

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	78K/0
Core Size	8-Bit
Speed	20MHz
Connectivity	3-Wire SIO, I ² C, LINbus, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	55
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/upd78f0533agb-gah-ax

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

(1) Conventional-specification products (µPD78F05xx and 78F05xxD) (3/3)

<4> When high-speed system clock (X1 oscillation or external clock input) is used and entry RAM is located in short direct addressing range

Library	/ Name		Processing	g Time (μs)					
		Normal Model	of C Compiler	Static Model of C Compiler/Assembler					
		Min.	Max.	Min.	Max.				
Self programming start l	ibrary	34/fcpu							
Initialize library			49/fcpu +	224.6875					
Mode check library		35/f сри +	113.625	29/f сри +	113.625				
Block blank check library	/	174/fcpu +	6120.9375	134/fcpu +	6120.9375				
Block erase library		174/fcpu + 30820.75	174/fсец + 298675	134/fcpu + 30820.75	134/fcpu + 298675				
Word write library		318 (321)/fcpu + 383	318 (321)/fcpu + 1230.5						
Block verify library		174/fcpu + 13175.4375 134/fcpu + 13175.4375							
Self programming end li	brary	34/fopu							
Get information library	Option value: 03H	171 (172)/fcp	u + 171.3125	129 (130)/fcpu + 171.3125					
	Option value: 04H	181 (182)/fo	сец + 166.75	139 (140)/fo	CPU + 166.75				
	Option value: 05H	404 (411)/f c	ри + 231.875	362 (369)/f c	ри + 231.875				
Set information library		75/fcpu +	75/fcpu +	67/fcpu +	67/fcpu +				
		78884.5625	527566.875	78884.5625	527566.875				
EEPROM write library		318 (321)/fcpu +	318 (321)/fcpu +	262 (265)/fcpu +	262 (265)/fcpu +				
		538.75	1386.25	538.75	1386.25				

- **Remarks 1.** Values in parentheses indicate values when a write start address structure is located other than in the internal high-speed RAM.
 - 2. The above processing times are those during stabilized operation of the internal high-speed oscillator (RSTS = 1).
 - 3. fcpu: CPU operation clock frequency
 - 4. RSTS: Bit 7 of the internal oscillation mode register (RCM)

(4/0)

2				(4/6)
78K0/Kx2 Microcontrollers	Package	Product type	Quality grace	Part Number
78K0/KE2	64-pin plastic LQFP (14x14)	Conventional- specification products	Standard products	μPD78F0531GC-UBS-A, 78F0532GC-UBS-A, 78F0533GC-UBS-A, 78F0534GC-UBS-A, 78F0535GC-UBS-A, 78F0536GC-UBS-A, 78F0537GC-UBS-A, 78F0537DGC-UBS-A ^{Note}
			(A) grade μPD78F0531GC(A)-GAL-AX, 78F0532GC products 78F0533GC(A)-GAL-AX, 78F0534GC(A)-	μΡD78F0531GC(A)-GAL-AX, 78F0532GC(A)-GAL-AX, 78F0533GC(A)-GAL-AX, 78F0534GC(A)-GAL-AX, 78F0535GC(A)-GAL-AX, 78F0536GC(A)-GAL-AX, 78F0537GC(A)-GAL-AX
			(A2) grade products	μPD78F0531GC(A2)-GAL-AX, 78F0532GC(A2)-GAL-AX, 78F0533GC(A2)-GAL-AX, 78F0534GC(A2)-GAL-AX, 78F0535GC(A2)-GAL-AX, 78F0536GC(A2)-GAL-AX, 78F0537GC(A2)-GAL-AX
		Expanded- specification products	Standard products	μΡD78F0531AGC-GAL-AX, 78F0532AGC-GAL-AX, 78F0533AGC-GAL-AX, 78F0534AGC-GAL-AX, 78F0535AGC-GAL-AX, 78F0536AGC-GAL-AX, 78F0537AGC-GAL-AX, 78F0537DAGC-GAL-AX ^{Note}
			(A) grade products	μPD78F0531AGCA-GAL-G, 78F0532AGCA-GAL-G, 78F0533AGCA-GAL-G, 78F0534AGCA-GAL-G, 78F0535AGCA-GAL-G, 78F0536AGCA-GAL-G, 78F0537AGCA-GAL-G
			(A2) grade products	μPD78F0531AGCA2-GAL-G, 78F0532AGCA2-GAL-G, 78F0533AGCA2-GAL-G, 78F0534AGCA2-GAL-G, 78F0535AGCA2-GAL-G, 78F0536AGCA2-GAL-G, 78F0537AGCA2-GAL-G

Note The μPD78F0537D and 78F0537DA have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.

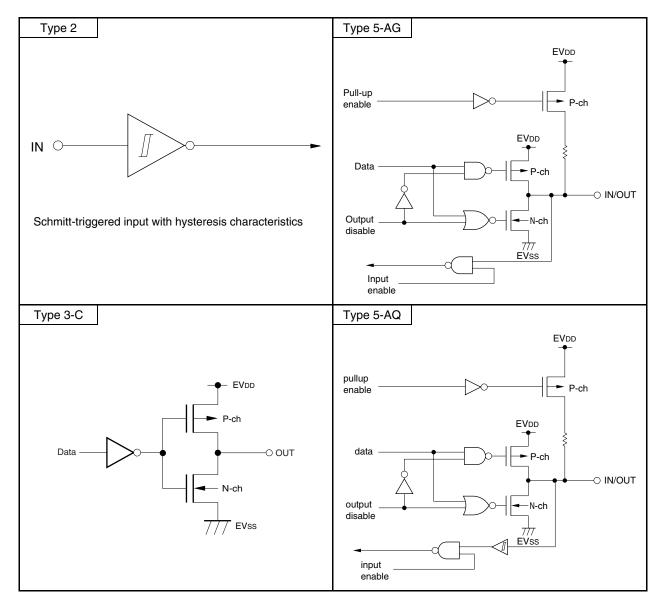


Figure 2-1. Pin I/O Circuit List (1/2)

Remark With products not provided with an EVDD or EVss pin, replace EVDD with VDD, or replace EVss with Vss.

5.2.9 Port 12

	78K0/KB2	78K0/KC2	78K0/KF2		
			Products whose flash memory is less than 32 KB	Products whose flash memory is at least 48 KB	
P120/INTP0/EXLVI	\checkmark		\checkmark		
P121/X1/OCD0A ^{Note}	\checkmark				
P122/X2/EXCLK/ OCD0B ^{Note}	\checkmark				
P123/XT1	-				
P124/XT2/EXCLKS	_				

Note OCD0A and OCD0B are provided to the products with an on-chip debug function (*µ*PD78F05xxD and 78F05xxDA) only.

Remark $\sqrt{:}$ Mounted, -: Not mounted

Port 12 is an I/O port with an output latch. Port 12 can be set to the input mode or output mode in 1-bit units using port mode register 12 (PM12). When used as an input port only for P120, use of an on-chip pull-up resistor can be specified by pull-up resistor option register 12 (PU12).

This port can also be used as pins for external interrupt request input, potential input for external low-voltage detection, connecting resonator for main system clock, connecting resonator for subsystem clock, external clock input for main system clock, and external clock input for subsystem clock.

Reset signal generation sets port 12 to input mode.

Figures 5-22 and 5-23 show block diagrams of port 12.

Caution 1. When using the P121 to P124 pins to connect a resonator for the main system clock (X1, X2) or subsystem clock (XT1, XT2), or to input an external clock for the main system clock (EXCLK) or subsystem clock (EXCLKS), the X1 oscillation mode, XT1 oscillation mode, or external clock input mode must be set by using the clock operation mode select register (OSCCTL) (for details, see 6.3 (1) Clock operation mode select register (OSCCTL) and (3) Setting of operation mode for subsystem clock pin). The reset value of OSCCTL is 00H (all of the P121 to P124 pins are I/O port pins). At this time, setting of the PM121 to PM124 and P121 to P124 pins is not necessary.

CHAPTER 6 CLOCK GENERATOR

6.1 Functions of Clock Generator

The clock generator generates the clock to be supplied to the CPU and peripheral hardware. The following three kinds of system clocks and clock oscillators are selectable.

(1) Main system clock

<1> X1 oscillator

This circuit oscillates a clock of $f_x = 1$ to 20 MHz by connecting a resonator to X1 and X2. Oscillation can be stopped by executing the STOP instruction or using the main OSC control register (MOC).

<2> Internal high-speed oscillator

This circuit oscillates a clock of $f_{RH} = 8$ MHz (TYP.). After a reset release, the CPU always starts operating with this internal high-speed oscillation clock. Oscillation can be stopped by executing the STOP instruction or using the internal oscillation mode register (RCM).

An external main system clock ($f_{EXCLK} = 1$ to 20 MHz) can also be supplied from the EXCLK/X2/P122 pin. An external main system clock input can be disabled by executing the STOP instruction or using RCM. As the main system clock, a high-speed system clock (X1 clock or external main system clock) or internal high-speed oscillation clock can be selected by using the main clock mode register (MCM).

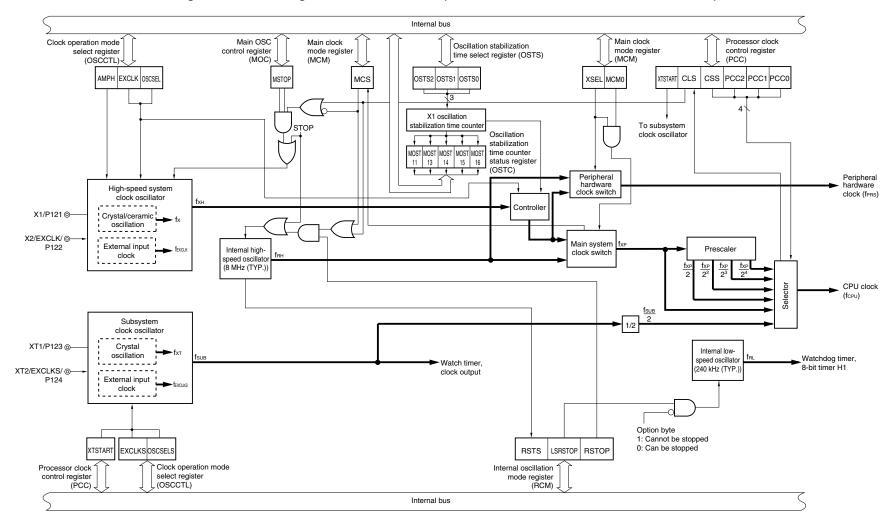
(2) Subsystem clock^{Note}

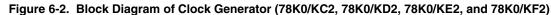
Subsystem clock oscillator

This circuit oscillates at a frequency of $f_{XT} = 32.768$ kHz by connecting a 32.768 kHz resonator across XT1 and XT2. Oscillation can be stopped by using the processor clock control register (PCC) and clock operation mode select register (OSCCTL).

An external subsystem clock (fexcLks = 32.768 kHz) can also be supplied from the EXCLKS/XT2/P124 pin. An external subsystem clock input can be disabled by setting PCC and OSCCTL.

Note The 78K0/KB2 is not provided with a subsystem clock.


Remark fx: X1 clock oscillation frequence	Remark	fx: X	1 clock	oscillation	frequenc
--	--------	-------	---------	-------------	----------


fRH: Internal high-speed oscillation clock frequency

fexclk: External main system clock frequency

- fxT: XT1 clock oscillation frequency
- fEXCLKS: External subsystem clock frequency

Figure 7-4. Format of 16-Bit Timer Capture/Compare Register 00n (CR00n)

Address: FF12H, FF13H (CR000), FFB2H, FFB3H (CR001)

FF13H (CR000), FFB3H (CR001)

After reset: 0000H R/W

									11 1211 (011000), 11 D211 (011001)							
					<u> </u>								<u> </u>			
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CR00n																
(n = 0, 1)																

(i) When CR00n is used as a compare register

The value set in CR00n is constantly compared with the TM0n count value, and an interrupt request signal (INTTM00n) is generated if they match. The value is held until CR00n is rewritten.

Caution CR00n does not perform the capture operation when it is set in the comparison mode, even if a capture trigger is input to it.

(ii) When CR00n is used as a capture register

The count value of TM0n is captured to CR00n when a capture trigger is input.

As the capture trigger, an edge of a phase reverse to that of the TI00n pin or the valid edge of the TI01n pin can be selected by using CRC0n or PRM0n.

Figure 7-5. Format of 16-Bit Timer Capture/Compare Register 01n (CR01n)

Address:	FF14H	H, FF1	5H (C	R010), FFB	4H, FI	FB5H	(CR01	1)	After	r reset	: 000	он	R/W	,	
	FF15H (CR010), FFB5H (CR011) FF14H (CR010), FFB4H (CR011)															
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CR01n (n = 0, 1)																

(i) When CR01n is used as a compare register

The value set in CR01n is constantly compared with the TM0n count value, and an interrupt request signal (INTTM01n) is generated if they match.

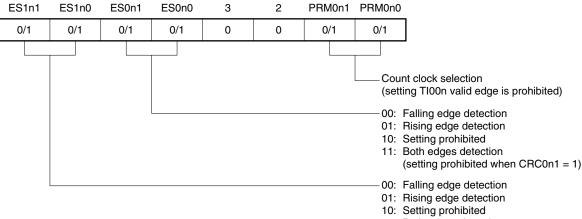
Caution CR01n does not perform the capture operation when it is set in the comparison mode, even if a capture trigger is input to it.

(ii) When CR01n is used as a capture register

The count value of TM0n is captured to CR01n when a capture trigger is input.

It is possible to select the valid edge of the TI00n pin as the capture trigger. The TI00n pin valid edge is set by PRM0n.

Remark n = 0: 78K0/KE2 products whose flash memory is less than 32 KB, and 78K0/KB2, 78K0/KC2,


78K0/KD2 products

n = 0, 1: 78K0/KE2 products whose flash memory is at least 48 KB, and 78K0/KF2 products

Figure 7-35. Example of Register Settings in Clear & Start Mode Entered by TI00n Pin Valid Edge Input (2/2)

(d) Prescaler mode register 0n (PRM0n)

11: Both edges detection

(e) 16-bit timer counter 0n (TM0n)

By reading TM0n, the count value can be read.

(f) 16-bit capture/compare register 00n (CR00n)

When this register is used as a compare register and when its value matches the count value of TM0n, an interrupt signal (INTTM00n) is generated. The count value of TM0n is not cleared.

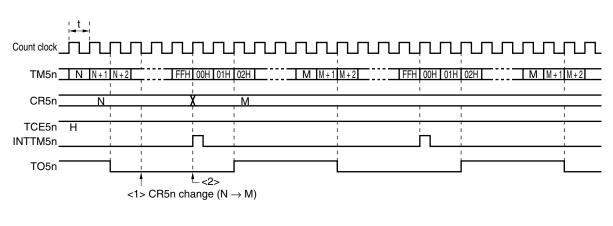
To use this register as a capture register, select either the TI00n or TI01n pin^{Note} input as a capture trigger. When the valid edge of the capture trigger is detected, the count value of TM0n is stored in CR00n.

Note The timer output (TO0n) cannot be used when detection of the valid edge of the TI01n pin is used.

(g) 16-bit capture/compare register 01n (CR01n)

When this register is used as a compare register and when its value matches the count value of TM0n, an interrupt signal (INTTM01n) is generated. The count value of TM0n is not cleared. When this register is used as a capture register, the TI00n pin input is used as a capture trigger. When the valid

edge of the capture trigger is detected, the count value of TM0n is stored in CR01n.


Remark n = 0: 78K0/KE2 products whose flash memory is less than 32 KB, and 78K0/KB2, 78K0/KC2, 78K0/KD2 products

n = 0, 1: 78K0/KE2 products whose flash memory is at least 48 KB, and 78K0/KF2 products

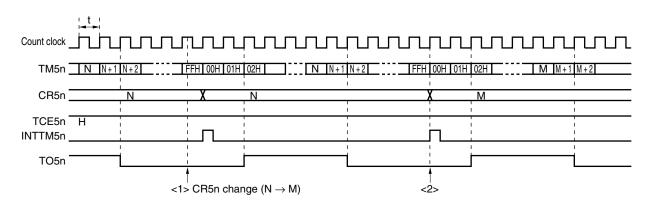
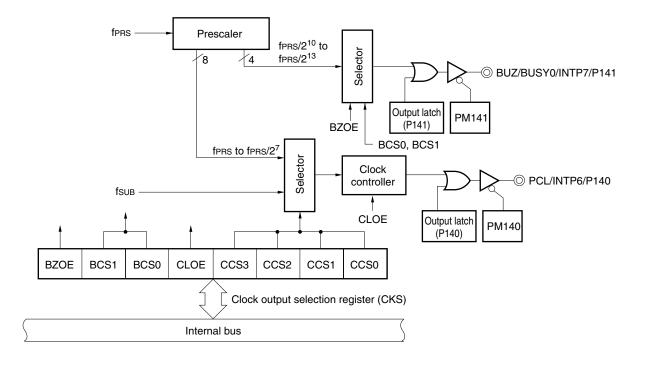

(2) Operation with CR5n changed

Figure 8-15. Timing of Operation with CR5n Changed



(a) CR5n value is changed from N to M before clock rising edge of FFH \rightarrow Value is transferred to CR5n at overflow immediately after change.

⁽b) CR5n value is changed from N to M after clock rising edge of FFH \rightarrow Value is transferred to CR5n at second overflow.

Caution When reading from CR5n between <1> and <2> in Figure 8-15, the value read differs from the actual value (read value: M, actual value of CR5n: N).

Figure 12-2. Block Diagram of Clock Output/Buzzer Output Controller (78K0/KE2, 78K0/KF2)

12.2 Configuration of Clock Output/Buzzer Output Controller

The clock output/buzzer output controller includes the following hardware.

Table 12-1.	I. Configuration of Clock Output/Buzzer Output Conti	roller
-------------	--	--------

Item	Configuration				
Control registers	Clock output selection register (CKS)				
	Port mode register 14 (PM14)				
	Port register 14 (P14)				

12.3 Registers Controlling Clock Output/Buzzer Output Controller

The following two registers are used to control the clock output/buzzer output controller.

- Clock output selection register (CKS)
- Port mode register 14 (PM14)

(1) Clock output selection register (CKS)

This register sets output enable/disable for clock output (PCL) and for the buzzer frequency output (BUZ), and sets the output clock.

CKS is set by a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation clears CKS to 00H.

Figure 13-12 shows the relationship between the analog input voltage and the A/D conversion result.

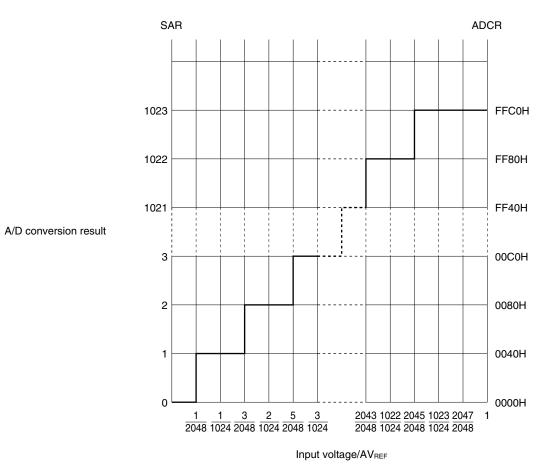


Figure 13-12. Relationship Between Analog Input Voltage and A/D Conversion Result

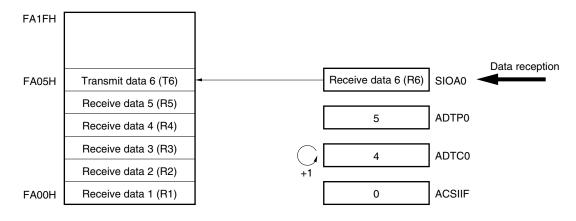
(3) Serial trigger register 0 (CSIT0)

This is an 8-bit register used to control execution/stop of automatic data transfer between buffer RAM and serial I/O shift register 0 (SIOA0).

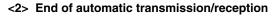
This register can be set by a 1-bit or 8-bit memory manipulation instruction. This register can be set when bit 6 (ATE0) of serial operation mode specification register 0 (CSIMA0) is 1. Reset signal generation clears this register to 00H.

Figure 17-4. Format of Serial Trigger Register 0 (CSIT0)

Address: FF92H After reset: 00H R/W


Symbol	7	6	5	4	3	2	<1>	<0>
CSIT0	0	0	0	0	0	0	ATSTP0	ATSTA0

ATSTP0	Automatic data transfer stop
0	_
1	Automatic data transfer stopped
ATSTA0	Automatic data transfer start
0	_
- 1	Automatic data transfer started


- Cautions 1. Even if ATSTP0 or ATSTA0 is set to 1, automatic transfer cannot be started/stopped until 1-byte transfer is complete.
 - 2. ATSTP0 and ATSTA0 change to 0 automatically after the interrupt signal INTACSI is generated.
 - 3. After automatic data transfer is stopped, the data address when the transfer stopped is stored in automatic data transfer address count register 0 (ADTC0). However, since no function to restart automatic data transfer is incorporated, when transfer is stopped by setting ATSTP0 = 1, start automatic data transfer by setting ATSTA0 to 1 after re-setting the registers.

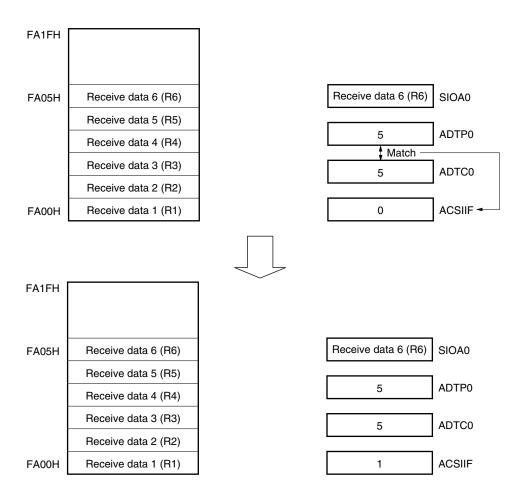
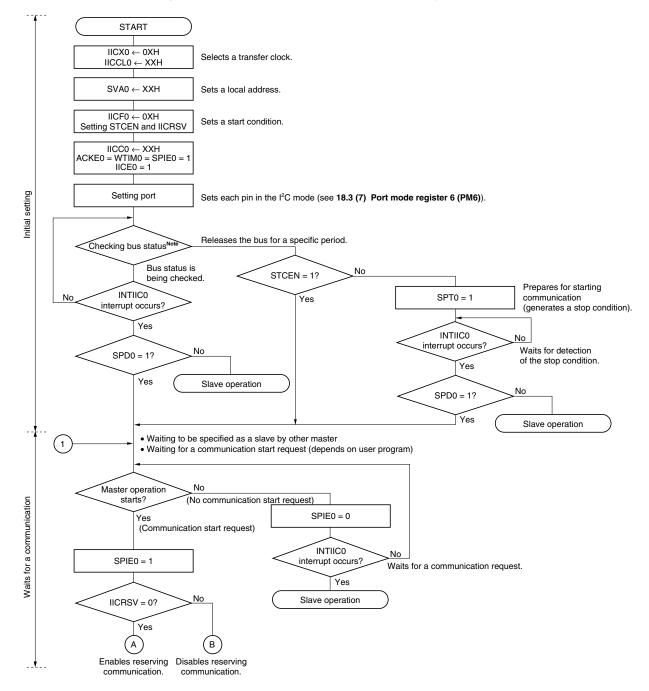
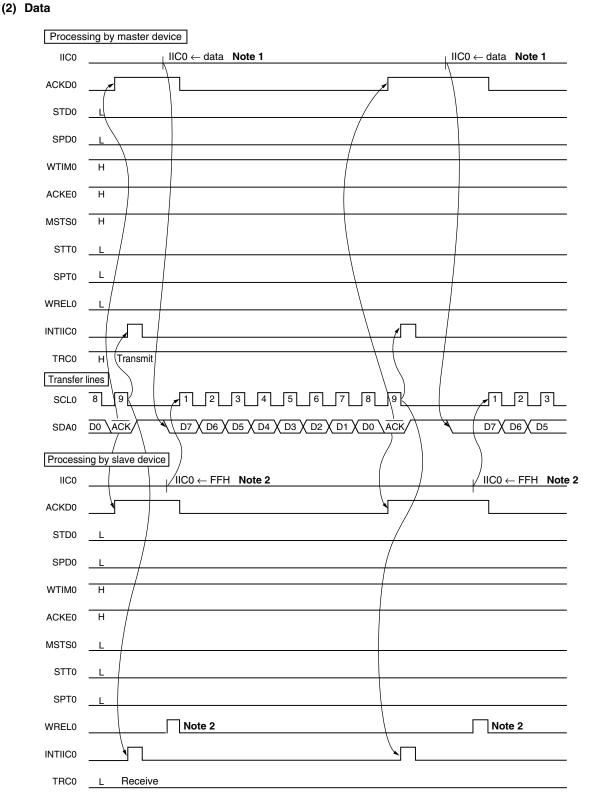
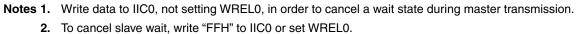


Figure 17-16. Internal Buffer RAM Operation in Automatic Transmission/Reception Mode (End of Transmission/Reception)

<1> End of 6th byte transmission/reception




(2) Master operation in multi-master system



Note Confirm that the bus is released (CLD0 bit = 1, DAD0 bit = 1) for a specific period (for example, for a period of one frame). If the SDA0 pin is constantly at low level, decide whether to release the I²C bus (SCL0 and SDA0 pins = high level) in conformance with the specifications of the product that is communicating.

Figure 18-27. Example of Master to Slave Communication (When 9-Clock Wait Is Selected for Both Master and Slave) (2/3)

RENESAS

Address: FF	E8H After r	eset: FFH I	R/W									
Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>				
PR0L	SREPR6	PPR5	PPR4	PPR3	PPR2	PPR1	PPR0	LVIPR				
Address: FFE9H After reset: FFH R/W												
Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>				
PR0H	TMPR010	TMPR000	TMPR50	TMPRH0	TMPRH1	DUALPR0	STPR6	SRPR6				
						CSIPR10						
						STPR0						
Address: FFEAH After reset: FFH R/W												
Symbol	7	<6>	<5>	<4>	<3>	<2>	<1>	<0>				
PR1L	1	PPR6	WTPR	KRPR	TMPR51	WTIPR	SRPR0	ADPR				
Address: FF	EBH After r	eset: FFH	R/W									
Symbol	7	6	5	4	3	2	1	<0>				
PR1H	1	1	1	1	1	1	1	IICPR0				
								DMUPR ^{Note}				
		-										
	XXPRX			Prio	rity level seled	ction						
	0	High priority	level									
			Low priority level									

Figure 20-14. Format of Priority Specification Flag Registers (PR0L, PR0H, PR1L, PR1H) (78K0/KD2)

Note Products whose flash memory is at least 48 KB only.

Caution Be sure to set bit 7 of PR1L and bits 1 to 7 of PR1H to 1.

27.9 Processing Time for Each Command When PG-FP4 or PG-FP5 Is Used (Reference)

The following table shows the processing time for each command (reference) when the PG-FP4 or PG-FP5 is used as a dedicated flash memory programmer.

Table 27-12. Processing Time for Each Command When PG-FP4 or PG-FP5 Is Used (Reference) (1/2)

Command of PG-FP4	Port: CSI-Internal-OSC (Internal high-speed oscillation	Port: UART-Ext-FP4CK (External main system clock (f _{EXCLK})), Speed: 115,200 bps				
	clock (fвн)), Speed: 2.5 MHz	Frequency: 2.0 MHz	Frequency: 20 MHz			
Signature	0.5 s (TYP.)	0.5 s (TYP.)	0.5 s (TYP.)			
Blankcheck	0.5 s (TYP.)	0.5 s (TYP.)	0.5 s (TYP.)			
Erase	0.5 s (TYP.)	0.5 s (TYP.)	0.5 s (TYP.)			
Program	2.5 s (TYP.)	5 s (TYP.)	5 s (TYP.)			
Verify	1.5 s (TYP.)	4 s (TYP.)	3.5 s (TYP.)			
E.P.V	3.5 s (TYP.)	6 s (TYP.)	6 s (TYP.)			
Checksum	0.5 s (TYP.)	0.5 s (TYP.)	0.5 s (TYP.)			
Security	0.5 s (TYP.)	0.5 s (TYP.)	0.5 s (TYP.)			

(1) Products with internal ROMs of the 32 KB

(2) Products with internal ROMs of the 60 KB

Command of PG-FP4Port: CSI-Internal-OSC (Internal high-speed oscillation clock (fRH)), Speed: 2.5 MHz		Port: UART-Ext-FP4CK (External main system clock (fexclk)), Speed: 115,200 bps				
	Frequency: 2.0 MHz	Frequency: 20 MHz				
Signature	0.5 s (TYP.)	0.5 s (TYP.)	0.5 s (TYP.)			
Blankcheck	1 s (TYP.)	1 s (TYP.)	1 s (TYP.)			
Erase	1 s (TYP.)	1 s (TYP.)	1 s (TYP.)			
Program	5 s (TYP.)	9 s (TYP.)	9 s (TYP.)			
Verify	2 s (TYP.)	6.5 s (TYP.)	6.5 s (TYP.)			
E.P.V	6 s (TYP.)	10.5 s (TYP.)	10.5 s (TYP.)			
Checksum	0.5 s (TYP.)	1 s (TYP.)	1 s (TYP.)			
Security	0.5 s (TYP.)	0.5 s (TYP.)	0.5 s (TYP.)			

Caution When executing boot swapping, do not use the E.P.V. command with the dedicated flash memory programmer.

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.

A/D Converter Characteristics

(TA = -40 to +85°C, 2.3 V \leq AVREF \leq VDD = EVDD \leq 5.5 V, Vss = EVss = AVss = 0 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	Res				10	bit	
Overall error ^{Notes 1, 2}	AINL	$4.0~V \leq AV_{\text{REF}} \leq 5.5~V$				±0.4	%FSR
		$2.7 \text{ V} \le \text{AV}_{\text{REF}} < 4.0 \text{ V}$				±0.6	%FSR
		$2.3 \text{ V} \leq AV_{\text{REF}} < 2.7$			±1.2	%FSR	
Conversion time	tconv	Conventional-	$4.0~V \leq AV_{\text{REF}} \leq 5.5~V$	6.1		36.7	μs
		specification	$2.7~V \leq AV_{\text{REF}} < 4.0~V$	12.2		36.7	μs
		Products (µPD78F05xx(A))	$2.3~V \leq AV_{\text{REF}} < 2.7~V$	27		66.6	μS
		Expanded-	$4.0~V \leq AV_{\text{REF}} \leq 5.5~V$	6.1		66.6	μs
		specification	$2.7~V \leq AV_{\text{REF}} < 4.0~V$	12.2		66.6	μs
		Products (µPD78F05xxA(A))	$2.3~V \leq AV_{\text{REF}} < 2.7~V$	27		66.6	μS
Zero-scale error ^{Notes 1, 2}	Ezs	$4.0~V \leq AV_{\text{REF}} \leq 5.5~V$				±0.4	%FSR
		$2.7~V \leq AV_{\text{REF}} < 4.0~V$				±0.6	%FSR
		$2.3~V \leq AV_{\text{REF}} < 2.7$			±0.6	%FSR	
Full-scale error ^{Notes 1, 2}	Efs	$4.0~V \leq AV_{\text{REF}} \leq 5.5$			±0.4	%FSR	
		$2.7~V \leq AV_{\text{REF}} < 4.0~V$				±0.6	%FSR
		$2.3~V \leq AV_{\text{REF}} < 2.7~V$				±0.6	%FSR
Integral non-linearity error ^{Note 1}	lιε	$4.0~V \leq AV_{\text{REF}} \leq 5.5~V$				±2.5	LSB
		$2.7~V \leq AV_{\text{REF}} < 4.0~V$				±4.5	LSB
		$2.3~V \leq AV_{\text{REF}} < 2.7~V$				±6.5	LSB
Differential non-linearity error Note 1	Dle	$4.0~V \leq AV_{\text{REF}} \leq 5.5$	5 V			±1.5	LSB
		$2.7 \text{ V} \leq AV_{\text{REF}} < 4.0 \text{ V}$				±2.0	LSB
		$2.3~V \leq AV_{\text{REF}} < 2.7$			±2.0	LSB	
Analog input voltage	VAIN		AVss		AVREF	V	

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

2. This value is indicated as a ratio (%FSR) to the full-scale value.

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.

DC Characteristics (4/4)

Parameter	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Supply current ^{Note 1}	IDD1	Operating mode	fxн = 20 MHz,	Square wave input		3.2	7.2	mA
			$V_{\text{DD}} = 5.0 \text{ V}^{\text{Note 2}}$	Resonator connection		4.5	9.0	mA
			fхн = 10 MHz,	Square wave input		1.6	3.7	mA
			$V_{DD} = 5.0 \ V^{Notes 2, 3}$	Resonator connection		2.3	5.1	mA
			fхн = 10 MHz	Square wave input		1.5	3.6	mA
			$V_{DD} = 3.0 \ V^{Notes 2, 3}$	Resonator connection		2.2	4.2	mA
			fхн = 5 MHz,	Square wave input		0.9	2.1	mA
			$V_{DD} = 3.0 V^{Notes 2, 3}$	Resonator connection		1.3	2.6	mA
			f _{RH} = 8 MHz, V _{DD} = 5.0 V ^{Note 4}			1.4	3.3	mA
			fsuв = 32.768 kHz,	Square wave input		6	93	μA
			$V_{\text{DD}} = 5.0 \text{ V}^{\text{Note 5}}$	Resonator connection		15	100	μA
	Idd2	HALT mode	fхн = 20 MHz,	Square wave input		0.8	3.4	mA
			$V_{\text{DD}} = 5.0 \text{ V}^{\text{Note 2}}$	Resonator connection		2.0	5.8	mA
			fхн = 10 MHz,	Square wave input		0.4	1.7	mA
			$V_{DD} = 5.0 \ V^{Notes 2, 3}$	Resonator connection		1.0	3.2	mA
			fхн = 5 MHz,	Square wave input		0.2	0.85	mA
			$V_{\text{DD}} = 3.0 \ V^{\text{Notes 2, 3}}$	Resonator connection		0.5	1.5	mA
			$f_{\text{RH}}=8 \text{ MHz}, \text{ V}_{\text{DD}}=5.0 \text{ V}^{\text{ Note 4}}$			0.4	1.6	mA
			fsuв = 32.768 kHz,	Square wave input		3.0	89	μA
			$V_{\text{DD}} = 5.0 \text{ V}^{\text{Note 5}}$	Resonator connection		12	93	μA
	DD3 ^{Note 6}	STOP mode T _A = -40 to +70 °C			1	60	μA	
					1	10	μA	
A/D converter operating current	IADC ^{Note 7}	$2.7 \text{ V} \le \text{AV}_{\text{REF}} \le \text{V}_{\text{DD}}, \text{ ADCS} = 1$				0.86	2.5	mA
Watchdog timer operating current	WDT ^{Note 8}	During 240 kHz internal low-speed oscillation clock operation				5	13	μA
LVI operating current	LVI Note 9						24	μA

Remarks 1. fxH: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)

2. free: Internal high-speed oscillation clock frequency

3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency or external subsystem clock frequency)

(Notes on next page)

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.

DC Characteristics (3/4)

(TA = -40 to +125°C, 2.7 V \leq VDD = EVDD \leq 5.5 V, AVREF \leq VDD, VSS = EVSS = AVSS = 0 V)

Parameter	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Output voltage, low	Vol1	P30 to P33, P40 to P47,		$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 4.0 \ mA \end{array} \end{array} \label{eq:VDD}$			0.7	V
		P50 to P57, P64 to P67, P70 to P77, P120, P130, P140 to P145	$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \\ I_{\text{OL1}} = 2.0 \ mA \end{array}$				0.7	V
	Vol2	P20 to P27	$AV_{REF} = V_{DD},$ Iol2 = 0.4 mA				0.4	V
		P121 to P124 IoL2 = 0.4 mA				0.4	V	
	Vol3	P60 to P63	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 8.0 \ mA \end{array} \end{array} \label{eq:eq:electropy}$				2.0	V
			$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 2.0 \ mA \end{array} \label{eq:DD}$				0.6	V
			$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \\ I_{\text{OL1}} = 2.0 \ mA \end{array}$				0.6	V
Input leakage current, high	Цінт	P00 to P06, P10 to P17, P30 to P33, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P120, P140 to P145, FLMD0, RESET	VI = VDD				5	μA
	ILIH2	P20 to P27 VI = AVREF = VDD				5	μA	
	Ілнз	P121 to 124	VI =	I/O port mode			5	μA
		(X1, X2, XT1, XT2)	VDD	OSC mode			20	μA
Input leakage current, low	Ilil1	P00 to P06, P10 to P17, P30 to P33, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P120, P140 to P145, FLMD0, RESET	Vi = Vss				-5	μA
		P20 to P27 VI = Vss, AVREF = VDD				-5	μA	
	Ililis	P121 to 124 (X1, X2, XT1, XT2)	Vı =	I/O port mode			-5	μA
			Vss	OSC mode			-20	μA
Pull-up resistor	p resistor Ru Vi = Vss			10	20	100	kΩ	
FLMD0 supply voltage	VIL	In normal operation mode			0		0.2V _{DD}	V
	VIH	In self-programming mode					VDD	V

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

