E·X Renesas Electronics America Inc - <u>UPD78F0532AGC-GAL-AX Datasheet</u>

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	78K/0
Core Size	8-Bit
Speed	20MHz
Connectivity	3-Wire SIO, I ² C, LINbus, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	55
Program Memory Size	24KB (24K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/upd78f0532agc-gal-ax

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

(2) Expanded-specification products (µPD78F05xxA and 78F05xxDA) (1/2)

<1> When internal high-speed oscillation clock is used

Library Name	Interrupt Response Time (µs (Max.))				
	Normal Model	of C Compiler	Static Model of C Cor	mpiler/Assembler	
	Entry RAM location is outside short direct addressing	Entry RAM location is in short direct addressing range	Entry RAM location is outside short direct addressing	Entry RAM location is in short direct addressing range	
	range		range		
Block blank check library	1100.9	431.9	1095.3	426.3	
Block erase library	1452.9	783.9	1447.3	778.3	
Word write library	1247.2	579.2	1239.2	571.2	
Block verify library	1125.9	455.9	1120.3	450.3	
Set information library	906.9	312.0	905.8	311.0	
EEPROM write library	1215.2	547.2	1213.9	545.9	

Remarks 1. The above interrupt response times are those during stabilized operation of the internal high-speed oscillator (RSTS = 1).

2. RSTS: Bit 7 of the internal oscillation mode register (RCM)

<2> When high-speed system clock is used (normal model of C compiler)

Library Name	Interrupt Response Time (μ s (Max.))				
	RSTOP = 0), RSTS = 1	RSTOP = 1		
	Entry RAM location is outside short	Entry RAM location is in short direct	Entry RAM location is outside short	Entry RAM location is in short direct	
	direct addressing	addressing range	direct addressing	addressing range	
	range		range		
Block blank check library	179/fсри + 567	179/fcpu + 246	179/fcpu + 1708	179/fcpu + 569	
Block erase library	179/fcpu + 780	179/fcpu + 459	179/fcpu + 1921	179/fcpu + 782	
Word write library	333/fcpu + 763	333/fcpu + 443	333/fcpu + 1871	333/fcpu + 767	
Block verify library	179/fcpu + 580	179/fcpu + 259	179/fcpu + 1721	179/fcpu + 582	
Set information library	80/fcpu + 456	80/fcpu + 200	80/fcpu + 1598	80/fcpu + 459	
EEPROM write library ^{Note}	29/fcpu + 767	29/fcpu + 447	29/fcpu + 767	<u> 29/fcpu + 447</u>	
	333/fcpu + 696	333/fcpu + 376	333/fcpu + 1838	333/fcpu + 700	

Note The longer value of the EEPROM write library interrupt response time becomes the Max. value, depending on the value of fcPu.

Remarks 1. fcPU: CPU operation clock frequency

- 2. RSTOP: Bit 0 of the internal oscillation mode register (RCM)
- 3. RSTS: Bit 7 of the internal oscillation mode register (RCM)

Symbol	7	6	5	4	3	2	1	0	Address	After reset	R/W
P0	0	P06	P05	P04	P03	P02	P01	P00	FF00H	00H (output latch)	R/W
									-		
P1	P17	P16	P15	P14	P13	P12	P11	P10	FF01H	00H (output latch)	R/W
									-		
P2	P27	P26	P25	P24	P23	P22	P21	P20	FF02H	00H (output latch)	R/W
									_		
P3	0	0	0	0	P33	P32	P31	P30	FF03H	00H (output latch)	R/W
P4	P47	P46	P45	P44	P43	P42	P41	P40	FF04H	00H (output latch)	R/W
P5	P57	P56	P55	P54	P53	P52	P51	P50	FF05H	00H (output latch)	R/W
P6	P67	P66	P65	P64	P63	P62	P61	P60	FF06H	00H (output latch)	R/W
P7	P77	P76	P75	P74	P73	P72	P71	P70	FF07H	00H (output latch)	R/W
P12	0	0	0	P124 ^{Note}	P123 ^{Note}	P122 ^{Note}	P121 ^{Note}	P120	FF0CH	00H (output latch)	R/W
						-			-		
P13	0	0	0	0	0	0	0	P130	FF0DH	00H (output latch)	R/W
P14	0	0	P145	P144	P143	P142	P141	P140	FF0EH	00H (output latch)	R/W

Figure 5-38. Format of Port Register (78K0/KF2)

Pmn	m = 0 to 7, 12 to 14; n = 0 to 7					
	Output data control (in output mode)	Input data read (in input mode)				
0	Output 0	Input low level				
1	Output 1	Input high level				

Note "0" is always read from the output latch of P121 to P124 if the pin is in the external clock input mode.

Remark	fx:	X1 clock oscillation frequency
	fвн:	Internal high-speed oscillation clock frequency
	fexclk:	External main system clock frequency
	fхн:	High-speed system clock frequency
	fxp:	Main system clock frequency
	fprs:	Peripheral hardware clock frequency
	fcpu:	CPU clock frequency
	fхт:	XT1 clock oscillation frequency
	fexclks:	External subsystem clock frequency
	fsuв:	Subsystem clock frequency
	frL:	Internal low-speed oscillation clock frequency

6.3 Registers Controlling Clock Generator

The following seven registers are used to control the clock generator.

- Clock operation mode select register (OSCCTL)
- Processor clock control register (PCC)
- Internal oscillation mode register (RCM)
- Main OSC control register (MOC)
- Main clock mode register (MCM)
- Oscillation stabilization time counter status register (OSTC)
- Oscillation stabilization time select register (OSTS)

(1) Clock operation mode select register (OSCCTL)

This register selects the operation modes of the high-speed system and subsystem clocks, and the gain of the onchip oscillator.

OSCCTL can be set by a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation clears this register to 00H.

(2) Processor clock control register (PCC)

This register is used to select the CPU clock, the division ratio, and operation mode for subsystem clock. PCC is set by a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation sets PCC to 01H.

Address: FF	FBH After	reset: 01H	R/W					
Symbol	7	6	5	4	3	2	1	0
PCC	0	0	0	0	0	PCC2	PCC1	PCC0
				1				
	PCC2	PCC1	PCC0		CPU o	clock (fcpu) se	lection	
	0	0	0	fхр				
	0	0	1	fxp/2 (default	t)			
	0	1	0	fxp/2 ²				
	0	1	1	fxp/2 ³				
	1	0	0	fxp/2 ⁴				
	0	ther than abov	/e	Setting proh	ibited			

Figure 6-5. Format of Processor Clock Control Register (PCC) (78K0/KB2)

Cautions 1. Be sure to clear bits 3 to 7 to 0.

2. The peripheral hardware clock (fprs) is not divided when the division ratio of the PCC is set.

Remark fxp: Main system clock oscillation frequency

Figure 7-11. Format of 16-Bit Timer Output Control Register 00 (TOC00)

Address: F	FBDH Afte	r reset: 00H	R/W					
Symbol	7	<6>	<5>	4	<3>	<2>	1	<0>
TOC00	0	OSPT00	OSPE00	TOC004	LVS00	LVR00	TOC001	TOE00
		_						
	OSPT00		(One-shot puls	e output trigge	er via software	e	
	0				-			
	1	One-shot pu	Ilse output					
	shot pulse	of this bit is alw output mode. 1, TM00 is cle			not set this bi	t to 1 in a mo	de other than	the one-
	OSPE00			One-shot puls	se output ope	ration control		
	0	Successive	pulse output					

OSPE00	One-shot pulse output operation control			
0	Successive pulse output			
1	1 One-shot pulse output			
TI000 pin va	ulse output operates correctly in the free-running timer mode or clear & start mode entered by alid edge input. ot pulse cannot be output in the clear & start mode entered upon a match between TM00 and			

TOC004	TO00 output control on match between CR010 and TM00		
0	Disables inversion operation		
1 Enables inversion operation			
The interrup	The interrupt signal (INTTM010) is generated even when TOC004 = 0.		

LVS00	LVR00	Setting of TO00 output status		
0	0	No change		
0	1	Initial value of TO00 output is low level (TO00 output is cleared to 0).		
1	0	Initial value of TO00 output is high level (TO00 output is set to 1).		
1	1	Setting prohibited		
	 LVS00 and LVR00 can be used to set the initial value of the TO00 output level. If the initial value does not have to be set, leave LVS00 and LVR00 as 00. 			

• Be sure to set LVS00 and LVR00 when TOE00 = 1.

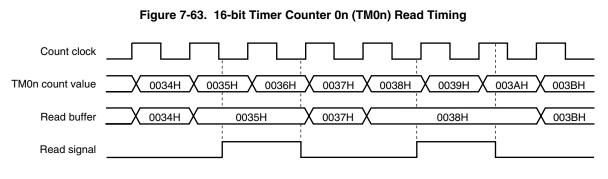
LVS00, LVR00, and TOE00 being simultaneously set to 1 is prohibited.

• LVS00 and LVR00 are trigger bits. By setting these bits to 1, the initial value of the TO00 output level can be set. Even if these bits are cleared to 0, TO00 output is not affected.

• The values of LVS00 and LVR00 are always 0 when they are read.

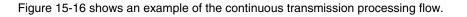
• For how to set LVS00 and LVR00, see 7.5.2 Setting LVS0n and LVR0n.

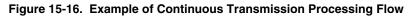
The actual TO00/TI010/P01 pin output is determined depending on PM01 and P01, besides TO00 output.

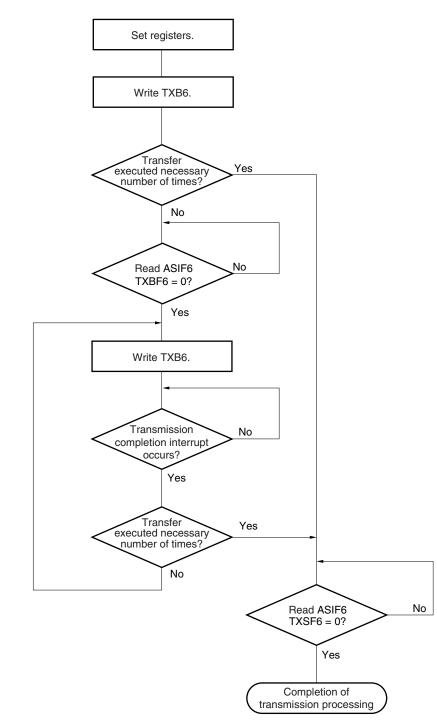

TOC001	TO00 output control on match between CR000 and TM00		
0 Disables inversion operation			
1	1 Enables inversion operation		
The interrup	The interrupt signal (INTTM000) is generated even when TOC001 = 0.		

TOE00	TO00 output control
0	Disables output (TO00 output fixed to low level)
1	Enables output

(12) Reading of 16-bit timer counter 0n (TM0n)


TMOn can be read without stopping the actual counter, because the count values captured to the buffer are fixed when it is read. The buffer, however, may not be updated when it is read immediately before the counter counts up, because the buffer is updated at the timing the counter counts up.




Remark n = 0: 78K0/KE2 products whose flash memory is less than 32 KB, and 78K0/KB2, 78K0/KC2, 78K0/KD2 products

n = 0, 1: 78K0/KE2 products whose flash memory is at least 48 KB, and 78K0/KF2 products

 Remark
 TXB6:
 Transmit buffer register 6

 ASIF6:
 Asynchronous serial interface transmission status register 6

 TXBF6:
 Bit 1 of ASIF6 (transmit buffer data flag)

 TXSF6:
 Bit 0 of ASIF6 (transmit shift register data flag)

(c) Switching MSB/LSB as start bit

Figure 17-12 shows the configuration of serial I/O shift register 0 (SIOA0) and the internal bus. As shown in the figure, MSB/LSB can be read/written in reverse form.

Switching MSB/LSB as the start bit can be specified using bit 1 (DIR0) of serial operation mode specification register 0 (CSIMA0).

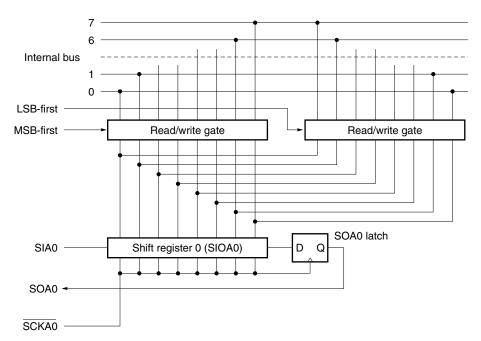


Figure 17-12. Transfer Bit Order Switching Circuit

Start bit switching is realized by switching the bit order for data written to SIOA0. The SIOA0 shift order remains unchanged.

Thus, switching between MSB-first and LSB-first must be performed before writing data to the shift register.

(d) Communication start

Serial communication is started by setting communication data to serial I/O shift register 0 (SIOA0) when the following two conditions are satisfied.

- Serial interface CSIA0 operation control bit (CSIAE0) = 1
- Serial communication is not in progress

Caution If CSIAE0 is set to 1 after data is written to SIOA0, communication does not start.

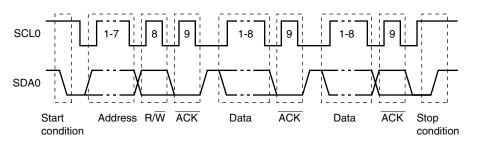
Upon termination of 8-bit communication, serial communication automatically stops and the interrupt request flag (ACSIIF) is set.

<R>

Figure 18-5. Format of IIC Control Register 0 (IICC0) (4/4)

SPT0		Stop condition trigger						
0	Stop condition	Stop condition is not generated.						
1	1 Stop condition is generated (termination of master device's transfer).							
Cautions c	oncerning set tin	ning						
• For mast	er reception:	Cannot be set to 1 during transfer.						
		Can be set to 1 only in the waiting period when ACKE0 notified of final reception.	has been cleared to 0 and slave has been					
 For mast 	er transmission:	A stop condition cannot be generated normally during to during the wait period that follows output of the ninth cle	0 1					
 Cannot b 	e set to 1 at the	same time as start condition trigger (STT0).						
SPT0 bit	can be set to 1 c	only when in master mode.						
a stop co during the the outpu	ndition will be ge e wait period folle It of the ninth clo	leared to 0, if SPT0 bit is set to 1 during the wait period to enerated during the high-level period of the ninth clock. Nowing the output of eight clocks, and SPT0 bit should be ck. then setting it again before it is cleared to 0 is prohibited	WTIM0 should be changed from 0 to 1 set to 1 during the wait period that follows					
Condition f	Condition for clearing (SPT0 = 0) Condition for setting (SPT0 = 1)							
Cleared I	by loss in arbitrat	ion	Set by instruction					
 Automati 	cally cleared afte	r stop condition is detected	-					
Cleared b	by LREL0 = 1 (ex	kit from communications)						
When IIC	E0 = 0 (operatio	n stop)						
 Reset 								

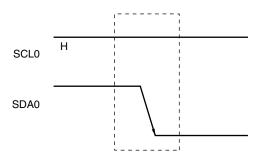
Caution When bit 3 (TRC0) of the IIC status register 0 (IICS0) is set to 1 (transmission status), bit 5 (WREL0) of the IICC0 register is set to 1 during the ninth clock and wait is canceled, after which the TRC0 bit is cleared (reception status) and the SDA0 line is set to high impedance. Release the wait performed while the TRC bit is 1 (transmission status) by writing to the IIC shift register.


Remark Bit 0 (SPT0) becomes 0 when it is read after data setting.

18.5 I²C Bus Definitions and Control Methods

The following section describes the l^2C bus's serial data communication format and the signals used by the l^2C bus. Figure 18-12 shows the transfer timing for the "start condition", "address", "data", and "stop condition" output via the l^2C bus's serial data bus.

The master device generates the start condition, slave address, and stop condition.

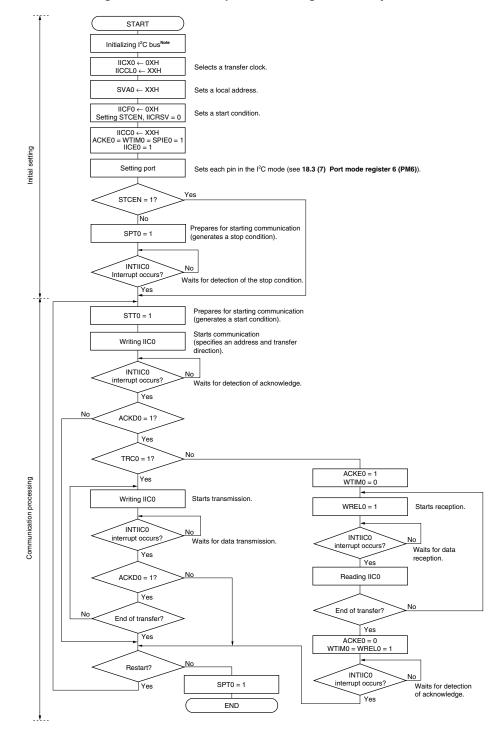

The acknowledge (ACK) can be generated by either the master or slave device (normally, it is output by the device that receives 8-bit data).

The serial clock (SCL0) is continuously output by the master device. However, in the slave device, the SCL0's low level period can be extended and a wait can be inserted.

18.5.1 Start conditions

A start condition is met when the SCL0 pin is at high level and the SDA0 pin changes from high level to low level. The start conditions for the SCL0 pin and SDA0 pin are signals that the master device generates to the slave device when starting a serial transfer. When the device is used as a slave, start conditions can be detected.

Figure 18-13. Start Conditions

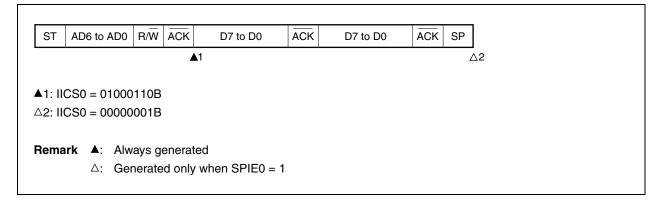


A start condition is output when bit 1 (STT0) of IIC control register 0 (IICC0) is set (to 1) after a stop condition has been detected (SPD0: Bit 0 = 1 in IIC status register 0 (IICS0)). When a start condition is detected, bit 1 (STD0) of IICS0 is set (to 1).

(1) Master operation in single-master system

Figure 18-23. Master Operation in Single-Master System

- **Note** Release (SCL0 and SDA0 pins = high level) the l^2 C bus in conformance with the specifications of the product that is communicating. If EEPROM is outputting a low level to the SDA0 pin, for example, set the SCL0 pin in the output port mode, and output a clock pulse from the output port until the SDA0 pin is constantly at high level.
- **Remark** Conform to the specifications of the product that is communicating, with respect to the transmission and reception formats.


(ii) When WTIM0 = 1

_				I I				T	
S	T AD	6 to AD0	R/W	ACK	D7 to D0	ACK	D7 to D0	ACK	SP
				▲1 ▲	.2		3		4 Z
▲1	IICS0	= 0110;	<010B						
▲2	IICS0	= 0010;	<110B						
▲ 3	IICS0	= 0010;	<100B						
▲ 4	IICSO	= 0010;	<×00B						
∆5	IICSO	= 00000	0001B						
Re	nark	▲: Alv	vays g	enerat	ed				
		∆: Ge	nerate	d only	when SPIE0 =	1			
		×: Do	n't car	е					

(6) Operation when arbitration loss occurs (no communication after arbitration loss)

When the device is used as a master in a multi-master system, read the MSTS0 bit each time interrupt request signal INTIIC0 has occurred to check the arbitration result.

(a) When arbitration loss occurs during transmission of slave address data (when WTIM0 = 1)

18.6 Timing Charts

When using the l²C bus mode, the master device outputs an address via the serial bus to select one of several slave devices as its communication partner.

After outputting the slave address, the master device transmits the TRC0 bit (bit 3 of IIC status register 0 (IICS0)), which specifies the data transfer direction, and then starts serial communication with the slave device.

Figures 18-27 and 18-28 show timing charts of the data communication.

IIC shift register 0 (IIC0)'s shift operation is synchronized with the falling edge of the serial clock (SCL0). The transmit data is transferred to the SO0 latch and is output (MSB first) via the SDA0 pin.

Data input via the SDA0 pin is captured into IIC0 at the rising edge of SCL0.

(2) Interrupt mask flag registers (MK0L, MK0H, MK1L, MK1H)

The interrupt mask flags are used to enable/disable the corresponding maskable interrupt servicing.

MK0L, MK0H, MK1L, and MK1H are set by a 1-bit or 8-bit memory manipulation instruction. When MK0L and MK0H, and MK1L and MK1H are combined to form 16-bit registers MK0 and MK1, they are set by a 16-bit memory manipulation instruction.

Reset signal generation sets these registers to FFH.

Figure 20-7. Format of Interrupt Mask Flag Registers (MK0L, MK0H, MK1L, MK1H) (78K0/KB2)

Address: FF	E4H After r	eset: FFH	R/W					
Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>
MK0L	SREMK6	PMK5	PMK4	PMK3	PMK2	PMK1	PMK0	LVIMK
Address: FF	E5H After r	eset: FFH	R/W					
Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>
МКОН	TMMK010	TMMK000	TMMK50	TMMKH0	TMMKH1	DUALMK0	STMK6	SRMK6
						CSIMK10		
						STMK0		
Address: FF	E6H After r	eset: FFH	R/W					
Symbol	7	6	5	4	<3>	2	<1>	<0>
MK1L	1	1	1	1	TMMK51	1	SRMK0	ADMK
Address: FF	E7H After r	eset: FFH	R/W					
Symbol	7	6	5	4	3	2	1	<0>
MK1H	1	1	1	1	1	1	1	IICMK0
	ХХМКХ			Interru	upt servicing o	control		
	0	Interrupt ser	vicing enable	b				
	1	Interrupt ser	vicing disable	d				

Caution Be sure to set bits 2, 4 to 7 of MK1L and bits 1 to 7 of MK1H to 1.

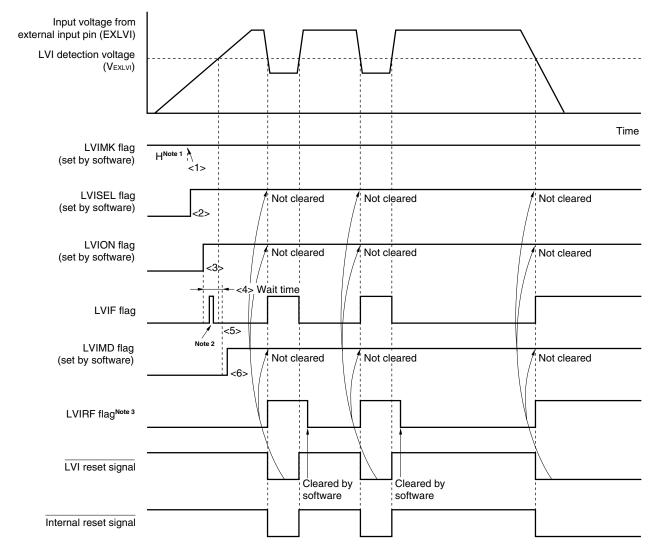


Figure 25-6. Timing of Low-Voltage Detector Internal Reset Signal Generation (Detects Level of Input Voltage from External Input Pin (EXLVI))

- Notes 1. The LVIMK flag is set to "1" by reset signal generation.
 - 2. The LVIF flag may be set (1).
 - 3. LVIRF is bit 0 of the reset control flag register (RESF). For details of RESF, see CHAPTER 23 RESET FUNCTION.
- Remark <1> to <6> in Figure 25-6 above correspond to <1> to <6> in the description of "When starting operation" in 25.4.1 (2) When detecting level of input voltage from external input pin (EXLVI).

CHAPTER 27 FLASH MEMORY

The 78K0/Kx2 microcontrollers incorporates the flash memory to which a program can be written, erased, and overwritten while mounted on the board.

27.1 Internal Memory Size Switching Register

Select the internal memory capacity using the internal memory size switching register (IMS). IMS is set by an 8-bit memory manipulation instruction. Reset signal generation sets IMS to CFH.

RAM0

```
Caution Be sure to set each product to the values shown in Table 27-1 after a reset release.
```

Figure 27-1. Format of Internal Memory Size Switching Register (IMS)

4

0

Address:FFF0HAfter reset:CFHR/WSymbol765

RAM1

RAM2

IMS

RAM2	RAM1	RAM0	Internal high-speed RAM capacity selection
0	0	0	768 bytes
0	1	0	512 bytes
1	1	0	1024 bytes
C	Other than abo	ve	Setting prohibited

3

ROM3

2

ROM2

1

ROM1

0

ROM0

ROM3	ROM2	ROM1	ROM0	Internal ROM capacity selection
0	0	1	0	8 KB
0	1	0	0	16 KB
0	1	1	0	24 KB
1	0	0	0	32 KB
1	1	0	0	48 KB
1	1	1	1	60 KB
	Other th	an above		Setting prohibited

Caution To set the memory size, set IMS and then IXS. Set the memory size so that the internal ROM and internal expansion RAM areas do not overlap.

(2) Non-port functions

Port		78K0/KB2		78K0/KC2		78K0/KD2	78K0/KE2	78K0/KF2		
		30/36 Pins	38 Pins	44 Pins	48 Pins	52 Pins	64 Pins	80 Pins		
	ver supply, und	Vdd, EVdd ^{Note 1} , Vss, EVss ^{Note 1} , AVref, AVss	VDD, AVREF, VSS	s, AVss	Vdd, EVdd, Vss, EVss, AVref, AVss					
Reg	gulator	REGC								
Res	set	RESET								
Clo osc	ck illation	X1, X2, EXCLK	X1, X2, XT1, X	T2, EXCLK, EX	CLKS					
	ting to h memory	FLMD0								
Inte	errupt	INTP0 to INTP	5	•	INTP0 to INTP	6	INTP0 to INTP3	7		
Key	v interrupt	-	KR0, KR1	KR0 to KR3		KR0 to KR7				
	ТМ00	TI000, TI010, T	ГО00							
	TM01			-			TI001 ^{Note 2} , TI01	1 ^{Note 2} , TO01 ^{Note 2}		
Timer	TM50	TI50, TO50								
Ę	TM51	TI51, TO51								
	тмно	TOH0								
	TMH1	TOH1								
	UART0	RxD0, TxD0								
	UART6	RxD6, TxD6	RxD6, TxD6							
ce	IIC0	SCL0, SDA0 SCL0, SDA0, EXSCL0								
iterfa	CSI10	SCK10, SI10, S	SO10							
Serial interface	CSI11			-			SCK11 ^{Note 2} , SI1 SO11 ^{Note 2} , SSI1	$\frac{1}{1}^{Note 2}$, $\frac{1}{1}^{Note 2}$		
0,	CSIA0				_			SCKAO, SIAO, SOAO, BUSYO, STBO		
A/D	converter	ANI0 to ANI3	ANI0 to ANI5	ANI0 to ANI7						
Clo	ck output		-		PCL		<u>.</u>			
Buz	zer output			-			BUZ			
Low-voltage detector (LVI)		EXLVI								

Notes 1. This is not mounted onto 30-pin products.

2. This is not mounted onto the 78K0/KE2 products whose flash memory is less than 32 KB.

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.

AC Characteristics

(1) Basic operation (1/2)

 $(T_A = -40 \text{ to } +125^{\circ}\text{C}, 2.7 \text{ V} \le \text{V}_{DD} = \text{EV}_{DD} \le 5.5 \text{ V}, \text{AV}_{REF} \le \text{V}_{DD}, \text{V}_{SS} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V})$

Parameter	Symbol		Condition	s	MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum instruction execution time)	Тсү	Main system clock (fxp) operation	Conventional- specification Products (µPD78F05xx	$\frac{4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}}{2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}}$	0.1 0.2		32 32	μs μs
			(A2)) Expanded- specification Products (µPD78F05xxA (A2))	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	0.1		32	μs
		Subsystem	n clock (fsuв) opera	tion ^{Note 1}	114	122	125	μS
Peripheral hardware clock	fprs	fprs = fxH	Conventional-	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			20	MHz
frequency		(XSEL = 1)	specification Products (µPD78F05xx (A2))	$2.7~V \leq V_{\text{DD}} < 4.0~V$			10	MHz
			Expanded-	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			20	MHz
			specification Products (μPD78F05xxA (A2))	$2.7~V \leq V_{DD} < 4.0~V$ Note 2			20	MHz
		f _{PRS} = f _{RH} (XSEL = 0)		$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	7.6		8.4	MHz
External main system clock	fexclk	Conventio	nal-specification	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	1.0 ^{Note 3}		20.0	MHz
frequency		Products (µPD78F0	5xx(A2))	$2.7~V \leq V_{\text{DD}} < 4.0~V$	1.0 ^{Note 3}		10.0	MHz
		Expanded Products (µPD78F0	specification 5xxA(A2))	$2.7~V \leq V_{DD} \leq 5.5~V$	1.0 ^{Note 3}		20.0	MHz
External main system clock input	texclкн,	Convention	nal-specification	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	24			ns
high-level width, low-level width	t exclkl	Products (µPD78F05xx(A2))		$2.7~V \leq V_{\text{DD}} < 4.0~V$	48			ns
		Expanded Products (µPD78F0	specification 5xxA(A2))	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	24			ns

Notes 1. The 78K0/KB2 is not provided with a subsystem clock.

- 2. Characteristics of the main system clock frequency. Set the division clock to be set by a peripheral function to $f_{XH/2}$ (10 MHz) or less. The multiplier/divider, however, can operate on f_{XH} (20 MHz).
- 3. 2.0 MHz (MIN.) when using UART6 during on-board programming.

Table 35-1. Soldering Conditions of Conventional-specification Products (µPD78F05xx and 78F05xxD) (3/3)

(3)	30-pin plastic SSOP (7.62 mm (300))
	μ PD78F050xMC(A)-CAB-AX (x = 0 to 3), 78F050xMC(A2)-CAB-AX (x = 0 to 3)
	44-pin plastic LQFP (10x10)
	μ PD78F051xGB(A)-GAF-AX (x = 1 to 3), 78F051xGB(A2)-GAF-AX (x = 1 to 3)
	52-pin plastic LQFP (10x10)
	μ PD78F052xGB(A)-GAG-AX (x = 1 to 7), 78F052xGB(A2)-GAG-AX (x = 1 to 7)
	64-pin plastic LQFP (14x14)
	μ PD78F053xGC(A)-GAL-AX (x = 1 to 7), 78F053xGC(A2)-GAL-AX (x = 1 to 7)
	64-pin plastic LQFP (12x12)
	μ PD78F053xGK(A)-GAJ-AX (x = 1 to 7), 78F053xGK(A2)-GAJ-AX (x = 1 to 7)
	80-pin plastic LQFP (14x14)
	μ PD78F054xGC(A)-GAD-AX (x = 4 to 7), 78F054xGC(A2)-GAD-AX (x = 4 to 7)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 260°C, Time: 60 seconds max. (at 220°C or higher), Count: 3 times or less, Exposure limit: 7 days ^{№te} (after that, prebake at 125°C for 20 to 72 hours)	IR60-207-3
Wave soldering	Solder bath temperature: 260°C max., Time: 10 seconds max., Count: Once, Preheating temperature: 120°C max. (package surface temperature), Exposure limit: 7 days ^{Note} (after that, prebake at 125°C for 20 to 72 hours)	WS60-207-1
Partial heating	Pin temperature: 350°C max., Time: 3 seconds max. (per pin row)	-

Note After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

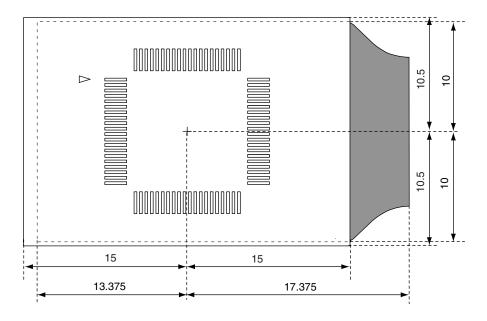
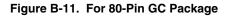
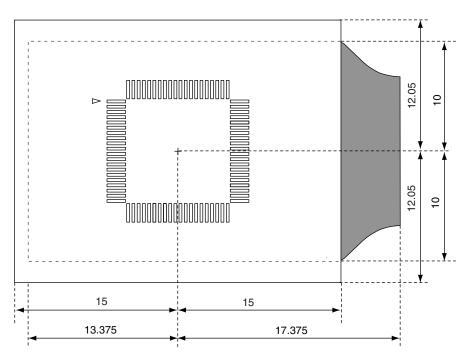




Figure B-10. For 64-Pin GK Package

Exchange adapter area: Components up to 17.45 mm in height can be mounted^{Note}
 Emulation probe tip area: Components up to 24.45 mm in height can be mounted^{Note}

Note Height can be adjusted by using space adapters (each adds 2.4 mm)

Exchange adapter area: Components up to 17.45 mm in height can be mounted^{Note}
 Emulation probe tip area: Components up to 24.45 mm in height can be mounted^{Note}

Note Height can be adjusted by using space adapters (each adds 2.4 mm)

