, full-scale error, integral linearity error, and differential linearity error in the characteristics table.

(4) Zero-scale error

This shows the difference between the actual measurement value of the analog input voltage and the theoretical value (1/2LSB) when the digital output changes from 0.....000 to 0.....001.

If the actual measurement value is greater than the theoretical value, it shows the difference between the actual measurement value of the analog input voltage and the theoretical value (3/2LSB) when the digital output changes from 0.....011 to 0.....010.

Figure 24-2. Timing of Generation of Internal Reset Signal by Power-on-Clear Circuit and Low-Voltage Detector (2/2)

(2) In 2.7 V/1.59 V POC mode (option byte: POCMODE = 1)

- Notes 1. The guaranteed operation range for the standard and (A) grade products is 1.8 V ≤ V_{DD} ≤ 5.5 V, and 2.7 V ≤ V_{DD} ≤ 5.5 V for the (A2) grade products. To set the voltage range below the guaranteed operation range to the reset state when the supply voltage falls, use the reset function of the low-voltage detector, or input a low level to the RESET pin.
 - 2. The CPU clock can be switched from the internal high-speed oscillation clock to the high-speed system clock or subsystem clock^{Note 3}. To use the X1 clock, use the OSTC register to confirm the lapse of the oscillation stabilization time. To use the XT1 clock^{Note 3}, use the timer function for confirmation of the lapse of the stabilization time.
 - 3. The 78K0/KB2 is not provided with subsystem clock and XT1 clock.
- Cautions 1. Set the low-voltage detector by software after the reset status is released (see CHAPTER 25 LOW-VOLTAGE DETECTOR).
 - A voltage oscillation stabilization time of 1.93 to 5.39 ms is required after the supply voltage reaches 1.59 V (TYP.). If the supply voltage rises from 1.59 V (TYP.) to 2.7 V (TYP.) within 1.93 ms, the power supply oscillation stabilization time of 0 to 5.39 ms is automatically generated before reset processing.
- Remark VLVI: LVI detection voltage VPOC: POC detection voltage

Caution The pins mounted depend on the product. Refer to Caution 2 at the beginning of this chapter.

Serial Transfer Timing (1/2)

IIC0:

CSI1n:

n = 0, 1

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.

Parameter	Symbol	(Conditions	Ratings	Unit
Output current, high	Іон	Per pin	P00 to P06, P10 to P17, P30 to P33, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P120, P130, P140 to P145	-10	mA
		Total of all pins –80 mA	P00 to P04, P40 to P47, P120, P130, P140 to P145	-25	mA
			P05, P06, P10 to P17, P30 to P33, P50 to P57, P64 to P67, P70 to P77	-55	mA
		Per pin	P20 to P27	-0.5	mA
		Total of all pins		-2	mA
		Per pin	P121 to P124	-1	mA
		Total of all pins		-4	mA
Output current, low	lol	Per pin	P00 to P06, P10 to P17, P30 to P33, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P120, P130, P140 to P145	30	mA
		Total of all pins 200 mA	P00 to P04, P40 to P47, P120, P130, P140 to P145	60	mA
			P05, P06, P10 to P17, P30 to P33, P50 to P57, P60 to P67, P70 to P77	140	mA
		Per pin	P20 to P27	1	mA
		Total of all pins		5	mA
		Per pin	P121 to P124	4	mA
		Total of all pins		10	mA
Operating ambient temperature	Ta			-40 to +85	°C
Storage temperature	Tstg			-65 to +150	°C

Absolute Maximum Ratings (T_A = 25°C) (2/2)

- Cautions 1. Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
 - 2. The value of the current that can be run per pin must satisfy the value of the current per pin and the total value of the currents of all pins.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.

Serial Transfer Timing (2/2)

CSIA0:

CSIA0 (busy processing):

Note SCKA0 does not become low level here, but the timing is illustrated so that the timing specifications can be shown.

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.

2.7 V POC Circuit Characteristics (T_A = -40 to +110°C, Vss = EVss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage on application of supply	VDDPOC	POCMODE (option bye) = 1	2.50	2.70	2.90	V
voltage						

Remark The operations of the POC circuit are as described below, depending on the POCMODE (option byte) setting.

Option Byte Setting	POC Mode	Operation
POCMODE = 0	1.59 V mode operation	A reset state is retained until V _{POC} = 1.59 V (TYP.) is reached after the power is turned on, and the reset is released when V _{POC} is exceeded. After that, POC detection is performed at V _{POC} , similarly as when the power was turned on. The power supply voltage must be raised at a time of t _{PUP1} or t _{PUP2} when POCMODE is 0.
POCMODE = 1	2.7 V/1.59 V mode operation	A reset state is retained until VDDPOC = 2.7 V (TYP.) is reached after the power is turned on, and the reset is released when VDDPOC is exceeded. After that, POC detection is performed at VPOC = 1.59 V (TYP.) and not at VDDPOC. The use of the 2.7 V/1.59 V POC mode is recommended when the rise of the voltage, after the power is turned on and until the voltage reaches 1.8 V, is more relaxed than tPTH.

Table 35-2. Soldering Conditions of Expanded-specification products (µPD78F05xxA and 78F05xxDA) (1/2)

(1) 36-pin plastic FLGA (4x4)

 μ PD78F050xAFC-AA3-A (x = 0 to 3), 78F0503DAFC-AA3-A 64-pin plastic FLGA (5x5)

μPD78F053xAFC-AA1-A (x = 1 to 7), 78F0537DAFC-AA1-A

Soldering Method	Soldering Conditions	Recommended	
		Condition Symbol	
Infrared reflow	Package peak temperature: 260°C, Time: 60 seconds max. (at 220°C or higher), Count: 3 times or less, Exposure limit: 7 days ^{Note} (after that, prebake at 125°C for 10 to 72 hours)	IR60-107-3	

(2) 48-pin plastic LQFP (fine pitch) (7x7)
 μPD78F051xAGA-GAM-AX (x = 1 to 5), 78F0515DAGA-GAM-AX

 μ PD78F051xAGAA-GAM-G (x = 1 to 5), 78F051xAGAA2-GAM-G (x = 1 to 5) 64-pin plastic LQFP (fine pitch) (10x10) μ PD78F053xAGB-GAH-AX (x = 1 to 7), 78F0537DAGB-GAH-AX μ PD78F053xAGBA-GAH-G (x = 1 to 7), 78F053xAGBA2-GAH-G (x = 1 to 7) 80-pin plastic LQFP (fine pitch) (12x12) μ PD78F054xAGK-GAK-AX (x = 4 to 7), 78F0547DAGK-GAK-AX

 μ PD78F054xAGKA-GAK-G (x = 4 to 7), 78F054xAGKA2-GAK-G (x = 4 to 7)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 260°C, Time: 60 seconds max. (at 220°C or higher), Count: 3 times or less, Exposure limit: 7 days ^{Note} (after that, prebake at 125°C for 10 to 72 hours)	IR60-107-3
Partial heating	Pin temperature: 350°C max., Time: 3 seconds max. (per pin row)	_

Note After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period.

Caution The μ PD78F05xxDA has an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.

APPENDIX E REVISION HISTORY

E.1 Major Revisions in This Edition

Page	Description	Classification			
$R01UH0008EJ0400 \rightarrow R01UH0008EJ0401$					
pp. 97, 396, 399, 722, 723	Deletion of Note	(c)			
р. 93	Change of Recommended Connection of Unused Pins of FLMD0 pin in Table 2-3. Pin I/O Circuit Types	(a)			
p. 135	Change of Note 2 of Table 3-8. Special Function Register List (5/5)	(C)			
U18598JJ3V0UD00 → R01UH0008EJ0400					
Throughout	Deletion of "recommended" from Caution "Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F: recommended)."	(c)			
CHAPTER 1	OUTLINE				
p. 41	Change of status of 64-pin plastic FBGA (4x4) of 78K0/KE2 from under development to mass production	(b)			
CHAPTER 2	PIN FUNCTIONS				
р. 69	Change of 2. 1. 3 78K0/KD2 (2) Non-port functions: 78K0/KD2	(c)			
pp. 72, 73	Change of 2. 1. 4 78K0/KE2 (2) Non-port functions: 78K0/KE2	(c)			
р. 93	Change of Table 2-3. Pin I/O Circuit Types (3/3)	(c)			
CHAPTER 6	CLOCK GENERATOR				
р. 230	Change of Caution 2 in Figure 6-3. Format of Clock Operation Mode Select Register (OSCCTL) (78K0/KB2)	(a)			
p. 231	Change of Caution 2 in Figure 6-4. Format of Clock Operation Mode Select Register (OSCCTL) (78K0/KC2, 78K0/KD2, 78K0/KE2, and 78K0/KF2)	(a)			
p. 259	Change of Figure 6-18. CPU Clock Status Transition Diagram (When 1.59 V POC Mode Is Set (Option Byte: POCMODE = 0), 78K0/KC2, 78K0/KD2, 78K0/KE2, and 78K0/KF2)	(c)			
CHAPTER 7	16-BIT TIMER/EVENT COUNTERS 00 AND 01				
p. 299	Change of Caution in 7.4.4 Operation in clear & start mode entered by TI00n pin valid edge input	(c)			
CHAPTER 18	SERIAL INTERFACE IICO				
p. 553	Addition of Caution to Figure 18-3. Format of IIC Shift Register 0 (IIC0)	(c)			
p. 553	Change of description of 18.2 (2) Slave address register 0 (SVA0)	(c)			
p. 557	Addition of Note to Figure 18-5. Format of IIC Control Register 0 (IICC0) (1/4) and change of Caution	(c)			
p. 559	Change of Figure 18-5. Format of IIC Control Register 0 (IICC0) (3/4)	(c)			
p. 560	Change of Figure 18-5. Format of IIC Control Register 0 (IICC0) (4/4)	(c)			
p. 562	Change of Figure 18-6. Format of IIC Status Register 0 (IICS0) (2/3)	(c)			
CHAPTER 20 INTERRUPT FUNCTIONS					
p. 634	Change of (C) External maskable interrupt (INTKR) in Figure 20-1 Basic Configuration of Interrupt Function	(c)			
CHAPTER 22 STANDBY FUNCTION					
p. 673	Addition of Note to Figure 22-4. HALT Mode Release by Reset	(c)			
p. 680	Addition of Note to Figure 22-7. STOP Mode Release by Reset	(c)			
CHAPTER 27 FLASH MEMORY					
p. 730	Change of description of 27.6.5 REGC pin	(c)			
p. 755	Addition of 27.11 Creating ROM Code to Place Order for Previously Written Product	(c)			
APPENDIX E REVISION HISTORY					
p. 975	Addition of C.2 Revision History of Preceding Editions	(C)			

Remark "Classification" in the above table classifies revisions as follows.

(a): Error correction, (b): Addition/change of specifications, (c): Addition/change of description or note, (d):
 Addition/change of package, part number, or management division, (e): Addition/change of related documents