

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	78K/0
Core Size	8-Bit
Speed	20MHz
Connectivity	3-Wire SIO, I ² C, LINbus, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	55
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/upd78f0533aga-hab-ax

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.8 Outline of Functions

		15											(1,
	78K0/Kx2	78K0/KB2					78K0/KC2						
Item		30/36 Pins					8/44 Pin	S	48 Pins				
Flas	h memory (KB)	8	16	24	32	16	24	32	16	24	32	48	60
High	n-Speed RAM (KB)	0.5	0.75	1	1	0.75	1	1	0.75	1	1	1	1
Ехра	ansion RAM (KB)	_	_	_	_	_	_	-	-	_	_	1	2
Ban	k (flash memory)						-	_					
Pow	er supply voltage	Standa	ard produ	ucts, (A)	grade pr	oducts: \	/DD = 1.8	to 5.5 V	′, (A2) gra	ade prod	ucts: V	oo = 2.7 to	o 5.5 \
Reg	ulator	Provided											
	mum instruction cution time		0.1			o = 2.7 to						Note 1	
	- High-speed system		20 MHz: V_{DD} = 2.7 to 5.5 V/5 MHz: V_{DD} = 1.8 to 5.5 V ^{Note 1}										
ş	Internal high-speed8 MHz (TYP.): VDD = 1oscillation8 MHz (TYP.): VDD = 1) = 1.8 to	5.5 V ^{Note}	e 1				
Clock	Subsystem		-	-			32.7	768 kHz	(TYP.): V	/DD = 1.8	to 5.5 V	Note 1	
	Internal low-speed oscillation		240 kHz (TYP.): V _{DD} = 1.8 to 5.5 V ^{Note 1}										
гоц	Total	23					31 (38 pins)/ 37 (44 pins)				41		
	N-ch O.D. (6 V tolerance)		2	2			4		4				
	16 bits (TM0)		1 ch										
	8 bits (TM5)	2 ch											
IImer	8 bits (TMH)						2	ch					
- [Watch		– 1 ch										
Ē	WDT		1 ch										
1	3-wire CSI												
<u> </u>	Automatic transmit/ receive 3-wire CSI						-	_					
	UART/3-wire CSI ^{Note 2}		1 ch										
erie	UART supporting LIN-bus		1 ch										
	I ² C bus						1	ch					
10-b	it A/D	D 4 ch				h (38 pin h (44 pir		8 ch					
tdr	External		6	6		7			8				
Interrupt	Internal		14	4		16							
Key	interrupt			_		2 ch (38 pins)/ 4 ch 4 ch (44 pins)							
	RESET pin						Prov	vided					
set	POC						1.59 V	±0.15 V					
Heset	LVI			Т	he deteo	ction leve	l of the s	upply vo	Itage is s	electable	е.		
_	WDT					-		vided	<u> </u>				
	k output/buzzer output				_					Cloc	k output	only	
	iplier/divider					-	_					· · ·	vided
	chip debug function	μPD7	8F0503E on		03DA)78F051)513DA		μPD	78F051	5D, 78F0	0515DA o	
	ating ambient temperature	Standa			rade pro	oducts: T		,	, (A2) ara	ade prod	ucts: TA	= -40 to	+125°

Notes 1. This is applicable to a standard expanded-specification product (μPD78F05xxA and 78F05xxDA). See CHAPTER 30 ELECTRICAL SPECIFICATIONS (STANDARD PRODUCTS) to CHAPTER 33 ELECTRICAL SPECIFICATIONS ((A2) GRADE PRODUCTS: TA: -40 to +125°C) for products with other specifications and grades.

2. Select either of the functions of these alternate-function pins.

Table 2-3. Pin I/O Circuit Types (3/3)

	Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pins
	P140/PCL/INTP6	5-AQ	I/O	Input: Independently connect to EVDD or EVSS via a resistor.
	P141/BUZ/BUSY0/INTP7			Output: Leave open.
	P142/SCKA0			
	P143/SIA0			
	P144/SOA0	5-AG		
	P145/STB0			
<r></r>	AVREF	_	_	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
<r></r>	AVss	-	-	Make this pin the same potential as the EV $_{\mbox{\scriptsize SS}}$ and V $_{\mbox{\scriptsize SS}}.$
	FLMD0	38-A	-	Connect to EVss or Vss ^{Note} .
<r></r>	RESET	2	Input	Connect directly to EVDD or via a resistor.
<r></r>	REGC	-	-	Connect to Vss via capacitor (0.47 to 1 μ F).

Note FLMD0 is a pin that is used to write data to the flash memory. To rewrite the data of the flash memory on-board, connect this pin to EVss or Vss via a resistor (10 kΩ: recommended). The same applies when executing on-chip debugging with a product with an on-chip debug function (*μ*PD78F05xxD and 78F05xxDA).

Remark With products not provided with an EVDD or EVss pin, replace EVDD with VDD, or replace EVss with Vss.

Memory Bank Number	CPU Address	Flash Memory Real Address	Address Representation in Simulator and Debugger ^{Note 1}
Memory bank 0	08000H-0BFFFH ^{Note 2}	08000H-0BFFFH	08000H-0BFFFH
Memory bank 1		0C000H-0FFFFH	18000H-1BFFFH
Memory bank 2		10000H-13FFFH	28000H-2BFFFH
Memory bank 3		14000H-17FFFH	38000H-3BFFFH
Memory bank 4		18000H-1BFFFH	48000H-4BFFFH
Memory bank 5		1C000H-1FFFFH	58000H-5BFFFH

 Table 4-1. Memory Bank Address Representation

Notes 1. SM+ for 78K0, SM+ for 78K0/Kx2, and ID78K0-QB

2. Set the memory bank to be used by the memory bank select register (BANK) (see Figure 4-3).

For details, see the RA78K0 Ver. 3.80 Assembler Package Operation User's Manual (U17199E) and the 78K0 Microcontrollers Self Programming Library Type01 User's Manual (U18274E).

4.3 Memory Bank Select Register (BANK)

The memory bank select register (BANK) is used to select a memory bank to be used.

BANK can be set by an 8-bit memory manipulation instruction.

Reset signal generation clears BANK to 00H.

Figure 4-3. Format of Memory Bank Select Register (BANK)

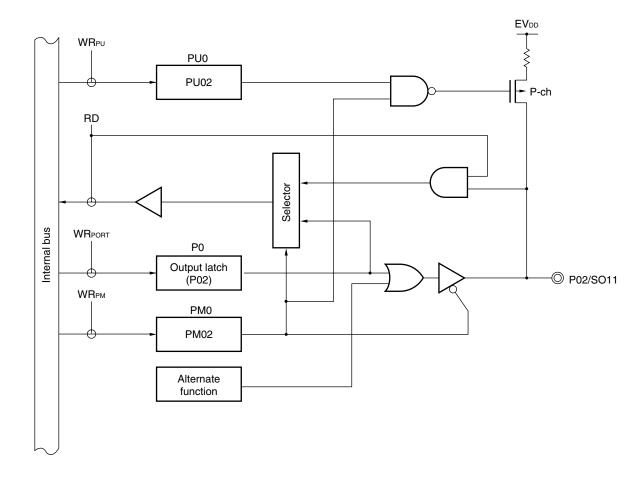
Address: FFF3H After reset: 00H R/W

Symbol	7	6	5	4	3	2	1	0
BANK	0	0	0	0	0	BANK2	BANK1	BANK0

BANK2	BANK1	BANK0	Banks	setting				
			μPD78F05x6 and 78F05x6A	µPD78F05x7, 78F05x7A, 78F05x7D, and 78F05x7DA				
0	0	0	Common area (32 KB) + memo	ry bank 0 (16 KB)				
0	0	1	Common area (32 KB) + memory bank 1 (16 KB)					
0	1	0	Common area (32 KB) + memory bank 2 (16 KB)					
0	1	1	Common area (32 KB) + memory bank 3 (16 KB)					
1	0	0	Setting prohibited	Common area (32 KB) + memory bank 4 (16 KB)				
1	0	1		Common area (32 KB) + memory bank 5 (16 KB)				
0	ther than abo	ve	Setting prohibited	Setting prohibited				

Caution Be sure to change the value of the BANK register in the common area (0000H to 7FFFH). If the value of the BANK register is changed in the bank area (8000H to BFFFH), an inadvertent program loop occurs in the CPU. Therefore, never change the value of the BANK register in the bank area.

Remark x = 2 to 4


Г

• Software example (to store a value to be referenced in register A)

RAMD R_BNKA: R_BNKN: R_BNKRN:		SADDR 2 1 1	; Secures RAM for specifying an address at the reference destination. ; Secures RAM for specifying a memory bank number at the reference destination. ; Secures RAM for saving a memory bank number at the reference source.
ETRC ENTRY:	CSEG	UNIT	
	MOV MOVW CALL	R_BNKN,#BANKNUM DATA1 R_BNKA,#DATA1 !BNKRD : :	; Stores the memory bank number at the reference destination. ; Stores the address at the reference destination. ; Calls a subroutine for referencing between memory banks.
BNKC	CSEG	AT 7000H	
BNKRD:	PUSH MOV XCH MOV XCHW MOV XCHW MOV XCH MOV POP RET	HL A,R_BNKN A,BANK R_BNKRN,A AX,HL AX,R_BNKA AX,HL A,[HL] A,R_BNKRN BANK,A A,R_BNKRN HL	 ; Subroutine for referencing between memory banks. ; Saves the contents of the HL register. ; Acquires the memory bank number at the reference destination. ; Swaps the memory bank number at the reference source for that at the reference destination ; Saves the memory bank number at the reference source. ; Saves the contents of the X register. ; Acquires the address at the reference destination. ; Specifies the address at the reference destination. ; Reads the target value. ; Acquires the memory bank number at the reference source. ; Specifies the memory bank number at the reference source. ; Specifies the memory bank number at the reference source. ; Specifies the memory bank number at the reference source. ; Specifies the contents of the HL register. ; Restores the contents of the HL register.
Data Data1:	CSEG DB	BANK3 0AAH	
END			

Figure 5-3. Block Diagram of P02 (2/2)

(2) 78K0/KE2 products whose flash memory is at least 48 KB and 78K0/KF2

- P0: Port register 0
- PU0: Pull-up resistor option register 0
- PM0: Port mode register 0
- RD: Read signal
- WR××: Write signal

Remark With products not provided with an EVDD or EVss pin, replace EVDD with VDD, or replace EVss with Vss.

(2) Measuring the pulse width by using one input signal of the TI00n pin (free-running timer mode)

Set the free-running timer mode (TMC0n3 and TMC0n2 = 01). The count value of TM0n is captured to CR00n in the phase reverse to the valid edge detected on the Tl00n pin. When the valid edge of the Tl00n pin is detected, the count value of TM0n is captured to CR01n.

By this measurement method, values are stored in separate capture registers when a width from one edge to another is measured. Therefore, the capture values do not have to be saved. By subtracting the value of one capture register from that of another, a high-level width, low-level width, and cycle are calculated.

If an overflow occurs, the value becomes negative if one captured value is simply subtracted from another and, therefore, a borrow occurs (bit 0 (CY) of the program status word (PSW) is set to 1). If this happens, ignore CY and take the calculated value as the pulse width. In addition, clear bit 0 (OVF0n) of 16-bit timer mode control register 0n (TMC0n) to 0.

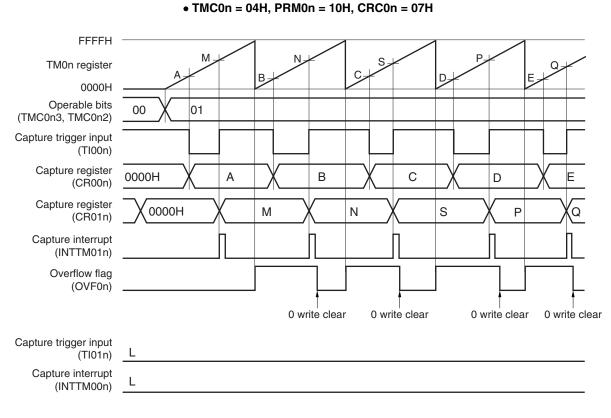


Figure 7-54. Timing Example of Pulse Width Measurement (2)

Remark n = 0: 78K0/KE2 products whose flash memory is less than 32 KB, and 78K0/KB2, 78K0/KC2, 78K0/KD2 products

n = 0, 1: 78K0/KE2 products whose flash memory is at least 48 KB, and 78K0/KF2 products

Caution Make sure POWER6 = 0 when rewriting TPS63 to TPS60.

Remarks 1. fprs: Peripheral hardware clock frequency

 TMC506: Bit 6 of 8-bit timer mode control register 50 (TMC50) TMC501: Bit 1 of TMC50

(5) Baud rate generator control register 6 (BRGC6)

This register sets the division value of the 8-bit counter of serial interface UART6. BRGC6 can be set by an 8-bit memory manipulation instruction. Reset signal generation sets this register to FFH.

Figure 15-9. Format of Baud Rate Generator Control Register 6 (BRGC6)

Address: FF57H After reset: FFH R/W

Symbol BRGC6

	bol	7	6	5	4	3	2	1	0
C6 MDL67 MDL66 MDL65 MDL64 MDL63 MDL62 MDL61 MDL60	iC6	MDL67	MDL66	MDL65	MDL64	MDL63	MDL62	MDL61	MDL60

MDL67	MDL66	MDL65	MDL64	MDL63	MDL62	MDL61	MDL60	k	Output clock selection of 8-bit counter
0	0	0	0	0	0	×	×	×	Setting prohibited
0	0	0	0	0	1	0	0	4	fxclk6/4
0	0	0	0	0	1	0	1	5	fxclk6/5
0	0	0	0	0	1	1	0	6	fxclk6/6
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
•	•	•	•	٠	٠	٠	•	٠	•
1	1	1	1	1	1	0	0	252	fxclк6/252
1	1	1	1	1	1	0	1	253	fxclк6/253
1	1	1	1	1	1	1	0	254	fxclк6/254
1	1	1	1	1	1	1	1	255	fxclк6/255

- Cautions 1. Make sure that bit 6 (TXE6) and bit 5 (RXE6) of the ASIM6 register = 0 when rewriting the MDL67 to MDL60 bits.
 - 2. The baud rate is the output clock of the 8-bit counter divided by 2.

Remarks 1. fxclk6: Frequency of base clock selected by the TPS63 to TPS60 bits of CKSR6 register

- **2.** k: Value set by MDL67 to MDL60 bits (k = 4, 5, 6, ..., 255)
- **3.** \times : Don't care

Remark BRGC6 can be refreshed (the same value is written) by software during a communication operation (when bits 7 and 6 (POWER6, TXE6) of ASIM6 = 1 or bits 7 and 5 (POWER6, RXE6) of ASIM6 = 1).

15.4 Operation of Serial Interface UART6

Serial interface UART6 has the following two modes.

- Operation stop mode
- Asynchronous serial interface (UART) mode

15.4.1 Operation stop mode

In this mode, serial communication cannot be executed; therefore, the power consumption can be reduced. In addition, the pins can be used as ordinary port pins in this mode. To set the operation stop mode, clear bits 7, 6, and 5 (POWER6, TXE6, and RXE6) of ASIM6 to 0.

(1) Register used

The operation stop mode is set by asynchronous serial interface operation mode register 6 (ASIM6). ASIM6 can be set by a 1-bit or 8-bit memory manipulation instruction. Reset signal generation sets this register to 01H.

Address: FF50H After reset: 01H R/W

Symbol	<7>	<6>	<5>	4	3	2	1	0
ASIM6	POWER6	TXE6	RXE6	PS61	PS60	CL6	SL6	ISRM6

POWER6	Enables/disables operation of internal operation clock
0 ^{Note 1}	Disables operation of the internal operation clock (fixes the clock to low level) and asynchronously
	resets the internal circuit ^{Note 2} .

TXE6	Enables/disables transmission
0	Disables transmission operation (synchronously resets the transmission circuit).

RXE6	Enables/disables reception
0	Disables reception (synchronously resets the reception circuit).

- **Notes 1.** If POWER6 = 0 is set while transmitting data, the output of the TxD6 pin will be fixed to high level (if TXDLV6 = 0). Furthermore, the input from the RxD6 pin will be fixed to high level.
 - 2. Asynchronous serial interface reception error status register 6 (ASIS6), asynchronous serial interface transmission status register 6 (ASIF6), bit 7 (SBRF6) and bit 6 (SBRT6) of asynchronous serial interface control register 6 (ASICL6), and receive buffer register 6 (RXB6) are reset.
- Caution Clear POWER6 to 0 after clearing TXE6 and RXE6 to 0 to stop the operation. To start the communication, set POWER6 to 1, and then set TXE6 or RXE6 to 1.
- Remark To use the RxD6/P14 and TxD6/P13 pins as general-purpose port pins, see CHAPTER 5 PORT FUNCTIONS.

(3) Serial trigger register 0 (CSIT0)

This is an 8-bit register used to control execution/stop of automatic data transfer between buffer RAM and serial I/O shift register 0 (SIOA0).

This register can be set by a 1-bit or 8-bit memory manipulation instruction. This register can be set when bit 6 (ATE0) of serial operation mode specification register 0 (CSIMA0) is 1. Reset signal generation clears this register to 00H.

Figure 17-4. Format of Serial Trigger Register 0 (CSIT0)

Address: FF92H After reset: 00H R/W

Symbol	7	6	5	4	3	2	<1>	<0>
CSIT0	0	0	0	0	0	0	ATSTP0	ATSTA0

ATSTP0	Automatic data transfer stop
0	-
1	Automatic data transfer stopped
ATSTA0	Automatic data transfer start
ATSTA0 0	

- Cautions 1. Even if ATSTP0 or ATSTA0 is set to 1, automatic transfer cannot be started/stopped until 1-byte transfer is complete.
 - 2. ATSTP0 and ATSTA0 change to 0 automatically after the interrupt signal INTACSI is generated.
 - After automatic data transfer is stopped, the data address when the transfer stopped is stored in automatic data transfer address count register 0 (ADTC0). However, since no function to restart automatic data transfer is incorporated, when transfer is stopped by setting ATSTP0 = 1, start automatic data transfer by setting ATSTA0 to 1 after re-setting the registers.

Remarks 1. ×: don't care

- 2. fPRS: Peripheral hardware clock frequency
- **3**. fEXSCL0: External clock frequency from EXSCL0 pin

(7) Port mode register 6 (PM6)

This register sets the input/output of port 6 in 1-bit units.

When using the P60/SCL0 pin as clock I/O and the P61/SDA0 pin as serial data I/O, clear PM60 and PM61, and the output latches of P60 and P61 to 0.

Set IICE0 (bit 7 of IIC control register 0 (IICC0)) to 1 before setting the output mode because the P60/SCL0 and P61/SDA0 pins output a low level (fixed) when IICE0 is 0.

PM6 is set by a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation sets PM6 to FFH.

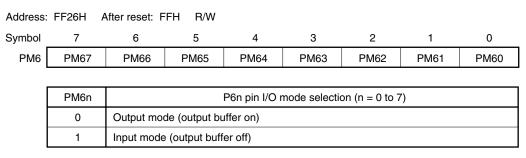
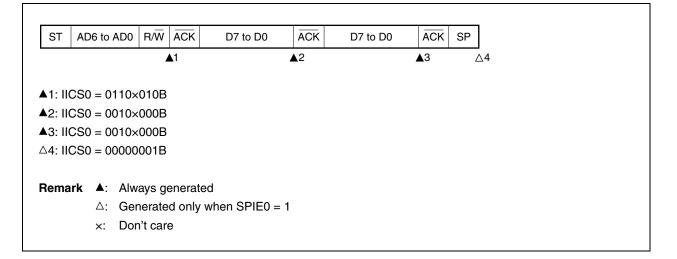


Figure 18-10. Format of Port Mode Register 6 (PM6)

Remark The figure shown above presents the format of port mode register 6 of 78K0/KF2 products. For the format of port mode register 6 of other products, see (1) Port mode registers (PMxx) in 5.3 Registers Controlling Port Function.

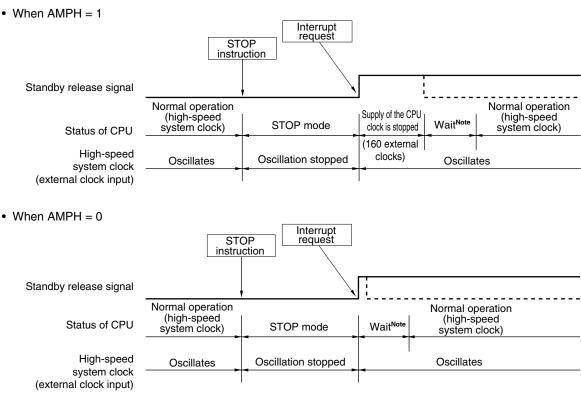


(ii) When WTIM0 = 1

			T T					
ST	AD6 to A	AD0 R/W	ACK	D7 to D0	ĀCK	D7 to D0	ĀCK	SP
			▲1		▲2	2		3 Z
▲ 1: II0	CS0 = 01	101×110E	3					
▲ 2: II0	CS0 = 00	001×100E	3					
▲ 3: II0	CS0 = 00	001××00E	3					
∆4: II(CS0 = 00	000001E	3					
Rema	rk ▲:	Always g	generated	k				
	\triangle :	Generate	ed only w	/hen SPIE0 =	1			
	×:	Don't ca	re					

(b) When arbitration loss occurs during transmission of extension code

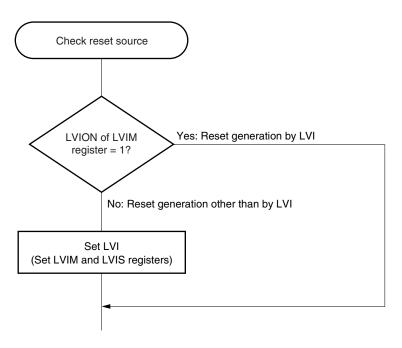
(i) When WTIM0 = 0



(1) When high-speed system clock (X1 oscillation) is used as CPU clock Interrupt request Wait STOP (set by OSTS) instruction Standby release signal Normal operation Normal operation Oscillation stabilization wait (high-speed (high-speed system clock) STOP mode (HALT mode status) system clock) Status of CPU High-speed Oscillates Oscillation stopped Oscillates system clock (X1 oscillation) Oscillation stabilization time (set by OSTS)

Figure 22-6. STOP Mode Release by Interrupt Request Generation (1/2)

(2) When high-speed system clock (external clock input) is used as CPU clock


Note The wait time is as follows:

- When vectored interrupt servicing is carried out: 17 or 18 clocks
- When vectored interrupt servicing is not carried out: 11 or 12 clocks
- **Remark** The broken lines indicate the case when the interrupt request that has released the standby mode is acknowledged.

Checking reset source

CHAPTER 29 INSTRUCTION SET

This chapter lists each instruction set of the 78K0/Kx2 microcontrollers in table form. For details of each operation and operation code, refer to the separate document **78K/0 Series Instructions User's Manual (U12326E)**.

29.1 Conventions Used in Operation List

29.1.1 Operand identifiers and specification methods

Operands are written in the "Operand" column of each instruction in accordance with the specification method of the instruction operand identifier (refer to the assembler specifications for details). When there are two or more methods, select one of them. Uppercase letters and the symbols #, !, \$ and [] are keywords and must be written as they are. Each symbol has the following meaning.

- #: Immediate data specification
- !: Absolute address specification
- \$: Relative address specification
- []: Indirect address specification

In the case of immediate data, describe an appropriate numeric value or a label. When using a label, be sure to write the #, !, \$, and [] symbols.

For operand register identifiers r and rp, either function names (X, A, C, etc.) or absolute names (names in parentheses in the table below, R0, R1, R2, etc.) can be used for specification.

Identifier	Specification Method
r	X (R0), A (R1), C (R2), B (R3), E (R4), D (R5), L (R6), H (R7)
rp	AX (RP0), BC (RP1), DE (RP2), HL (RP3)
sfr	Special function register symbol ^{Note}
sfrp	Special function register symbol (16-bit manipulatable register even addresses only) ^{Note}
saddr	FE20H to FF1FH Immediate data or labels
saddrp	FE20H to FF1FH Immediate data or labels (even address only)
addr16	0000H to FFFFH Immediate data or labels
	(Only even addresses for 16-bit data transfer instructions)
addr11	0800H to 0FFFH Immediate data or labels
addr5	0040H to 007FH Immediate data or labels (even address only)
word	16-bit immediate data or label
byte	8-bit immediate data or label
bit	3-bit immediate data or label
RBn	RB0 to RB3

Table 29-1. Operand Identifiers and Specification Methods

Note Addresses from FFD0H to FFDFH cannot be accessed with these operands.

Remark For special function register symbols, see Table 3-8 Special Function Register List.

Caution The pins mounted depend on the product. Refer to Caution 2 at the beginning of this chapter.

Flash Memory Programming Characteristics

$(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{V}_{DD} = \text{EV}_{DD} \le 5.5 \text{ V}, \text{ AV}_{REF} \le \text{V}_{DD}, \text{ V}_{SS} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V})$

Basic characteristics

Parameter		Symbol	Conditions					TYP.	MAX.	Unit
VDD supply current		Idd	f _{XP} = 10 MHz (TYP.), 20 MHz (MAX.)					4.5	11.0	mA
Erase time All block		Teraca						20	200	ms
Notes 1, 2	Block unit	Terasa						20	200	ms
Write time units) ^{Note 1}	(in 8-bit	Twrwa						10	100	μs
Number of rewrites per chip		Cerwr	1 erase + 1 write after erase = 1 rewrite Note 3	Expanded- specification Products (μΡD78F05xxA, 78F05xxDA)	 When a flash memory programmer is used, and the libraries^{Note 4} provided by Renesas Electronics are used For program update 	Retention: 15 years	1000			Times
			 When the EEPROM emulation libraries^{Note 5} provided by Renesas Electronics are used The rewritable ROM size: 4 KB For data update 	Retention: 5 years	10000			Times		
				Expanded- specification Products (µPD78F05xxA, 78F05xxDA) Conventional- specification Products (µPD78F05xx, 78F05xxD)	Conditions other than the above ^{Note 6}	Retention: 10 years	100			Times

Notes 1. Characteristic of the flash memory. For the characteristic when a dedicated flash programmer, PG-FP4 or PG-FP5, is used and the rewrite time during self programming, see **Tables 27-12** to **27-14**.

- 2. The prewrite time before erasure and the erase verify time (writeback time) are not included.
- **3.** When a product is first written after shipment, "erase \rightarrow write" and "write only" are both taken as one rewrite.
- The sample library specified by the 78K0/Kx2 Flash Memory Self Programming User's Manual (Document No.: U17516E) is excluded.
- The sample program specified by the 78K0/Kx2 EEPROM Emulation Application Note (Document No.: U17517E) is excluded.
- 6. These include when the sample library specified by the 78K0/Kx2 Flash Memory Self Programming User's Manual (Document No.: U17516E) and the sample program specified by the 78K0/Kx2 EEPROM Emulation Application Note (Document No.: U17517E) are used.

Remarks 1. fxp: Main system clock oscillation frequency

2. For serial write operation characteristics, refer to 78K0/Kx2 Flash Memory Programming (Programmer) Application Note (Document No.: U17739E).

(2) Non-port functions

Port		78K0/KB2		78K0/KC2		78K0/KD2	78K0/KE2	78K0/KF2				
		30/36 Pins	38 Pins	44 Pins	48 Pins	52 Pins	64 Pins	80 Pins				
Power supply, ground		Vdd, EVdd ^{Note 1} , Vss, EVss ^{Note 1} , AVref, AVss	VDD, AVREF, VSS	s, AVss	Vdd, EVdd, Vss, EVss, AVref, AVss							
Reg	gulator	REGC										
Res	set	RESET										
Clo osc	ck illation	X1, X2, EXCLK	X1, X2, XT1, X	T2, EXCLK, EX	CLKS							
	ting to h memory	FLMD0	FLMD0									
Inte	errupt	INTP0 to INTP	5	•	INTP0 to INTP	6	INTP0 to INTP7					
Key	v interrupt	-	KR0, KR1	KR0 to KR3		KR0 to KR7						
	ТМ00	TI000, TI010, TO00										
	TM01	- TI001 ^{Note 2} , TI011 ^{Note 2} , TO01 ^{Note}										
Timer	TM50	TI50, TO50										
Ę	TM51	TI51, TO51										
	тмно	ТОНО										
	TMH1	ТОН1										
	UART0	RxD0, TxD0										
	UART6	RxD6, TxD6										
ce	IIC0	SCL0, SDA0 SCL0, SDA0, EXSCL0										
iterfa	CSI10	SCK10, SI10, SO10										
Serial interface	CSI11		SCK11 ^{Note 2} , SI1 SO11 ^{Note 2} , SSI1	SI11 ^{Note 2} , SI11 ^{Note 2}								
0,	CSIA0				_			SCKAO, SIAO, SOAO, BUSYO, STBO				
A/D	converter	ANI0 to ANI3	ANI0 to ANI5	ANI0 to ANI7								
Clo	ck output		-		PCL		<u>.</u>					
Buz	zer output			-			BUZ					
Low-voltage detector (LVI)		EXLVI										

Notes 1. This is not mounted onto 30-pin products.

2. This is not mounted onto the 78K0/KE2 products whose flash memory is less than 32 KB.

Unit mA mA mA mA mΑ mΑ mA mA mA mA mΑ mA mA mA mΑ mA mΑ mA mA mΑ mA mΑ mA mA mA mA mA mA mA mA mΑ

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.
Output current, highNote 1	Іон1	Per pin for P00 to P06, P10 to	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			-3.0
		P17, P30 to P33, P40 to P47,	$2.7~V \leq V_{\text{DD}} < 4.0~V$			-2.5
		P50 to P57, P64 to P67, P70 to P77, P120, P130, P140 to P145	$1.8~V \leq V_{\text{DD}} < 2.7~V$			-1.0
		Total of P00 to P04, P40 to P47,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			-12.0
		P120, P130, P140 to P145 ^{Note 3}	$2.7~V \leq V_{\text{DD}} < 4.0~V$			-7.0
			$1.8~V \leq V_{\text{DD}} < 2.7~V$			-5.0
		Total of P05, P06, P10 to P17,	$4.0~V \le V_{\text{DD}} \le 5.5~V$			-18.0
		P30 to P33, P50 to P57, P64 to	$2.7~V \leq V_{\text{DD}} < 4.0~V$			-15.0
		P67, P70 to P77 ^{Note 3}	$1.8~V \leq V_{\text{DD}} < 2.7~V$			-10.0
		Total of all the pins above Note 3	$4.0~V \le V_{\text{DD}} \le 5.5~V$			-23.0
			$2.7~V \leq V_{\text{DD}} < 4.0~V$			-20.0
			$1.8~V \leq V_{\text{DD}} < 2.7~V$			-15.0
	Іон2	Per pin for P20 to P27	$AV_{REF} = V_{DD}$			-0.1
		Per pin for P121 to P124				-0.1
Dutput current, low ^{Note 2}	IOL1	Per pin for P00 to P06, P10 to P17, P30 to P33, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P120, P130, P140 to P145	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			8.5
			$2.7~V \leq V_{\text{DD}} < 4.0~V$			5.0
			$1.8~V \le V_{\text{DD}} < 2.7~V$			2.0
		Per pin for P60 to P63	$4.0~V \le V_{\text{DD}} \le 5.5~V$			15.0
			$2.7~V \leq V_{\text{DD}} < 4.0~V$			5.0
			$1.8~V \leq V_{\text{DD}} < 2.7~V$			2.0
		Total of P00 to P04, P40 to P47,	$4.0~V \le V_{\text{DD}} \le 5.5~V$			20.0
		P120, P130, P140 to P145 ^{Note 3}	$2.7~V \leq V_{\text{DD}} < 4.0~V$			15.0
			$1.8~V \leq V_{\text{DD}} < 2.7~V$			9.0
		Total of P05, P06, P10 to P17,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			45.0
		P30 to P33, P50 to P57, P60 to	$2.7~V \leq V_{\text{DD}} < 4.0~V$			35.0
		P67, P70 to P77 ^{Note 3}	$1.8~V \leq V_{\text{DD}} < 2.7~V$			20.0
		Total of all the pins above Note 3	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			65.0
			$2.7~V \leq V_{\text{DD}} < 4.0~V$			50.0
			$1.8~V \leq V_{\text{DD}} < 2.7~V$			29.0
	IOL2	Per pin for P20 to P27	AVREF = VDD			0.4
		Per pin for P121 to P124				0.4

DC Characteristics (1/4)

(TA = -40 to +85°C, 1.8 V \leq Vdd = EVdd \leq 5.5 V, AVREF \leq Vdd, Vss = EVss = AVss = 0 V)

Notes 1. Value of current at which the device operation is guaranteed even if the current flows from VDD to an output pin.

2. Value of current at which the device operation is guaranteed even if the current flows from an output pin to GND.

3. Specification under conditions where the duty factor is 70% (time for which current is output is $0.7 \times t$ and time for which current is not output is $0.3 \times t$, where t is a specific time). The total output current of the pins at a duty factor of other than 70% can be calculated by the following expression.

• Where the duty factor of IoH is n%: Total output current of pins = $(I_{OH} \times 0.7)/(n \times 0.01)$

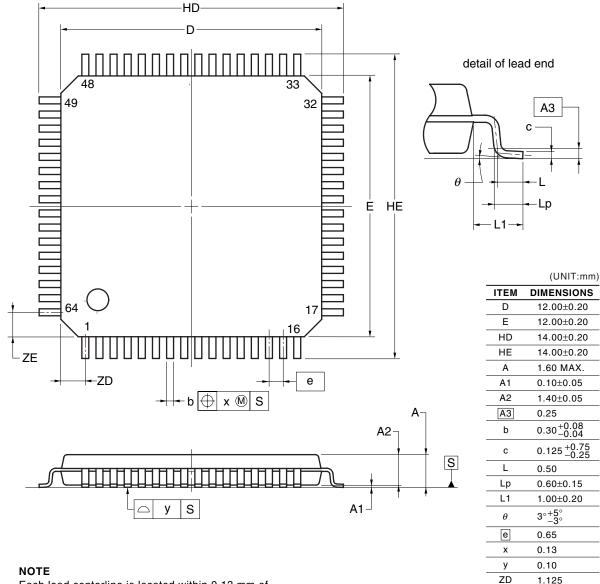
<Example> Where the duty factor is 50%, $I_{OH} = -20.0 \text{ mA}$


Total output current of pins = $(-20.0 \times 0.7)/(50 \times 0.01) = -28.0 \text{ mA}$

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

64-PIN PLASTIC LQFP (14x14)


- μPD78F0531GC(A)-GAL-AX, 78F0532GC(A)-GAL-AX, 78F0533GC(A)-GAL-AX, 78F0534GC(A)-GAL-AX, 78F0535GC(A)-GAL-AX, 78F0535GC(A)-GAL-AX, 78F0537GC(A)-GAL-AX
- *μ*PD78F0531GC(A2)-GAL-AX, 78F0532GC(A2)-GAL-AX, 78F0533GC(A2)-GAL-AX, 78F0534GC(A2)-GAL-AX, 78F0535GC(A2)-GAL-AX, 78F0535GC(A2)-GAL-AX, 78F0537GC(A2)-GAL-AX
- μPD78F0531AGC-GAL-AX, 78F0532AGC-GAL-AX, 78F0533AGC-GAL-AX, 78F0535AGC-GAL-AX, 78F0535AGC-GAL-AX, 78F0537AGC-GAL-AX, 78F0537ACC-GAL-AX, 78F0537
- µPD78F0531AGCA-GAL-G, 78F0532AGCA-GAL-G, 78F0533AGCA-GAL-G, 78F0535AGCA-GAL-G, 78F0535AGCA-GAL-G, 78F0536AGCA-GAL-G, 78F0537AGCA-GAL-G
- μPD78F0531AGCA2-GAL-G, 78F0532AGCA2-GAL-G, 78F0533AGCA2-GAL-G, 78F0535AGCA2-GAL-G, 78F0535AGCA2-GAL-G, 78F0535AGCA2-GAL-G, 78F0537AGCA2-GAL-G

P64GC-80-GAL

- μιPD78F0531GK(A)-GAJ-AX, 78F0532GK(A)-GAJ-AX, 78F0533GK(A)-GAJ-AX, 78F0534GK(A)-GAJ-AX, 78F0535GK(A)-GAJ-AX, 78F0536GK(A)-GAJ-AX, 78F0537GK(A)-GAJ-AX
- μιPD78F0531GK(A2)-GAJ-AX, 78F0532GK(A2)-GAJ-AX, 78F0533GK(A2)-GAJ-AX, 78F0534GK(A2)-GAJ-AX, 78F0535GK(A2)-GAJ-AX, 78F0536GK(A2)-GAJ-AX, 78F0537GK(A2)-GAJ-AX
- μPD78F0531AGK-GAJ-AX, 78F0532AGK-GAJ-AX, 78F0533AGK-GAJ-AX, 78F0534AGK-GAJ-AX, 78F0535AGK-GAJ-AX, 78F0536AGK-GAJ-AX, 78F0537AGK-GAJ-AX, 78F0537DAGK-GAJ-AX
- µPD78F0531AGKA-GAJ-G, 78F0532AGKA-GAJ-G, 78F0533AGKA-GAJ-G, 78F0534AGKA-GAJ-G, 78F0535AGKA-GAJ-G, 78F0536AGKA-GAJ-G, 78F0537AGKA-GAJ-G
- μPD78F0531AGKA2-GAJ-G, 78F0532AGKA2-GAJ-G, 78F0533AGKA2-GAJ-G, 78F0534AGKA2-GAJ-G, 78F0535AGKA2-GAJ-G, 78F0536AGKA2-GAJ-G, 78F0537AGKA2-GAJ-G

64-PIN PLASTIC LQFP (12x12)

NOTE Each lead centerline is located within 0.13 mm of its true position at maximum material condition.

1.125

1.125

P64GK-65-GAJ

ΖE

					(10	0/30)			
Chapter	Classification	Function	Details of Function	Cautions	Pag	e			
r 8	timer/event		TCL50: Timer clock	When rewriting TCL50 to other data, stop the timer operation beforehand.	p. 349				
Chapter 8	timer/event		selection register 50	Be sure to clear bits 3 to 7 to "0".					
Ch		50, 51	TCL51: Timer clock	When rewriting TCL51 to other data, stop the timer operation beforehand.	p. 350				
		00, 01	selection register 51	Be sure to clear bits 3 to 7 to "0".					
			TMC5n: 8-bit timer	The settings of LVS5n and LVR5n are valid in other than PWM mode.	p. 352				
		mode control register 5n (TMC5n)	Perform <1> to <4> below in the following order, not at the same time. <1> Set TMC5n1, TMC5n6: Operation mode setting <2> Set TOE5n to enable output: Timer output enable <3> Set LVS5n, LVR5n (see Caution 1): Timer F/F setting <4> Set TCE5n Set TCE5n	p. 352					
			When TCE5n = 1, setting the other bits of TMC5n is prohibited.	p. 352					
			The actual TO50/TI50/P17 and TO51/TI51/P33/INTP4 pin outputs are determined depending on PM17 and P17, and PM33 and P33, besides TO5n output.	p. 352					
		Interval timer	Do not write other values to CR5n during operation.	p. 354					
			Square-wave output	Do not write other values to CR5n during operation.	p. 357				
			PWM output	In PWM mode, make the CR5n rewrite period 3 count clocks of the count clock (clock selected by TCL5n) or more.	p. 358				
			When reading from CR5n between <1> and <2> in Figure 8-15, the value read differs from the actual value (read value: M, actual value of CR5n: N).	p. 361					
			Timer start error	An error of up to one clock may occur in the time required for a match signal to be generated after timer start. This is because 8-bit timer counters 50 and 51 (TM50, TM51) are started asynchronously to the count clock.	p. 362				
			Reading of TM5n	TM5n can be read without stopping the actual counter, because the count values captured to the buffer are fixed when it is read. The buffer, however, may not be updated when it is read immediately before the counter counts up, because the buffer is updated at the timing the counter counts up.	p. 362				
Chapter 9	Soft	8-bit timers H0, H1		CMP0n cannot be rewritten during timer count operation. CMP0n can be refreshed (the same value is written) during timer count operation.	p. 366				
O				In the PWM output mode and carrier generator mode, be sure to set CMP1n when starting the timer count operation (TMHEn = 1) after the timer count operation was stopped (TMHEn = 0) (be sure to set again even if setting the same value to CMP1n).	p. 366				
			TMHMD0: 8-bit timer H mode register 0	When TMHE0 = 1, setting the other bits of TMHMD0 is prohibited. However, TMHMD0 can be refreshed (the same value is written).	p. 369				
				In the PWM output mode, be sure to set the 8-bit timer H compare register 10 (CMP10) when starting the timer count operation (TMHE0 = 1) after the timer count operation was stopped (TMHE0 = 0) (be sure to set again even if setting the same value to CMP10).	p. 369				
				The actual TOH0/P15 pin output is determined depending on PM15 and P15, besides TOH0 output.	p. 369				
			TMHMD1: 8-bit timer H mode register 1	When TMHE1 = 1, setting the other bits of TMHMD1 is prohibited. However, TMHMD1 can be refreshed (the same value is written).	p. 371				
				In the PWM output mode and carrier generator mode, be sure to set the 8-bit timer H compare register 11 (CMP11) when starting the timer count operation (TMHE1 = 1) after the timer count operation was stopped (TMHE1 = 0) (be sure to set again even if setting the same value to CMP11).	p. 371				
				When the carrier generator mode is used, set so that the count clock frequency of TMH1 becomes more than 6 times the count clock frequency of TM51.	p. 371				
				The actual TOH1/INTP5/P16 pin output is determined depending on PM16 and P16, besides TOH1 output.	p. 371				

