E·XF kenesas Electronics America Inc - UPD78F0525AGB-GAG-AX Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	78K/0
Core Size	8-Bit
Speed	20MHz
Connectivity	3-Wire SIO, I ² C, LINbus, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	45
Program Memory Size	60KB (60K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	52-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/upd78f0525agb-gag-ax

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- O On-chip 10-bit resolution A/D converter (AV_{REF} = 2.3 to 5.5 V)
- O On-chip multiplier/divider (16 bits × 16 bits, 32 bits/16 bits), key interrupt function, clock output/buzzer output controller, I/O ports, timer, and serial interface
- O Power supply voltage
 - Standard products, (A) grade products: $V_{DD} = 1.8$ to 5.5 V
 - (A2) grade products: $V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$
- O Operating ambient temperature
 - Standard products, (A) grade products: $T_A = -40$ to $+85^{\circ}C$
 - (A2) grade products: $T_A = -40 \text{ to } +125^{\circ}\text{C}$

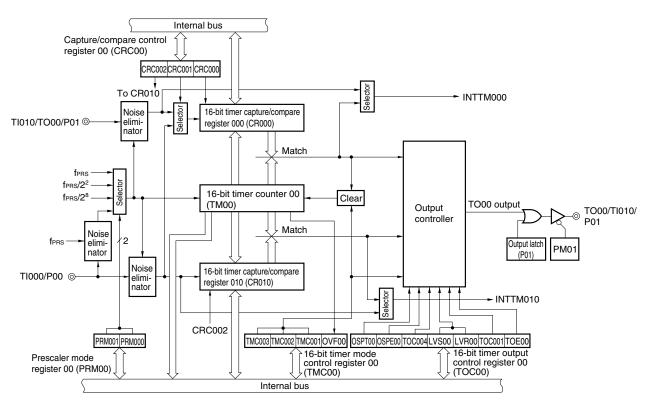
Remark The functions mounted depend on the product. See 1.7 Block Diagram and 1.8 Outline of Functions.

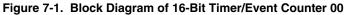
1.3 Applications

- O Automotive equipment (compatible with (A) and (A2) grade products)
 - System control for body electricals (power windows, keyless entry reception, etc.)
 - Sub-microcontrollers for control
- O Car audio
- O AV equipment, home audio
- O PC peripheral equipment (keyboards, etc.)
- O Household electrical appliances
 - Air conditioners
 - Microwave ovens, electric rice cookers
- O Industrial equipment
 - Pumps
 - Vending machines
 - FA (Factory Automation)

7.2 Configuration of 16-Bit Timer/Event Counters 00 and 01

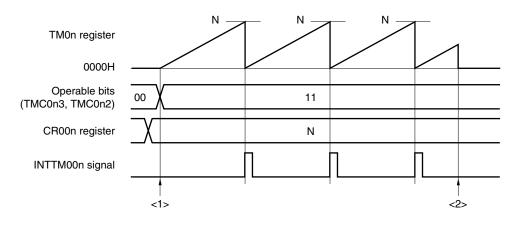
16-bit timer/event counters 00 and 01 include the following hardware.


Table 7-1. Configuration of 16-Bit Timer/Event Counters 00 and 01


Item	Configuration			
Time/counter	16-bit timer counter 0n (TM0n)			
Register	16-bit timer capture/compare registers 00n, 01n (CR00n, CR01n)			
Timer input	TI00n, TI01n pins			
Timer output	TO0n pin, output controller			
Control registers	 16-bit timer mode control register 0n (TMC0n) 16-bit timer capture/compare control register 0n (CRC0n) 16-bit timer output control register 0n (TOC0n) Prescaler mode register 0n (PRM0n) Port mode register 0 (PM0) Port register 0 (P0) 			

Remark n = 0: 78K0/KE2 products whose flash memory is less than 32 KB, and 78K0/KB2, 78K0/KC2, 78K0/KD2 products

n = 0, 1: 78K0/KE2 products whose flash memory is at least 48 KB, and 78K0/KF2 products


Figures 7-1 and 7-2 show the block diagrams.

(Cautions 1 to 3 are listed on the next page.)

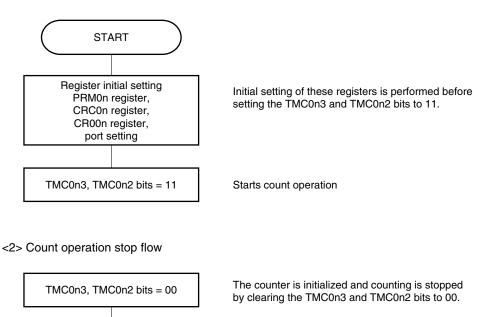
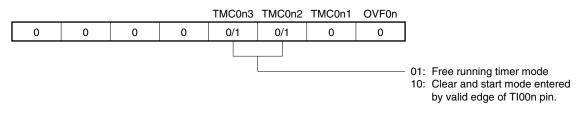


Figure 7-19. Example of Software Processing for Interval Timer Function

<1> Count operation start flow


STOP

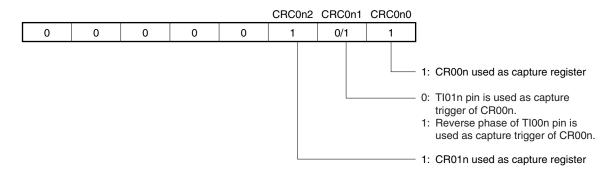
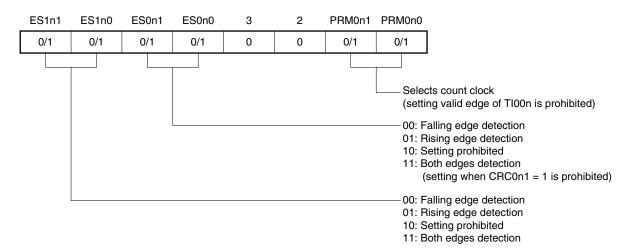

- **Remark** n = 0: 78K0/KE2 products whose flash memory is less than 32 KB, and 78K0/KB2, 78K0/KC2, 78K0/KD2 products
 - n = 0, 1: 78K0/KE2 products whose flash memory is at least 48 KB, and 78K0/KF2 products

Figure 7-56. Example of Register Settings for Pulse Width Measurement (1/2)

(a) 16-bit timer mode control register 0n (TMC0n)


(b) Capture/compare control register 0n (CRC0n)

(c) 16-bit timer output control register 0n (TOC0n)

_		OSPT0n	OSPE0n	TOC0n4	LVS0n	LVR0n	TOC0n1	TOE0n
ſ	0	0	0	0	0	0	0	0

(d) Prescaler mode register 0n (PRM0n)

Remark n = 0: 78K0/KE2 products whose flash memory is less than 32 KB, and 78K0/KB2, 78K0/KC2, 78K0/KD2 products

n = 0, 1: 78K0/KE2 products whose flash memory is at least 48 KB, and 78K0/KF2 products

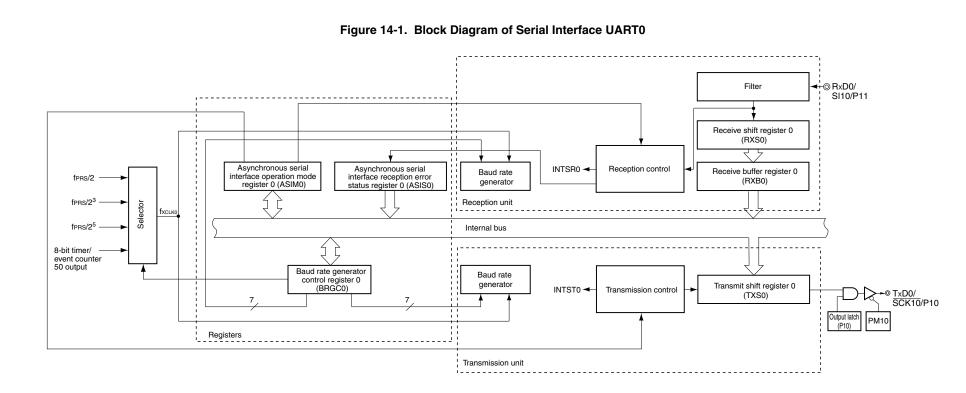
Address: FF8CH After reset: 00H R/W											
Symbol	7	6	5	4	3	2	1	0			
TCL51	0	0	0	0	0	TCL512	TCL511	TCL510			
	TCL512	TCL511	TCL510		Coun	t clock selecti	ON ^{Note 1}				
					fprs =	fprs =	fprs =	fprs =			
					2 MHz	5 MHz	10 MHz	20 MHz			
	0	0	0	TI51 pin falli	ng edge ^{Note 2}						
	0	0	1	TI51 pin risir	ng edge ^{Note 2}						
	0	1	0	fprs ^{Note 3}	2 MHz	5 MHz	10 MHz	20 MHz ^{Note 4}			
	0	1	1	fprs/2	1 MHz	2.5 MHz	5 MHz	10 MHz			
	1	0	0	fprs/2⁴	125 kHz	312.5 kHz	625 kHz	1.25 MHz			
	1	0	1	fprs/26	31.25 kHz	78.13 kHz	156.25 kHz	312.5 kHz			
	1	1	0	fprs/2 ⁸	7.81 kHz	19.53 kHz	39.06 kHz	78.13 kHz			
	1	1	1	fprs/2 ¹²	0.49 kHz	1.22 kHz	2.44 kHz	4.88 kHz			

Figure 8-6. Format of Timer Clock Selection Register 51 (TCL51)

Notes 1. The frequency that can be used for the peripheral hardware clock (fPRs) differs depending on the power supply voltage and product specifications.

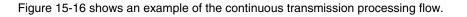
Supply Voltage	Conventional-specification Products (µPD78F05xx and 78F05xxD)	Expanded-specification Products (µPD78F05xxA and 78F05xxDA)
$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	$f_{\text{PRS}} \leq 20 \text{ MHz}$	$f_{PRS} \le 20 \text{ MHz}$
$2.7~V \leq V_{\text{DD}} < 4.0~V$	$f_{PRS} \leq 10 \text{ MHz}$	
$\begin{array}{l} 1.8 \ V \leq V_{DD} < 2.7 \ V \\ (Standard products and \\ (A) \ grade \ products \ only) \end{array}$	fprs ≤ 5 MHz	fprs ≤ 5 MHz

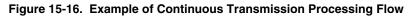
(The values shown in the table above are those when fPRS = fXH (XSEL = 1).)

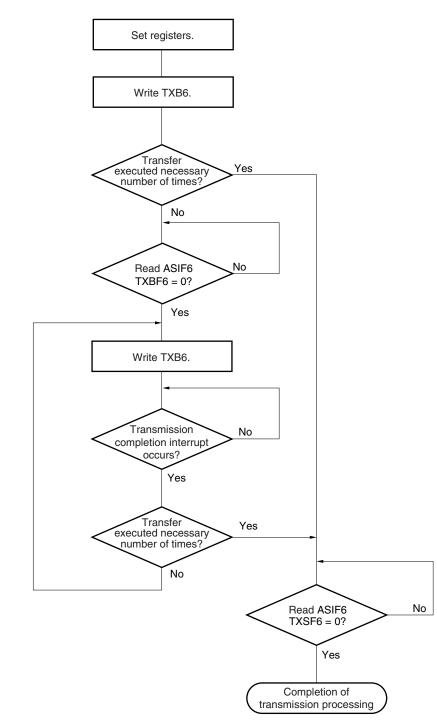

- 2. Do not start timer operation with the external clock from the TI51 pin when the internal high-speed oscillation clock and high-speed system clock are stopped while the CPU operates with the subsystem clock, or when in the STOP mode.
- 3. If the peripheral hardware clock (fPRs) operates on the internal high-speed oscillation clock (fRH) (XSEL = 0), when $1.8 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}$, the setting of TCL512, TCL511, TCL510 = 0, 1, 0 (count clock: fPRs) is prohibited.
- 4. This is settable only if 4.0 V \leq V_{DD} \leq 5.5 V.

Cautions 1. When rewriting TCL51 to other data, stop the timer operation beforehand.

2. Be sure to clear bits 3 to 7 to "0".


Remark fPRs: Peripheral hardware clock frequency





78K0/Kx2

434

 Remark
 TXB6:
 Transmit buffer register 6

 ASIF6:
 Asynchronous serial interface transmission status register 6

 TXBF6:
 Bit 1 of ASIF6 (transmit buffer data flag)

 TXSF6:
 Bit 0 of ASIF6 (transmit shift register data flag)

(4) IIC clock selection register 0 (IICCL0)

This register is used to set the transfer clock for the I²C bus.

IICCL0 is set by a 1-bit or 8-bit memory manipulation instruction. However, the CLD0 and DAD0 bits are read-only. The SMC0, CL01, and CL00 bits are set in combination with bit 0 (CLX0) of IIC function expansion register 0 (IICX0) (see **18.3 (6)** I^2C transfer clock setting method).

Set IICCL0 while bit 7 (IICE0) of IIC control register 0 (IICC0) is 0.

Reset signal generation clears IICCL0 to 00H.

Figure 18-8. Format of IIC Clock Selection Register 0 (IICCL0)

Address: FF	A8H	After reset: 0	0H R/W	Note				
Symbol	7	6	<5>	<4>	<3>	<2>	1	0
IICCL0	0	0	CLD0	DAD0	SMC0	DFC0	CL01	CL00

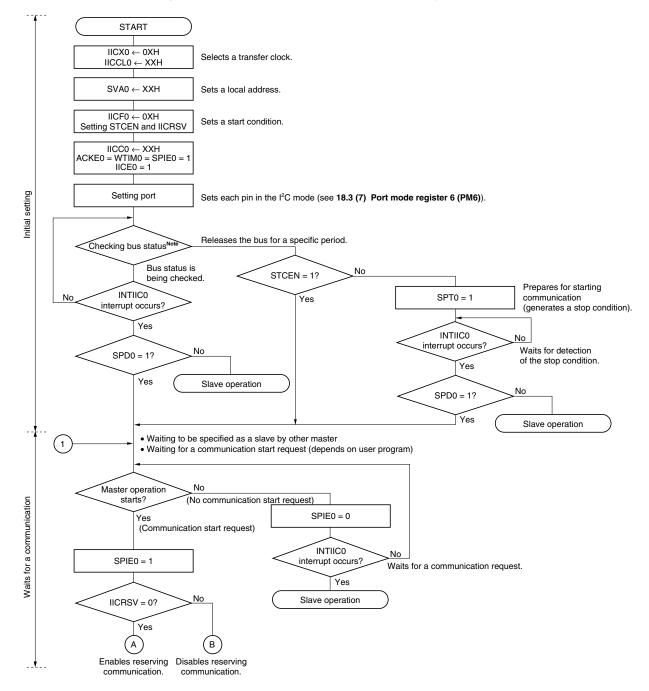
CLD0	D0 Detection of SCL0 pin level (valid only when IICE0 = 1)						
0	The SCL0 pin was detected at low level.						
1	The SCL0 pin was detected at high level.						
Condition f	or clearing (CLD0 = 0)	Condition for setting (CLD0 = 1)					
	e SCL0 pin is at low level E0 = 0 (operation stop)	When the SCL0 pin is at high level					

DAD0	Detection of SDA0 pin level (valid only when IICE0 = 1)						
0	The SDA0 pin was detected at low level.						
1	The SDA0 pin was detected at high level.						
Condition f	or clearing (DAD0 = 0)	Condition for setting (DAD0 = 1)					
	e SDA0 pin is at low level E0 = 0 (operation stop)	When the SDA0 pin is at high level					

SMC0	Operation mode switching
0	Operates in standard mode.
1	Operates in high-speed mode.

DFC0	Digital filter operation control						
0	Digital filter off.						
1	Digital filter on.						
Digital filter	Digital filter can be used only in high-speed mode.						
In high-spe	In high-speed mode, the transfer clock does not vary regardless of DFC0 bit set (1)/clear (0).						

The digital filter is used for noise elimination in high-speed mode.


Note Bits 4 and 5 are read-only.

Remark IICE0: Bit 7 of IIC control register 0 (IICC0)

(2) Master operation in multi-master system

Note Confirm that the bus is released (CLD0 bit = 1, DAD0 bit = 1) for a specific period (for example, for a period of one frame). If the SDA0 pin is constantly at low level, decide whether to release the I²C bus (SCL0 and SDA0 pins = high level) in conformance with the specifications of the product that is communicating.

20.3 Registers Controlling Interrupt Functions

The following 6 types of registers are used to control the interrupt functions.

- Interrupt request flag register (IF0L, IF0H, IF1L, IF1H)
- Interrupt mask flag register (MK0L, MK0H, MK1L, MK1H)
- Priority specification flag register (PR0L, PR0H, PR1L, PR1H)
- External interrupt rising edge enable register (EGP)
- External interrupt falling edge enable register (EGN)
- Program status word (PSW)

Table 20-2 shows a list of interrupt request flags, interrupt mask flags, and priority specification flags corresponding to interrupt request sources.

к	к	к	к	к	Interrupt	Interr	upt Request	Flag	Inte	rrupt Mask F	lag	Priority Specification Fla		n Flag
в	С	D	Е	F	Source	Γ		Register						Register
2	2	2	2	2							Register			Ů
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	INTLVI	LVIIF		IFOL	LVIMK		MKOL	LVIPR		PROL
\checkmark	\checkmark	\checkmark		\checkmark	INTP0	PIF0			PMK0			PPR0		
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	INTP1	PIF1			PMK1			PPR1		
\checkmark	\checkmark	\checkmark		\checkmark	INTP2	PIF2			PMK2			PPR2		
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	INTP3	PIF3			РМКЗ			PPR3		
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	INTP4	PIF4	PIF4		PMK4			PPR4		
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	INTP5	PIF5			PMK5			PPR5		
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	INTSRE6	SREIF6			SREMK6			SREPR6		
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	INTSR6	SRIF6		IF0H	SRMK6		МК0Н	SRPR6		PR0H
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	INTST6	STIF6			STMK6			STPR6		
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	INTCSI10	CSIIF10 Note 1	DUALIF0 Note 1		CSIMK10 Note 2	DUALMK0 Note 2		CSIPR10 Note 3	DUALPR0 Note 3	
V	\checkmark	\checkmark	V	\checkmark	INTST0	STIF0 Note 1			STMK0 Note 2			STPR0 Note 3		
\checkmark	\checkmark		\checkmark	\checkmark	INTTMH1	TMIFH1			TMMKH1			TMPRH1		
\checkmark	\checkmark	\checkmark		\checkmark	INTTMH0	TMIFHO			ТММКНО			TMPRH0		
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	INTTM50	TMIF50			TMMK50			TMPR50		
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	INTTM000	TMIF000			ТММК000			TMPR000		
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	INTTM010	TMIF010			TMMK010	1		TMPR010		

Table 20-2. Flags Corresponding to Interrupt Request Sources (1/2)

Notes 1. If either interrupt source INTCSI10 or INTST0 is generated, bit 2 of IF0H is set (1).

- 2. Bit 2 of MK0H supports both interrupt sources INTCSI10 and INTST0.
- 3. Bit 2 of PR0H supports both interrupt sources INTCSI10 and INTST0.

27.6.3 RESET pin

If the reset signal of the dedicated flash memory programmer is connected to the RESET pin that is connected to the reset signal generator on the board, signal collision takes place. To prevent this collision, isolate the connection with the reset signal generator.

If the reset signal is input from the user system while the flash memory programming mode is set, the flash memory will not be correctly programmed. Do not input any signal other than the reset signal of the dedicated flash memory programmer.

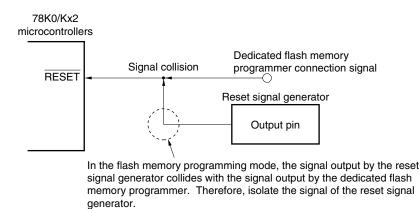
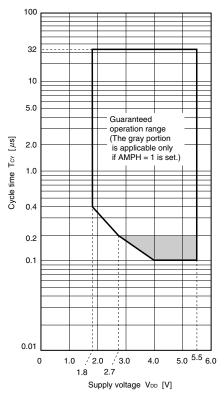


Figure 27-9. Signal Collision (RESET Pin)

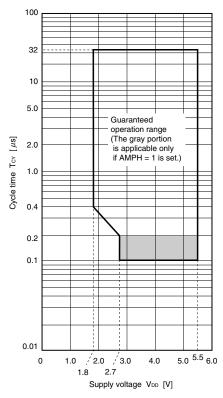
27.6.4 Port pins

When the flash memory programming mode is set, all the pins not used for flash memory programming enter the same status as that immediately after reset. If external devices connected to the ports do not recognize the port status immediately after reset, the port pin must be connected to EV_{DD}^{Note} or EV_{SS}^{Note} via a resistor.

Note With products without an EVss pin, connect them to Vss. With products without an EVDD pin, connect them to VDD.

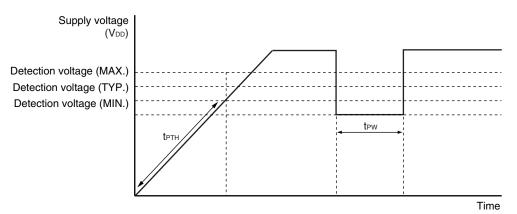

<R> 27.6.5 REGC pin

Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F) in the same manner as during normal operation.



TCY vs. VDD (Main System Clock Operation)

<2> Expanded-specification Products (µPD78F05xxA(A))



Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOC		1.44	1.59	1.74	V
Power supply voltage rise inclination	tртн	$V_{\text{DD}}\text{: }0$ V \rightarrow change inclination of V_{POC}	0.5			V/ms
Minimum pulse width	tpw		200			μS

1.59 V POC Circuit Characteristics (TA = -40 to +85°C, Vss = EVss = 0 V)

1.59 V POC Circuit Timing

Parameter	Symbol	(Conditions	Ratings	Unit
Output current, high	Іон	Per pin	P00 to P06, P10 to P17, P30 to P33, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P120, P130, P140 to P145	-10	mA
		Total of all pins -80 mA	P00 to P04, P40 to P47, P120, P130, P140 to P145	-25	mA
			P05, P06, P10 to P17, P30 to P33, P50 to P57, P64 to P67, P70 to P77	-55	mA
		Per pin	P20 to P27	-0.5	mA
		Total of all pins		-2	mA
		Per pin	P121 to P124	–1	mA
		Total of all pins		-4	mA
Output current, low	Ιοι	Per pin	P00 to P06, P10 to P17, P30 to P33, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P120, P130, P140 to P145	30	mA
		Total of all pins 200 mA	P00 to P04, P40 to P47, P120, P130, P140 to P145	60	mA
			P05, P06, P10 to P17, P30 to P33, P50 to P57, P60 to P67, P70 to P77	140	mA
		Per pin	P20 to P27	1	mA
		Total of all pins		5	mA
		Per pin	P121 to P124	4	mA
		Total of all pins		10	mA
Operating ambient temperature	TA			-40 to +110	°C
Storage temperature	Tstg			-65 to +150	°C

Absolute Maximum Ratings (T_A = 25°C) (2/2)

- Cautions 1. Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
 - 2. The value of the current that can be run per pin must satisfy the value of the current per pin and the total value of the currents of all pins.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

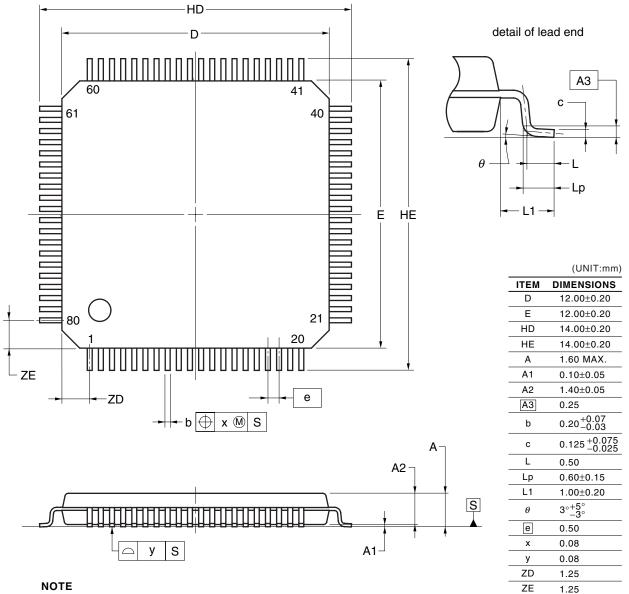
Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
SCKA0 cycle time	tксүз	$\begin{array}{c} 4.0 \ V \leq V_{DD} \leq 5.5 \ V \\ \\ \hline 2.7 \ V \leq V_{DD} < 4.0 \ V \end{array}$		600			ns
				1200			ns
SCKA0 high-/low-level width	tkh3, $4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5$ tkl3		5 V	tксүз/2 – 50			ns
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.$	0 V	tксүз/2 – 100			ns
SIA0 setup time (to $\overline{\text{SCKA0}}$)	tsik3			100			ns
SIA0 hold time (from $\overline{\text{SCKA0}}\uparrow$)	tหรเง			300			ns
Delay time from $\overline{SCKA0}\downarrow$ to	tĸso3	$C = 100 \text{ pF}^{\text{Note}}$	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			200	ns
SOA0 output			$2.7~V \leq V_{\text{DD}} < 4.0~V$			300	ns
Time from $\overline{\text{SCKA0}}^{\uparrow}$ to STB0^{\uparrow}	tsbd			tксүз/2 – 100			ns
Strobe signal high-level width	tsвw	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$		tксүз – 30			ns
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.$	0 V	tксүз – 60			ns
Busy signal setup time (to busy signal detection timing)	tвys						ns
Busy signal hold time (from busy signal detection timing)	tвүн			100			ns
Time from busy inactive to $\overline{\text{SCKA0}}\downarrow$	tsps $4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5$		5 V			2tксүз + 100	ns
		$2.7 \text{ V} \leq V_{\text{DD}} < 4.$	0 V			2tксүз – 150	ns

(f) CSIA0 (master mode, SCKA0...internal clock output)

Note C is the load capacitance of the $\overline{SCKA0}$ and SOA0 output lines.

2.7 V POC Circuit Characteristics (T_A = -40 to +125°C, Vss = EVss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage on application of supply	VDDPOC	POCMODE (option bye) = 1	2.50	2.70	2.90	V
voltage						


Remark The operations of the POC circuit are as described below, depending on the POCMODE (option byte) setting.

Option Byte Setting	POC Mode	Operation
POCMODE = 0	1.59 V mode operation	A reset state is retained until V _{POC} = 1.59 V (TYP.) is reached after the power is turned on, and the reset is released when V _{POC} is exceeded. After that, POC detection is performed at V _{POC} , similarly as when the power was turned on. The power supply voltage must be raised at a time of t _{PUP1} or t _{PUP2} when POCMODE is 0.
POCMODE = 1	2.7 V/1.59 V mode operation	A reset state is retained until VDDPOC = 2.7 V (TYP.) is reached after the power is turned on, and the reset is released when VDDPOC is exceeded. After that, POC detection is performed at VPOC = 1.59 V (TYP.) and not at VDDPOC. The use of the $2.7 \text{ V}/1.59 \text{ V}$ POC mode is recommended when the rise of the voltage, after the power is turned on and until the voltage reaches 1.8 V , is more relaxed than tPTH.

- µPD78F0544GK(A)-GAK-AX, 78F0545GK(A)-GAK-AX, 78F0546GK(A)-GAK-AX, 78F0547GK(A)-GAK-AX
- µPD78F0544GK(A2)-GAK-AX, 78F0545GK(A2)-GAK-AX, 78F0546GK(A2)-GAK-AX, 78F0547GK(A2)-GAK-AX
- μPD78F0544AGK-GAK-AX, 78F0545AGK-GAK-AX, 78F0546AGK-GAK-AX, 78F0547AGK-GAK-AX, 78F0547DAGK-GAK-AX
- µPD78F0544AGKA-GAK-G, 78F0545AGKA-GAK-G, 78F0546AGKA-GAK-G, 78F0547AGKA-GAK-G
- µPD78F0544AGKA2-GAK-G, 78F0545AGKA2-GAK-G, 78F0546AGKA2-GAK-G, 78F0547AGKA2-GAK-G

80-PIN PLASTIC LQFP(FINE PITCH)(12x12)

Each lead centerline is located within 0.08 mm of its true position at maximum material condition.

P80GK-50-GAK

36.2 Peripheral Hardware That Generates Wait

Table 36-1 lists the registers that issue a wait request when accessed by the CPU, and the number of CPU wait clocks and Table 36-2 lists the RAM accesses that issue a wait request and the number of CPU wait clocks.

Peripheral Hardware	Register	Access	Number of Wait Clocks			
Serial interface UART0	ASIS0	Read	1 clock (fixed)			
Serial interface UART6	ASIS6	Read	1 clock (fixed)			
Serial interface IIC0	IICS0	Read	1 clock (fixed)			
A/D converter	ADM	Write	1 to 5 clocks (when fad = fprs/2 is selected)			
	ADS	Write	1 to 7 clocks (when fad = fprs/3 is selected)			
	ADPC	Write	1 to 9 clocks (when $f_{AD} = f_{PRS}/4$ is selected) 2 to 13 clocks (when $f_{AD} = f_{PRS}/6$ is selected)			
	ADCR	Read	2 to 17 clocks (when $f_{AD} = f_{PRS}/6$ is selected) 2 to 17 clocks (when $f_{AD} = f_{PRS}/8$ is selected) 2 to 25 clocks (when $f_{AD} = f_{PRS}/12$ is selected)			
	The above number of clocks is when the same source clock is selected for fcPu and fPBS. The number of wait clocks can be calculated by the following expression and under the following conditions. <calculating clocks="" number="" of="" wait=""> • Number of wait clocks = $\frac{2 \text{ fcPU}}{f_{AD}}$ + 1 * Fraction is truncated if the number of wait clocks ≤ 0.5 and rounded up if the number of wait clocks > 0.5 f_AD: A/D conversion clock frequency (fPBS/2 to fPBS/12) f_CPU: CPU clock frequency f_PBS: Peripheral hardware clock frequency f_xP: Main system clock frequency Conditions for maximum/minimum number of wait clocks> • Maximum number of times: Maximum speed of CPU (fxP), lowest speed of A/D conversion clock (fPBS/12)</calculating>					

Table 36-1.	Registers That Generate Wait and Number of CPU Wait Clocks
-------------	--

Caution When the peripheral hardware clock (fPRs) is stopped, do not access the registers listed above using an access method in which a wait request is issued.

Remark The clock is the CPU clock (fcPu).

	Package	Exchange Adapter	Space Adapter	YQ Connector	Mount Adapter	Target Connector
78K0/KB2	30-pin plastic SSOP (MC-5A4 and MC-CAB types)	QB-30MC- EA-02T	QB-30MC- YS-01T	QB-30MC- YQ-01T	QB-30MC- HQ-01T	QB-30MC- NQ-01T
	36-pin plastic FLGA (FC-AA3 type)	QB-36FC- EA-01T	None	None	None	QB-36FC- NQ-01T
78K0/KC2	38-pin plastic SSOP (MC-GAA type)	QB-38MC- EA-01T	QB-38MC- YQ-01T	QB-38MC- YQ-01T	QB-38MC- HQ-01T	QB-38MC- NQ-01T
	44-pin plastic LQFP (GB-UES and GB- GAF types)	QB-44GB- EA-03T	QB-44GB- YS-01T	QB-44GB- YQ-01T	QB-44GB- HQ-01T	QB-44GB- NQ-01T
	48-pin plastic LQFP (GA-8EU and GA- GAM types)	QB-48GA- EA-02T	QB-48GA- YS-01T	QB-48GA- YQ-01T	QB-48GA- HQ-01T	QB-48GA- NQ-01T
78K0/KD2	52-pin plastic LQFP (GB-UET and GB- GAG types)	QB-52GB- EA-02T	QB-52GB- YS-01T	QB-52GB- YQ-01T	QB-52GB- HQ-01T	QB-52GB- NQ-01T
78K0/KE2	64-pin plastic LQFP (GB-UEU and GB- GAH types)	QB-64GB- EA-04T	QB-64GB- YS-01T	QB-64GB- YQ-01T	QB-64GB- HQ-01T	QB-64GB- NQ-01T
	64-pin plastic LQFP (GC-UBS and GC- GAL types)	QB-64GC- EA-03T	QB-64GC- YS-01T	QB-64GC- YQ-01T	QB-64GC- HQ-01T	QB-64GC- NQ-01T
	64-pin plastic LQFP (GK-UET and GK- GAJ types)	QB-64GK- EA-04T	QB-64GK- YS-01T	QB-64GK- YQ-01T	QB-64GK- HQ-01T	QB-64GK- NQ-01T
	64-pin plastic TQFP (GA-9EV and GA- HAB types)	QB-64GA- EA-01T	QB-64GA- YS-01T	QB-64GA- YQ-01T	QB-64GA- HQ-01T	QB-64GA- NQ-01T
	64-pin plastic FLGA (FC-AA1 type)	QB-64FC- EA-01T	None	None	None	QB-64FC- NQ-01T
78K0/KF2	80-pin plastic LQFP (GC-UBT and GC- GAD types)	QB-80GC- EA-01T	QB-80GC- YS-01T	QB-80GC- YQ-01T	QB-80GC- HQ-01T	QB-80GC- NQ-01T
	80-pin plastic LQFP (GK-8EU and GK- GAK type)	QB-80GK- EA-01T	QB-80GK- YS-01T	QB-80GK- YQ-01T	QB-80GK- HQ-01T	QB-80GK- NQ-01T

Note The part numbers of the exchange adapter, space adapter, YQ connector, mount adapter, and target connector and the packages of the target device are described below.

						(6/30
Chapter	0		nction Details of Cautions Function		Pa	ige
Chapter 6	Hard	Clock generator	_	It is not necessary to wait for the oscillation stabilization time when an external clock input from the EXCLK and EXCLKS pins is used.	pp. 24 247	16, 🗌
Chal		operation when power supply voltage is turned on		A voltage oscillation stabilization time of 1.93 to 5.39 ms is required after the power supply voltage reaches 1.59 V (TYP.). If the supply voltage rises from 1.59 V (TYP.) to 2.7 V (TYP.) within 1.93 ms, the power supply oscillation stabilization time of 0 to 5.39 ms is automatically generated before reset processing.	p. 24	7
	Soft	Controlling high-speed		The X1/P121 and X2/EXCLK/P122 pins are in the I/O port mode after a reset release.	p. 248	3
		system clock	X1 clock	Do not change the value of EXCLK and OSCSEL while the X1 clock is operating.	p. 249)
				Set the X1 clock after the supply voltage has reached the operable voltage of the clock to be used (see CHAPTER 30 ELECTRICAL SPECIFICATIONS (STANDARD PRODUCTS) to CHAPTER 33 ELECTRICAL SPECIFICATIONS ((A2) GRADE PRODUCTS : $T_A = \bullet 40$ to $+125^{\circ}$ C)).	p. 249	9
			External main system clock	Do not change the value of EXCLK and OSCSEL while the external main systerm clock is operating.	p. 249	€
				Set the external main system clock after the supply voltage has reached the operable voltage of the clock to be used (see CHAPTER 30 ELECTRICAL SPECIFICATIONS (STANDARD PRODUCTS) to CHAPTER 33 ELECTRICAL SPECIFICATIONS ((A2) GRADE PRODUCTS : $T_A = \bullet 40$ to $+125^\circ$ C)).	p. 249	€ □
			Main system clock	If the high-speed system clock is selected as the main system clock, a clock other than the high-speed system clock cannot be set as the peripheral hardware clock.	p. 250	
			High-speed system clock	Be sure to confirm that MCS = 0 or CLS = 1 when setting MSTOP to 1. In addition, stop peripheral hardware that is operating on the high-speed system clock.	p. 25 [.]	
			Internal high- speed oscillation clock	Be sure to confirm that MCS = 1 or CLS = 1 when setting RSTOP to 1. In addition, stop peripheral hardware that is operating on the internal high-speed oscillation clock.	p. 25	3
			XT1/P123, XT2/EXCLKS/ P124	The XT1/P123 and XT2/EXCLKS/P124 pins are in the I/O port mode after a reset release.	p. 254	1
			External clock from peripheral hardware pins	Do not start the peripheral hardware operation with the external clock from peripheral hardware pins when the internal high-speed oscillation clock and high-speed system clock are stopped while the CPU operates with the subsystem clock, or when in the STOP mode.	p. 254	1
			XT1 clock, external subsystem clock	Do not change the value of XTSTART, EXCLKS, and OSCSELS while the subsystem clock is operating.	p. 254	1
				Be sure to confirm that CLS = 0 when clearing OSCSELS to 0. In addition, stop the watch timer if it is operating on the subsystem clock.	p. 25	5
				The subsystem clock oscillation cannot be stopped using the STOP instruction.	p. 25	5
		Controlling internal low- speed oscillation clock	Internal low- speed oscillation clock	If "Internal low-speed oscillator cannot be stopped" is selected by the option byte, oscillation of the internal low-speed oscillation clock cannot be controlled.	p. 256	6

