

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Detalls	
Product Status	Active
Core Processor	78K/0
Core Size	8-Bit
Speed	20MHz
Connectivity	3-Wire SIO, I ² C, LINbus, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	55
Program Memory Size	16KB (16K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/upd78f0531agb-gah-ax

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

(1) Conventional-specification products (µPD78F05xx and 78F05xxD) (3/3)

<4> When high-speed system clock (X1 oscillation or external clock input) is used and entry RAM is located in short direct addressing range

Library	/ Name		Processing Time (μ s)				
		Normal Model	of C Compiler	Static Model of C Compiler/Assembler			
		Min. Max. Min.		Min.	Max.		
Self programming start l	ibrary		34/	fcpu			
Initialize library			49/fcpu +	224.6875			
Mode check library		35/f сри +	113.625	29/f сри +	113.625		
Block blank check library	/	174/fcpu +	6120.9375	134/fcpu +	6120.9375		
Block erase library		174/fcpu + 30820.75	174/fсец + 298675	134/fcpu + 30820.75	134/fcpu + 298675		
Word write library		318 (321)/fcpu + 383	318 (321)/fcpu + 262 (265)/fcpu + 2 1230.5 383		262 (265)/fcpu + 1230.5		
Block verify library		174/fcpu + 13175.4375 134/fcpu + 13175.4375					
Self programming end li	brary	34/fcpu					
Get information library	Option value: 03H	171 (172)/fcp	u + 171.3125	129 (130)/fcpu + 171.3125			
	Option value: 04H	181 (182)/fo	сец + 166.75	139 (140)/fcpu + 166.75			
Option value: 05H		404 (411)/f c	ри + 231.875	362 (369)/fcpu + 231.875			
Set information library		75/fcpu +	75/fcpu +	67/fcpu +	67/fcpu +		
		78884.5625	527566.875	78884.5625	527566.875		
EEPROM write library		318 (321)/fcpu +	318 (321)/fcpu +	262 (265)/fcpu +	262 (265)/fcpu +		
		538.75	1386.25	538.75	1386.25		

- **Remarks 1.** Values in parentheses indicate values when a write start address structure is located other than in the internal high-speed RAM.
 - 2. The above processing times are those during stabilized operation of the internal high-speed oscillator (RSTS = 1).
 - 3. fcpu: CPU operation clock frequency
 - 4. RSTS: Bit 7 of the internal oscillation mode register (RCM)

1.2 Features

- O Minimum instruction execution time can be changed from high speed (0.1 μ s: @ 20 MHz operation with high-speed system clock) to ultra low-speed (122 μ s: @ 32.768 kHz operation with subsystem clock)
- O General-purpose register: 8 bits × 32 registers (8 bits × 8 registers × 4 banks)
- $\, \odot \,$ ROM (flash memory), RAM capacities

ROM ^{Note}	High-	Expansion	78K0/KB2	78K0)/KC2	78K0/KD2	78K0/KE2	78K0/KF2
	Speed RAM ^{Note}	RAM ^{Note}	30/36 pins	38/44 pins	48 pins	52 pins	64 pins	80 pins
128 KB	1 KB	6 KB	_	_	_	<i>µ</i> PD78F0527D, 78F0527DA	<i>µ</i> PD78F0537D, 78F0537DA	μPD78F0547D, 78F0547DA
						<i>µ</i> PD78F0527, 78F0527A	μPD78F0537, 78F0537A	μPD78F0547 78F0547A
96 KB	1 KB	4 KB	_	_	_	μPD78F0526, 78F0526A	μPD78F0536, 78F0536A	μPD78F0546, 78F0546A
60 KB	1 KB	2 KB	-	_	<i>µ</i> PD78F0515D, 78F0515DA	<i>µ</i> PD78F0525, 78F0525A	<i>µ</i> PD78F0535, 78F0535A	<i>µ</i> PD78F0545, 78F0545A
					<i>µ</i> PD78F0515, 78F0515A			
48 KB	1 KB	1 KB	-	-	<i>µ</i> PD78F0514, 78F0514A	<i>µ</i> PD78F0524, 78F0524A	<i>µ</i> PD78F0534, 78F0534A	<i>µ</i> PD78F0544, 78F0544A
32 KB	1 KB	-	μPD78F0503D, 78F0503DA	μPD78F0513D, 78F0513DA	<i>µ</i> PD78F0513, 78F0513A	<i>µ</i> PD78F0523, 78F0523A	<i>µ</i> PD78F0533, 78F0533A	-
			μPD78F0503, 78F0503A	μPD78F0513, 78F0513A				
24 KB	1 KB	-	μPD78F0502, 78F0502A	μPD78F0512, 78F0512A	<i>µ</i> PD78F0512, 78F0512A	<i>µ</i> PD78F0522, 78F0522A	<i>µ</i> PD78F0532, 78F0532A	-
16 KB	768 B	-	μPD78F0501, 78F0501A	μPD78F0511, 78F0511A	<i>µ</i> PD78F0511, 78F0511A	μPD78F0521, 78F0521A	<i>µ</i> PD78F0531, 78F0531A	-
8 KB	512 B	_	μPD78F0500, 78F0500A	_	_	_	_	-

- Note The internal flash memory, internal high-speed RAM capacities, and internal expansion RAM capacities can be changed using the internal memory size switching register (IMS) and the internal expansion RAM size switching register (IXS). For IMS and IXS, see 27.1 Internal Memory Size Switching Register and 27.2 Internal Expansion RAM Size Switching Register.
- O Buffer RAM: 32 bytes (can be used for transfer in CSI with automatic transmit/receive function) (78K0/KF2 only)
- O On-chip single-power-supply flash memory
- O Self-programming (with boot swap function)
- On-chip debug function (μ PD78F05xxD and 78F05xxDA only)^{Note}
- **Note** The μPD78F05xxD and 78F05xxDA have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
- O On-chip power-on-clear (POC) circuit and low-voltage detector (LVI)
- O On-chip watchdog timer (operable with the on-chip internal low-speed oscillation clock)

(c) VDD and EVDD

VDD is the positive power supply pin for P121 to P124 and other than ports^{Note}. EVDD is the positive power supply pin for ports other than P20 to P27 and P121 to P124. Always make EVDD the same potential as VDD.

Note With products that are not mounted with an EV_{DD} pin, use V_{DD} as a positive power supply pin other than P20 to P27.

(d) Vss and EVss

Vss is the ground potential pin for P121 to P124 and other than ports. EVss is the ground potential pin for ports other than P20 to P27 and P121 to P124. Always make EVss the same potential as Vss.

Note With products that are not mounted with an EVss pin, use Vss as a ground potential pin other than P20 to P27.

2.2.13 RESET

This is the active-low system reset input pin.

2.2.14 REGC

This is the pin for connecting regulator output (2.5 V) stabilization capacitance for internal operation. Connect this pin to Vss via a capacitor (0.47 to 1 μ F).

Caution Keep the wiring length as short as possible for the broken-line part in the above figure.

2.2.15 FLMD0

This is a pin for setting flash memory programming mode.

Connect FLMD0 to EVss or Vss in the normal operation mode.

In flash memory programming mode, connect this pin to the flash memory programmer.

(5) Main OSC control register (MOC)

This register selects the operation mode of the high-speed system clock.

This register is used to stop the X1 oscillator or to disable an external clock input from the EXCLK pin when the CPU operates with a clock other than the high-speed system clock.

MOC can be set by a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation sets this register to 80H.

Figure 6-8. Format of Main OSC Control Register (MOC)

Address: FFA2H After reset: 80H R/W

Symbol <7> 6 5 3 2 0 4 1 MOC MSTOP 0 0 0 0 0 0 0

MSTOP	Control of high-speed	system clock operation
	X1 oscillation mode	External clock input mode
0	X1 oscillator operating	External clock from EXCLK pin is enabled
1	X1 oscillator stopped	External clock from EXCLK pin is disabled

Cautions 1. When setting MSTOP to 1, be sure to confirm that the CPU operates with a clock other than the high-speed system clock. Specifically, set under either of the following conditions.

- <1> 78K0/KB2
 - When MCS = 0 (when CPU operates with the internal high-speed oscillation clock)
- <2> 78K0/KC2, 78K0/KD2, 78K0/KE2, and 78K0/KF2
 - When MCS = 0 (when CPU operates with the internal high-speed oscillation clock)
 - When CLS = 1 (when CPU operates with the subsystem clock)

In addition, stop peripheral hardware that is operating on the high-speed system clock before setting MSTOP to 1.

- 2. Do not clear MSTOP to 0 while bit 6 (OSCSEL) of the clock operation mode select register (OSCCTL) is 0 (I/O port mode).
- 3. The peripheral hardware cannot operate when the peripheral hardware clock is stopped. To resume the operation of the peripheral hardware after the peripheral hardware clock has been stopped, initialize the peripheral hardware.

6.6.5 Clocks supplied to CPU and peripheral hardware

The following table shows the relation among the clocks supplied to the CPU and peripheral hardware, and setting of registers.

Table 6-4. Clocks Supplied to CPU and Peripheral Hardware, and Register Setting (78K0/KB2)

Sup	XSEL	MCM0	EXCLK	
Clock Supplied to CPU	Clock Supplied to CPU Clock Supplied to Peripheral Hardware			
Internal high-speed oscillation clock	0	×	×	
Internal high-speed oscillation clock	X1 clock	1	0	0
	External main system clock	1	0	1
X1 clock	1	1	0	
External main system clock	1	1	1	

Remarks 1. The 78K0/KB2 is not provided with a subsystem clock.

- **2.** XSEL: Bit 2 of the main clock mode register (MCM)
 - MCM0: Bit 0 of MCM

EXCLK: Bit 7 of the clock operation mode select register (OSCCTL)

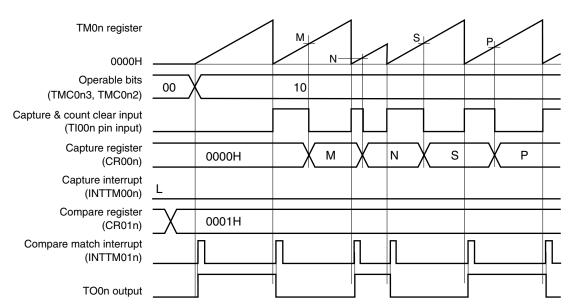
×: don't care

Table 6-5. Clocks Supplied to CPU and Peripheral Hardware, and Register Setting (78K0/KC2, 78K0/KD2, 78K0/KE2, and 78K0/KF2)

Suppli	XSEL	CSS	MCM0	EXCLK	
Clock Supplied to CPU					
Internal high-speed oscillation clock		0	0	×	×
Internal high-speed oscillation clock	X1 clock	1	0	0	0
	External main system clock	1	0	0	1
X1 clock		1	0	1	0
External main system clock		1	0	1	1
Subsystem clock	Internal high-speed oscillation clock	0	1	×	×
	X1 clock	1	1	0	0
		1	1	1	0
	External main system clock	1	1	0	1
		1	1	1	1

Remark XSEL: Bit 2 of the main clock mode register (MCM)

CSS: Bit 4 of the processor clock control register (PCC)


MCM0: Bit 0 of MCM

EXCLK: Bit 7 of the clock operation mode select register (OSCCTL)

×: don't care

78K0/Kx2

Figure 7-32. Timing Example of Clear & Start Mode Entered by TI00n Pin Valid Edge Input (CR00n: Capture Register, CR01n: Compare Register) (1/2)

(a) TOC0n = 13H, PRM0n = 10H, CRC0n, = 03H, TMC0n = 08H, CR01n = 0001H

This is an application example where the TO0n output level is to be inverted when the count value has been captured & cleared.

TMOn is cleared at the rising edge detection of the TI00n pin and it is captured to CR00n at the falling edge detection of the TI00n pin.

When bit 1 (CRC0n1) of capture/compare control register 0n (CRC0n) is set to 1, the count value of TM0n is captured to CR00n in the phase reverse to that of the signal input to the TI00n pin, but the capture interrupt signal (INTTM00n) is not generated. However, the INTTM00n signal is generated when the valid edge of the TI01n pin is detected. Mask the INTTM00n signal when it is not used.

Remark n = 0: 78K0/KE2 products whose flash memory is less than 32 KB, and 78K0/KB2, 78K0/KC2, 78K0/KD2 products

n = 0, 1: 78K0/KE2 products whose flash memory is at least 48 KB, and 78K0/KF2 products

Address: FF	6AH After	reset: 00H	R/W					
Symbol	7	6	5	4	3	2	1	0
TCL50	0	0	0	0	0	TCL502	TCL501	TCL500
	TCL502	TCL501	TCL500		Coun	t clock selecti	on ^{Note 1}	
					fprs =	fprs =	fprs =	fprs =
					2 MHz	5 MHz	10 MHz	20 MHz
	0	0	0	TI50 pin falli	ng edge ^{Note 2}			
	0	0	1	TI50 pin risir	ng edge ^{Note 2}			
	0	1	0	fprs ^{Note 3}	2 MHz	5 MHz	10 MHz	20 MHz ^{Note 4}
	0	1	1	fprs/2	1 MHz	2.5 MHz	5 MHz	10 MHz
	1	0	0	fprs/2 ² 500 kHz 1.25 MHz 2.5 MH		2.5 MHz	5 MHz	
	1	0	1	fprs/2 ⁶ 31.25 kHz 78.13 kHz 156.2		156.25 kHz	312.5 kHz	
	1	1	0	fprs/2 ⁸	7.81 kHz	19.53 kHz	39.06 kHz	78.13 kHz
	1	1	1	fprs/2 ¹³	0.24 kHz	0.61 kHz	1.22 kHz	2.44 kHz

Figure 8-5. Format of Timer Clock Selection Register 50 (TCL50)

Notes 1. The frequency that can be used for the peripheral hardware clock (fPRs) differs depending on the power supply voltage and product specifications.

Supply Voltage	Conventional-specification Products (µPD78F05xx and 78F05xxD)	Expanded-specification Products (µPD78F05xxA and 78F05xxDA)
$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	$f_{PRS} \leq 20 \text{ MHz}$	$f_{PRS} \le 20 \text{ MHz}$
$2.7~V \leq V_{\text{DD}} < 4.0~V$	$f_{PRS} \leq 10 \text{ MHz}$	
$\begin{array}{l} 1.8 \ V \leq V_{\text{DD}} < 2.7 \ V \\ (\text{Standard products and} \\ (\text{A}) \ \text{grade products only}) \end{array}$	fprs ≤ 5 MHz	fprs ≤ 5 MHz

(The values shown in the table above are those when fPRS = fXH (XSEL = 1).)

- 2. Do not start timer operation with the external clock from the TI50 pin when the internal high-speed oscillation clock and high-speed system clock are stopped while the CPU operates with the subsystem clock, or when in the STOP mode.
- 3. If the peripheral hardware clock (fPRs) operates on the internal high-speed oscillation clock (fRH) (XSEL = 0), when 1.8 V \leq VDD < 2.7 V, the setting of TCL502, TCL501, TCL500 = 0, 1, 0 (count clock: fPRs) is prohibited.
- 4. This is settable only if 4.0 V \leq V_{DD} \leq 5.5 V.

Cautions 1. When rewriting TCL50 to other data, stop the timer operation beforehand.

2. Be sure to clear bits 3 to 7 to "0".

Remark fPRs: Peripheral hardware clock frequency

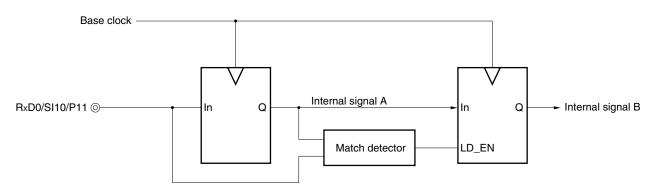
(e) Reception error

Three types of errors may occur during reception: a parity error, framing error, or overrun error. If the error flag of asynchronous serial interface reception error status register 0 (ASIS0) is set as a result of data reception, a reception error interrupt (INTSR0) is generated.

Which error has occurred during reception can be identified by reading the contents of ASIS0 in the reception error interrupt (INTSR0) servicing (see **Figure 14-3**).

The contents of ASIS0 are cleared to 0 when ASIS0 is read.

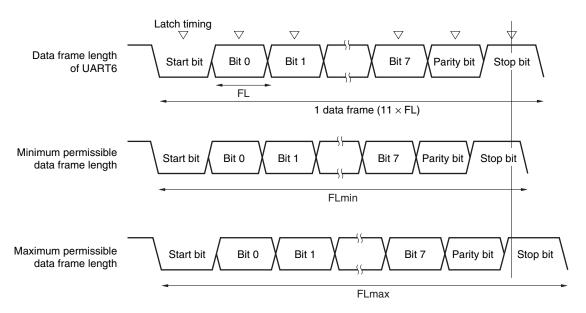
Reception Error	Cause
Parity error	The parity specified for transmission does not match the parity of the receive data.
Framing error	Stop bit is not detected.
Overrun error	Reception of the next data is completed before data is read from receive buffer register 0 (RXB0).


(f) Noise filter of receive data

The RxD0 signal is sampled using the base clock output by the prescaler block.

If two sampled values are the same, the output of the match detector changes, and the data is sampled as input data.

Because the circuit is configured as shown in Figure 14-10, the internal processing of the reception operation is delayed by two clocks from the external signal status.





(4) Permissible baud rate range during reception

The permissible error from the baud rate at the transmission destination during reception is shown below.

Caution Make sure that the baud rate error during reception is within the permissible error range, by using the calculation expression shown below.

As shown in Figure 15-25, the latch timing of the receive data is determined by the counter set by baud rate generator control register 6 (BRGC6) after the start bit has been detected. If the last data (stop bit) meets this latch timing, the data can be correctly received.

Assuming that 11-bit data is received, the theoretical values can be calculated as follows.

 $FL = (Brate)^{-1}$

Brate:Baud rate of UART6k:Set value of BRGC6FL:1-bit data lengthMargin of latch timing: 2 clocks

(2) Communication operation

In the 3-wire serial I/O mode, data is transmitted or received in 8-bit units. Each bit of the data is transmitted or received in synchronization with the serial clock.

Data can be transmitted or received if bit 6 (TRMD1n) of serial operation mode register 1n (CSIM1n) is 1. Transmission/reception is started when a value is written to transmit buffer register 1n (SOTB1n). In addition, data can be received when bit 6 (TRMD1n) of serial operation mode register 1n (CSIM1n) is 0.

Reception is started when data is read from serial I/O shift register 1n (SIO1n).

However, communication is performed as follows if bit 5 (SSE11) of CSIM11 is 1 when serial interface CSI11 is in the slave mode.

- <1> Low level input to the SSI11 pin
 - → Transmission/reception is started when SOTB11 is written, or reception is started when SIO11 is read.
- <2> High level input to the $\overline{SSI11}$ pin
 - → Transmission/reception or reception is held, therefore, even if SOTB11 is written or SIO11 is read, transmission/reception or reception will not be started.
- <3> Data is written to SOTB11 or data is read from SIO11 while a high level is input to the SSI11 pin, then a low level is input to the SSI11 pin
 - \rightarrow Transmission/reception or reception is started.
- <4> A high level is input to the SSI11 pin during transmission/reception or reception
 - \rightarrow Transmission/reception or reception is suspended.

After communication has been started, bit 0 (CSOT1n) of CSIM1n is set to 1. When communication of 8-bit data has been completed, a communication completion interrupt request flag (CSIIF1n) is set, and CSOT1n is cleared to 0. Then the next communication is enabled.

- Cautions 1. Do not access the control register and data register when CSOT1n = 1 (during serial communication).
 - 2. When using serial interface CSI11, wait for the duration of at least one clock before the clock operation is started to change the level of the SSI11 pin in the slave mode; otherwise, malfunctioning may occur.
- **Remark** n = 0: 78K0/KE2 products whose flash memory is less than 32 KB, and 78K0/KB2, 78K0/KC2, 78K0/KD2 products
 - n = 0, 1: 78K0/KE2 products whose flash memory is at least 48 KB, and 78K0/KF2 products

Addre	ess: Fl	FA6H	I A	fter reset: 00)H R/W						
Sy	mbol	<	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>	
110	CC0	110	CE0	LREL0	WREL0	SPIE0	WTIM0	ACKE0	STT0	SPT0	
Г							120				
	IICE)	I ² C operation enable								
	0		Stop operation. Reset IIC status register 0 (IICS0) ^{Note 1} . Stop internal operation.								

Figure 18-5. Format of IIC Control Register 0 (IICC0) (1/4)

0	Stop operation. Reset IIC status register 0 (IICS0) ^{Note 1} . Stop internal operation.					
1	Enable operation.					
Be sure to se	Be sure to set this bit (1) while the SCL0 and SDA0 lines are at high level.					
Condition for	r clearing (IICE0 = 0)	Condition for setting (IICE0 = 1)				
Cleared by instruction		Set by instruction				
Reset						

LRELO ^{Note s 2, 3}	Exit from communications							
0	Normal operation							
1	This exits from the current communications and sets standby mode. This setting is automatically cleared to 0 after being executed. Its uses include cases in which a locally irrelevant extension code has been received. The SCL0 and SDA0 lines are set to high impedance. The following flags of IIC control register 0 (IICC0) and IIC status register 0 (IICS0) are cleared to 0. • STT0 • SPT0 • MSTS0 • EXC0 • COI0 • TRC0 • ACKD0 • STD0							
The standby mode following exit from communications remains in effect until the following communications entry conditions are met. • After a stop condition is detected, restart is in master mode. • An address match or extension code reception occurs after the start condition.								

Condition for clearing (LREL0 = 0)	Condition for setting (LREL0 = 1)		
Automatically cleared after execution	Set by instruction		
• Reset			

WREL0 ^{Note s 2, 3}	Wait cancellation						
0	Do not cancel wait	Do not cancel wait					
1	Cancel wait. This setting is automatically cleared after wait is canceled.						
	When WREL0 is set (wait canceled) during the wait period at the ninth clock pulse in the transmission status (TRC0 = 1), the SDA0 line goes into the high impedance state (TRC0 = 0).						
Condition for	Condition for clearing (WREL0 = 0) Condition for setting (WREL0 = 1)						
Automatically cleared after executionReset		Set by instruction					

Notes 1. The IICS0 register, the STCF0 and IICBSY bits of the IICF0 register, and the CLD0 and DAD0 bits of the IICCL0 register are reset.

2. The signals of these bits are invalid while the IICE0 bit is 0.

3. When the LREL0 and WREL0 bits are read, 0 is always read.

<R> Caution If the operation of I²C is enabled (IICE0 = 1) when the SCL0 line is high level, the SDA0 line is low level, and the digital filter is turned on (DFC0 of the IICCL0 register = 1), a start condition will be inadvertently detected immediately. In this case, set (1) the LREL0 bit by using a 1-bit memory manipulation instruction immediately after enabling operation of I²C (IICE0 = 1).

<R>

STT0 ^{Note}	Start condition trigger						
0	Do not generate a start condition.						
1	 When bus is released (in standby state, when IICBSY = 0): If this bit is set (1), a start condition is generated (startup as the master). When a third party is communicating: When communication reservation function is enabled (IICRSV = 0) Functions as the start condition reservation flag. When set to 1, automatically generates a start condition after the bus is released. 						
	 When communication reservation function is d Even if this bit is set (1), the STT0 is cleared a generated. 	isabled (IICRSV = 1) nd the STT0 clear flag (STCF) is set (1). No start condition is					
	In the wait state (when master device): Generates a restart condition after releasing the w	wait.					
 For mast For mast Cannot b 	 Cautions concerning set timing For master reception: Cannot be set to 1 during transfer. Can be set to 1 only in the waiting period when ACKE0 has been cleared to 0 and slave has been notified of final reception. For master transmission: A start condition cannot be generated normally during the acknowledge period. Set to 1 during the wait period that follows output of the ninth clock. Cannot be set to 1 at the same time as stop condition trigger (SPT0). Setting the STT0 bit to 1 and then setting it again before it is cleared to 0 is prohibited. 						
Condition f	for clearing (STT0 = 0)	Condition for setting (STT0 = 1)					
 Cleared by setting SST0 bit to 1 while communication reservation is prohibited. Cleared by loss in arbitration Cleared after start condition is generated by master device Cleared by LREL0 = 1 (exit from communications) When IICE0 = 0 (operation stop) Reset 		Set by instruction					

Figure 18-5. Format of IIC Control Register 0 (IICC0) (3/4)

Note The signal of this bit is invalid while IICE0 is 0.

Remarks 1. Bit 1 (STT0) becomes 0 when it is read after data setting.

- 2. IICRSV: Bit 0 of IIC flag register (IICF0)
 - STCF: Bit 7 of IIC flag register (IICF0)

<R>

CHAPTER 19 MULTIPLIER/DIVIDER

	78K0/KB2	78K0/KC2	78K0/KD2	78K0/KE2	78K0/KF2			
Multiplier/divider	-	Products whose flash memory is less than 32 KB: –						
		Products whose flash	n memory is at least 48	кв: √				

Remark $\sqrt{:}$ Mounted, -: Not mounted

Caution Do not use serial interface IIC0 and the multiplier/divider simultaneously, because various flags corresponding to interrupt request sources are shared among serial interface IIC0 and the multiplier/divider.

19.1 Functions of Multiplier/Divider

The multiplier/divider has the following functions.

- 16 bits × 16 bits = 32 bits (multiplication)
- 32 bits ÷ 16 bits = 32 bits, 16-bit remainder (division)

19.2 Configuration of Multiplier/Divider

The multiplier/divider includes the following hardware.

Table 19-1.	Configuration of Multiplier/Divider

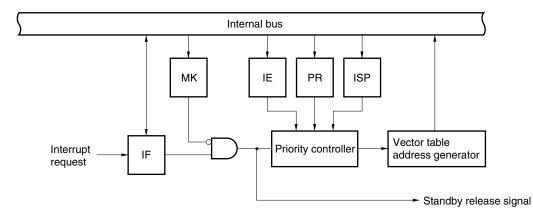

Item	Configuration
Registers	Remainder data register 0 (SDR0) Multiplication/division data registers A0 (MDA0H, MDA0L) Multiplication/division data registers B0 (MDB0)
Control register	Multiplier/divider control register 0 (DMUC0)

Figure 19-1 shows the block diagram of the multiplier/divider.

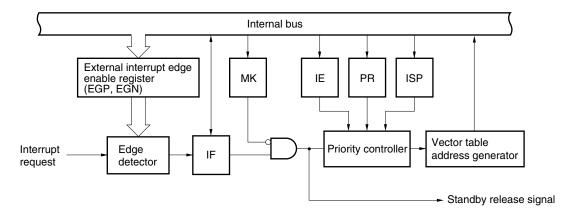


Figure 20-1. Basic Configuration of Interrupt Function (1/2)

(A) Internal maskable interrupt

(B) External maskable interrupt (INTPn)

 Remark
 n = 0 to 5:
 78K0/KB2, 38-pin and 44-pin products of 78K0/KC2

 n = 0 to 6:
 78K0/KD2, 48-pin products of 78K0/KC2

 n = 0 to 7:
 78K0/KE2, 78K0/KF2

- IF: Interrupt request flag
- IE: Interrupt enable flag
- ISP: In-service priority flag
- MK: Interrupt mask flag
- PR: Priority specification flag

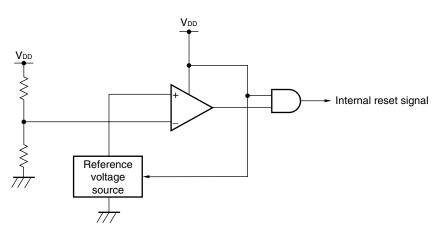

	Hardware	Status After Reset Acknowledgment ^{Note}
Serial interface UART6	Receive buffer register 6 (RXB6)	FFH
	Transmit buffer register 6 (TXB6)	FFH
	Asynchronous serial interface operation mode register 6 (ASIM6)	01H
	Asynchronous serial interface reception error status register 6 (ASIS6)	00H
	Asynchronous serial interface transmission status register 6 (ASIF6)	00H
	Clock selection register 6 (CKSR6)	00H
	Baud rate generator control register 6 (BRGC6)	FFH
	Asynchronous serial interface control register 6 (ASICL6)	16H
	Input switch control register (ISC)	00H
Serial interfaces CSI10,	Transmit buffer registers 10, 11 (SOTB10, SOTB11)	00H
CSI11	Serial I/O shift registers 10, 11 (SIO10, SIO11)	00H
	Serial operation mode registers 10, 11 (CSIM10, CSIM11)	00H
	Serial clock selection registers 10, 11 (CSIC10, CSIC11)	00H
Serial interface CSIA0	Serial operation mode specification register 0 (CSIMA0)	00H
	Serial status register 0 (CSIS0)	00H
	Serial trigger register 0 (CSIT0)	00H
	Divisor value selection register 0 (BRGCA0)	03H
	Automatic data transfer address point specification register 0 (ADTP0)	00H
	Automatic data transfer interval specification register 0 (ADTI0)	00H
	Serial I/O shift register 0 (SIOA0)	00H
	Automatic data transfer address count register 0 (ADTC0)	00H
Serial interface IIC0	Shift register 0 (IIC0)	00H
	Control register 0 (IICC0)	00H
	Slave address register 0 (SVA0)	00H
	Clock selection register 0 (IICCL0)	00H
	Function expansion register 0 (IICX0)	00H
	Status register 0 (IICS0)	00H
	Flag register 0 (IICF0)	00H
Multiplier/divider	Remainder data register 0 (SDR0)	0000H
	Multiplication/division data register A0 (MDA0H, MDA0L)	0000H
	Multiplication/division data register B0 (MDB0)	0000H
	Multiplier/divider control register 0 (DMUC0)	00H
Key interrupt	Key return mode register (KRM)	00H

Table 23-2.	Hardware S	Statuses Af	ter Reset	Acknowledgment (3/4)
-------------	------------	-------------	-----------	----------------------

- **Note** During reset signal generation or oscillation stabilization time wait, only the PC contents among the hardware statuses become undefined. All other hardware statuses remain unchanged after reset.
- Remark The special function register (SFR) mounted depend on the product. See 3.2.3 Special function registers (SFRs).

24.2 Configuration of Power-on-Clear Circuit

The block diagram of the power-on-clear circuit is shown in Figure 24-1.

Figure 24-1. Block Diagram of Power-on-Clear Circuit

24.3 Operation of Power-on-Clear Circuit

(1) In 1.59 V POC mode (option byte: POCMODE = 0)

- An internal reset signal is generated on power application. When the supply voltage (V_{DD}) exceeds the detection voltage (V_{POC} = 1.59 V ±0.15 V), the reset status is released.
- The supply voltage (V_{DD}) and detection voltage (V_{POC} = 1.59 V ±0.15 V) are compared. When V_{DD} < V_{POC}, the internal reset signal is generated. It is released when V_{DD} ≥ V_{POC}.

(2) In 2.7 V/1.59 V POC mode (option byte: POCMODE = 1)

- An internal reset signal is generated on power application. When the supply voltage (V_{DD}) exceeds the detection voltage (V_{DDPOC} = 2.7 V ±0.2 V), the reset status is released.
- The supply voltage (V_{DD}) and detection voltage (V_{POC} = 1.59 V ±0.15 V) are compared. When V_{DD} < V_{POC}, the internal reset signal is generated. It is released when V_{DD} ≥ V_{DDPOC}.

The timing of generation of the internal reset signal by the power-on-clear circuit and low-voltage detector is shown below.

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.

(2) Serial interface

$(T_A = -40 \text{ to } +110^{\circ}\text{C}, 2.7 \text{ V} \le \text{V}_{DD} = \text{EV}_{DD} \le 5.5 \text{ V}, \text{AV}_{REF} \le \text{V}_{DD}, \text{V}_{SS} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V})$

(a) UART6 (dedicated baud rate generator output)

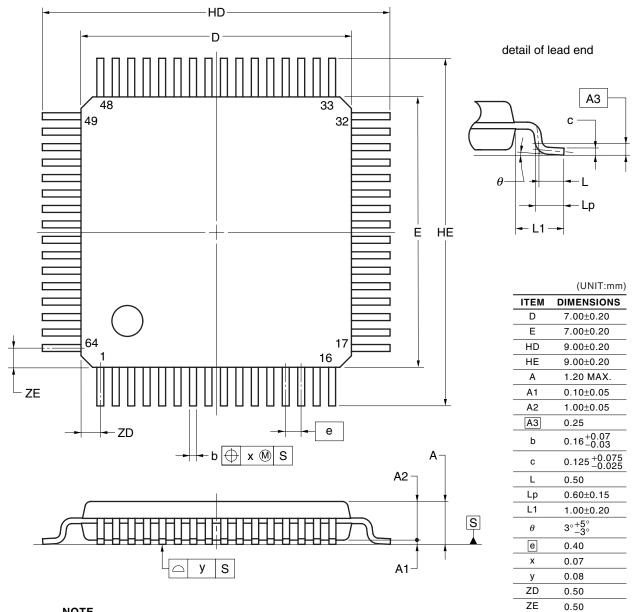
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate					625	kbps

(b) UART0 (dedicated baud rate generator output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate					625	kbps

(c) IIC0

Parameter	Symbol	Conditions	Standard Mode		High-Spe	ed Mode	Unit
			MIN.	MAX.	MIN.	MAX.	
SCL0 clock frequency	fsc∟		0	100	0	400	kHz
Setup time of restart condition	tsu: STA		4.7	-	0.6	_	μs
Hold time ^{Note 1}	thd: STA		4.0	-	0.6	_	μS
Hold time when SCL0 = "L"	tLOW	Internal clock operation	4.7	-	1.3	_	μs
		EXSCL0 clock (6.4 MHz) operation	4.7	-	1.25	-	μS
Hold time when SCL0 = "H"	tніgн		4.0	-	0.6	_	μs
Data setup time (reception)	tsu: dat		250	-	100	_	ns
Data hold time (transmission) ^{Note 2}	thd: dat	$\label{eq:weight} \begin{split} f_W &= f_{XH}/2^N \text{or} \; f_W = f_{\text{EXSCL0}} \\ \text{selected}^{\text{Note 3}} \end{split}$	0	3.45	0	0.9 ^{Note 4} 1.00 ^{Note 5}	μs
		$f_W = f_{RH}/2^N selected^{Note 3}$	0	3.45	0	1.05	μS
Setup time of stop condition	tsu: sto		4.0	-	0.6	—	μs
Bus free time	t BUF		4.7	_	1.3	-	μS


Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

- 2. The maximum value (MAX.) of the:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.
- 3. fw indicates the IIC0 transfer clock selected by the IICCL and IICX0 registers.
- 4. When fw \geq 4.4 MHz is selected
- 5. When fw < 4.4 MHz is selected

• μPD78F0531AGA-HAB-AX, 78F0532AGA-HAB-AX, 78F0533AGA-HAB-AX, 78F0534AGA-HAB-AX, 78F0535AGA-HAB-AX, 78F0536AGA-HAB-AX, 78F0537AGA-HAB-AX, 78F0537DAGA-HAB-AX

64-PIN PLASTIC TQFP (FINE PITCH) (7x7)

NOTE

Each lead centerline is located within 0.07mm of its true position at maximum material condition.

P64GA-40-HAB

					(28	/30)
Chapter	Classification	Function	Details of Function	Cautions	Page	
Chapter 27	Hard	Flash memory	E.P.V. command usage	When executing boot swapping, do not use the E.P.V. command with the dedicated flash memory programmer.	pp. 737, 738, 753	
	Soft		self- programming	The self-programming function cannot be used when the CPU operates with the subsystem clock.	p. 739	
				Oscillation of the internal high-speed oscillator is started during self programming, regardless of the setting of the RSTOP flag (bit 0 of the internal oscillation mode register (RCM)). Oscillation of the internal high-speed oscillator cannot be stopped even if the STOP instruction is executed.		
				Input a high level to the FLMD0 pin during self-programming.	p. 739	
				Be sure to execute the DI instruction before starting self-programming. The self-programming function checks the interrupt request flags (IF0L, IF0H, IF1L, and IF1H). If an interrupt request is generated, self-programming is stopped.	p. 739	
				Self-programming is also stopped by an interrupt request that is not masked even in the DI status. To prevent this, mask the interrupt by using the interrupt mask flag registers (MK0L, MK0H, MK1L, and MK1H).	p. 739	
				Allocate the entry program for self-programming in the common area of 0000H to 7FFFH.	p. 740	
Chapter 28	Hard	On-chip debug function (µPD78F 05xxD and 78F05xx DA only)	μΡD78F05xxD and 78F05xxDA	The μ PD78F05xxD and 78F05xxDA have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.	p. 756	
				Input the clock from the OCD0A/X1 pin during on-chip debugging.	p. 756	
				Control the OCD0A/X1 and OCD0B/X2 pins by externally pulling down the OCD1A/P31 pin or by using an external circuit using the P130 pin (that outputs a low level when the device is reset).	p. 756	
			When using the port that controls the FLMD0 pin	When using the port that controls the FLMD0 pin, make sure that it satisfies the values of the high-level output current and FLMD0 supply voltage (minimum value: 0.8 VDD) stated in CHAPTER 30 ELECTRICAL SPECIFICATIONS (STANDARD PRODUCTS) to CHAPTER 33 ELECTRICAL SPECIFICATIONS ((A2) GRADE PRODUCTS: TA = -40 to $+125^{\circ}$ C).	p. 757	
Chapters 30, 31, 32, 33	Hard		μΡD78F05xxD and 78F05xxDA	The μ PD78F05xxD and 78F05xxDA have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.	p. 772	
			Absolute	The pins mounted depend on the product.	pp. 772, 774 to 77 780 to 78 785 to 80 804 to 8 ¹ 813 to 83 832 to 83 841 to 85 861 to 86 870 to 88 pp. 774,	83, 02, 11, 30, 39, 59, 68,
			maximum ratings	momentarily for any parameter. That is, the absolute maximum rating is exceeded even at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.		,

		(4/4)
Edition	Description	Chapter
3rd Edition	Revision of this chapter	CHAPTER 30 ELECTRICAL SPECIFICATIONS (STANDARD PRODUCTS)
	Revision of this chapter	CHAPTER 31 ELECTRICAL SPECIFICATIONS ((A) GRADE PRODUCTS)
	Addition of this chapter	CHAPTER 32 ELECTRICAL SPECIFICATIONS ((A2) GRADE PRODUCTS: TA = -40 to +110°C)
	Addition of this chapter	CHAPTER 33 ELECTRICAL SPECIFICATIONS ((A2) GRADE PRODUCTS: TA = -40 to +125°C)
	Revision of this chapter	CHAPTER 35 RECOMMENDED SOLDERING CONDITIONS
	Revision of this chapter	APPENDIX A DEVELOPMENT TOOLS
	Addition of this chapter	APPENDIX E REVISION HISTORY

