E·XF kenesas Electronics America Inc - UPD78F0535AGB-GAH-AX Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	78K/0
Core Size	8-Bit
Speed	20MHz
Connectivity	3-Wire SIO, I ² C, LINbus, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	55
Program Memory Size	60KB (60K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	ЗК х 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/upd78f0535agb-gah-ax

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

6.6.5 Clocks supplied to CPU and peripheral hardware

The following table shows the relation among the clocks supplied to the CPU and peripheral hardware, and setting of registers.

Table 6-4. Clocks Supplied to CPU and Peripheral Hardware, and Register Setting (78K0/KB2)

Supp	XSEL	MCM0	EXCLK	
Clock Supplied to CPU Clock Supplied to Peripheral Hardware				
Internal high-speed oscillation clock	0	×	×	
Internal high-speed oscillation clock X1 clock		1	0	0
	External main system clock	1	0	1
X1 clock	1	1	0	
External main system clock	1	1	1	

Remarks 1. The 78K0/KB2 is not provided with a subsystem clock.

- **2.** XSEL: Bit 2 of the main clock mode register (MCM)
 - MCM0: Bit 0 of MCM

EXCLK: Bit 7 of the clock operation mode select register (OSCCTL)

×: don't care

Table 6-5. Clocks Supplied to CPU and Peripheral Hardware, and Register Setting (78K0/KC2, 78K0/KD2, 78K0/KE2, and 78K0/KF2)

Suppli	Supplied Clock			MCM0	EXCLK
Clock Supplied to CPU Clock Supplied to Peripheral Hardware					
Internal high-speed oscillation clock		0	0	×	×
Internal high-speed oscillation clock	X1 clock	1	0	0	0
	External main system clock	1	0	0	1
X1 clock	X1 clock				
External main system clock		1	0	1	1
Subsystem clock	Internal high-speed oscillation clock	0	1	×	×
	X1 clock	1	1	0	0
		1	1	1	0
	External main system clock	1	1	0	1
		1	1	1	1

Remark XSEL: Bit 2 of the main clock mode register (MCM)

CSS: Bit 4 of the processor clock control register (PCC)

MCM0: Bit 0 of MCM

EXCLK: Bit 7 of the clock operation mode select register (OSCCTL)

×: don't care

Table 6-6. CPU Clock Transition and SFR Register Setting Examples (3/5)

(6) CPU clock changing from high-speed system clock (C) to internal high-speed oscillation clock (B)

(Setting sequence of SFR registers)			
Setting Flag of SFR Register	RSTOP	RSTS	MCM0
Status Transition			
$(C) \to (B)$	0	Confirm this flag is 1.	0
	(1	

Unnecessary if the CPU is operating with the internal high-speed oscillation clock

(7) CPU clock changing from high-speed system clock (C) to subsystem clock (D)^{Note}

Note The 78K0/KB2 is not provided with a subsystem clock.

Setting Flag of SFR Register	XTSTART	EXCLKS	OSCSELS	Waiting for Oscillation	CSS	
Status Transition				Stabilization		
$(C) \rightarrow (D) (XT1 clock)$	0	0	1	Necessary	1	
	1	×	×			
(C) \rightarrow (D) (external subsystem clock)	0	1	1	Unnecessary	1	

(Setting sequence of SEB registers)

Unnecessary if the CPU is operating with the subsystem clock

(8) CPU clock changing from subsystem clock (D) to internal high-speed oscillation clock (B)

Note The 78K0/KB2 is not provided with a subsystem clock.

(Setting sequence of SFR registers)				►
Setting Flag of SFR Register	RSTOP	RSTS	MCM0	CSS
Status Transition				
$(D) \to (B)$	0	Confirm this flag is 1.	0	0
		<	\uparrow	
	Unnecessary if the with the interr oscillati	e CPU is operating nal high-speed on clock	Unnecessary if XSEL is 0	

Remarks 1. (A) to (I) in Table 6-6 correspond to (A) to (I) in Figure 6-17 and 6-18.

2.	MCM0:	Bit 0 of the main clock mode register (MCM)
	EXCLKS, OSCSELS:	Bits 5 and 4 of the clock operation mode select register (OSCCTL)
	RSTS, RSTOP:	Bits 7 and 0 of the internal oscillation mode register (RCM)
	XTSTART, CSS:	Bits 6 and 4 of the processor clock control register (PCC)
	×:	Don't care

Figure 7-2. Block Diagram of 16-Bit Timer/Event Counter 01

- Cautions 1. The valid edge of TI010 and timer output (TO00) cannot be used for the P01 pin at the same time, and the valid edge of TI011 and timer output (TO01) cannot be used for the P06 pin at the same time. Select either of the functions.
 - 2. If clearing of bits 3 and 2 (TMC0n3 and TMC0n2) of 16-bit timer mode control register 0n (TMC0n) to 00 and input of the capture trigger conflict, then the captured data is undefined.
 - To change the mode from the capture mode to the comparison mode, first clear the TMC0n3 and TMC0n2 bits to 00, and then change the setting.
 A value that has been once captured remains stored in CR00n unless the device is reset. If the

A value that has been once captured remains stored in CR00n unless the device is reset. If the mode has been changed to the comparison mode, be sure to set a comparison value.

(1) 16-bit timer counter 0n (TM0n)

TMOn is a 16-bit read-only register that counts count pulses.

The counter is incremented in synchronization with the rising edge of the count clock.

- **Remark** n = 0: 78K0/KE2 products whose flash memory is less than 32 KB, and 78K0/KB2, 78K0/KC2, 78K0/KD2 products
 - n = 0, 1: 78K0/KE2 products whose flash memory is at least 48 KB, and 78K0/KF2 products

Address: FF	B7H After	reset: 00H	R/W					
Symbol	7	6	5	4	3	2	1	0
PRM01	ES111	ES110	ES011	ES010	0	0	PRM01	1 PRM010
	ES111	ES110		TIO	11 pin valid	edge se	lection	
	0	0	Falling edge					
	0	1	Rising edge					
	1	0	Setting prohibited					
	1	1	Both falling and rising edges					
			_					
	ES011	ES010		TIO	01 pin valid	edge se	lection	
	0	0	Falling edge					
	0	1	Rising edge					
	1	0	Setting prohi	bited				
	1	1	Both falling a	and rising edges				
	PRM011	PRM010		C	ount clock	selectior	า ^{Note 1}	
				fprs = 2 MH	z f _{PRS} =	5 MHz	fprs = 10 MHz	fprs = 20 MHz
	0	0	fprs ^{Note 2}	2 MHz	5 MHz		10 MHz	20 MHz ^{Note 3}

Figure 7-14. Format of Prescaler Mode Register 01 (PRM01)

PRM011	PRM010		Count clock selection ^{Note 1}				
			fprs = 2 MHz	fprs = 5 MHz	fprs = 10 MHz	fprs = 20 MHz	
0	0	fprs ^{Note 2}	2 MHz	5 MHz	10 MHz	20 MHz ^{Note 3}	
0	1	fprs/2 ⁴	125 kHz	312.5 kHz	625 kHz	1.25 MHz	
1	0	fprs/2 ⁶	31.25 kHz	78.125 kHz	156.25 kHz	312.5 kHz	
1	1	TI001 valid edd	De ^{Notes 4, 5}				

Notes 1. The frequency that can be used for the peripheral hardware clock (fPRs) differs depending on the power supply voltage and product specifications.

Supply Voltage	Conventional-specification Products (µPD78F05xx and 78F05xxD)	Expanded-specification Products (µPD78F05xxA and 78F05xxDA)
$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	$f_{PRS} \le 20 \text{ MHz}$	$f_{PRS} \le 20 \text{ MHz}$
$2.7~V \leq V_{\text{DD}} < 4.0~V$	$f_{PRS} \leq 10 \text{ MHz}$	
$\begin{array}{l} 1.8 \ V \leq V_{DD} < 2.7 \ V \\ (Standard products and \\ (A) \ grade \ products \ only) \end{array}$	fprs ≤ 5 MHz	fprs ≤ 5 MHz

(The values shown in the table above are those when fPRS = fXH (XSEL = 1).)

- 2. If the peripheral hardware clock (fPRs) operates on the internal high-speed oscillation clock (fRH) (XSEL = 0), when $1.8 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}$, the setting of PRM011 = PRM010 = 0 (count clock: fprs) is prohibited.
- **3.** This is settable only if 4.0 V \leq V_{DD} \leq 5.5 V.
- 4. The external clock from the TI001 pin requires a pulse longer than twice the cycle of the peripheral hardware clock (fprs).
- 5. Do not start timer operation with the external clock from the TI001 pin when the internal high-speed oscillation clock and high-speed system clock are stopped while the CPU operates with the subsystem clock, or when in the STOP mode.

Remark fPRs: Peripheral hardware clock frequency

A pulse width can be measured in the following three ways.

- Measuring the pulse width by using two input signals of the TI00n and TI01n pins (free-running timer mode)
- Measuring the pulse width by using one input signal of the TI00n pin (free-running timer mode)
- Measuring the pulse width by using one input signal of the TI00n pin (clear & start mode entered by the TI00n pin valid edge input)

Remarks 1. For the setting of the I/O pins, see **7.3 (5)** Port mode register 0 (PM0).

2. For how to enable the INTTM00n signal interrupt, see CHAPTER 20 INTERRUPT FUNCTIONS.

(1) Measuring the pulse width by using two input signals of the TI00n and TI01n pins (free-running timer mode)

Set the free-running timer mode (TMC0n3 and TMC0n2 = 01). When the valid edge of the TI00n pin is detected, the count value of TM0n is captured to CR01n. When the valid edge of the TI01n pin is detected, the count value of TM0n is captured to CR00n. Specify detection of both the edges of the TI00n and TI01n pins.

By this measurement method, the previous count value is subtracted from the count value captured by the edge of each input signal. Therefore, save the previously captured value to a separate register in advance.

If an overflow occurs, the value becomes negative if the previously captured value is simply subtracted from the current captured value and, therefore, a borrow occurs (bit 0 (CY) of the program status word (PSW) is set to 1). If this happens, ignore CY and take the calculated value as the pulse width. In addition, clear bit 0 (OVF0n) of 16-bit timer mode control register 0n (TMC0n) to 0.

• TMC0n = 04H, PRM0n = F0H, CRC0n = 05H

n = 0, 1: 78K0/KE2 products whose flash memory is at least 48 KB, and 78K0/KF2 products

(9) Capture operation

(a) When valid edge of TI00n is specified as count clock

When the valid edge of TI00n is specified as the count clock, the capture register for which TI00n is specified as a trigger does not operate correctly.

(b) Pulse width to accurately capture value by signals input to TI01n and TI00n pins

To accurately capture the count value, the pulse input to the TI00n and TI01n pins as a capture trigger must be wider than two count clocks selected by PRM0n (see **Figure 7-9**).

(c) Generation of interrupt signal

The capture operation is performed at the falling edge of the count clock but the interrupt signals (INTTM00n and INTTM01n) are generated at the rising edge of the next count clock (see **Figure 7-9**).

(d) Note when CRC0n1 (bit 1 of capture/compare control register 0n (CRC0n)) is set to 1

When the count value of the TM0n register is captured to the CR00n register in the phase reverse to the signal input to the TI00n pin, the interrupt signal (INTTM00n) is not generated after the count value is captured. If the valid edge is detected on the TI01n pin during this operation, the capture operation is not performed but the INTTM00n signal is generated as an external interrupt signal. Mask the INTTM00n signal when the external interrupt is not used.

(10) Edge detection

(a) Specifying valid edge after reset

If the operation of the 16-bit timer/event counter 0n is enabled after reset and while the TI00n or TI01n pin is at high level and when the rising edge or both the edges are specified as the valid edge of the TI00n or TI01n pin, then the high level of the TI00n or TI01n pin is detected as the rising edge. Note this when the TI00n or TI01n pin is pulled up. However, the rising edge is not detected when the operation is once stopped and then enabled again.

(b) Sampling clock for eliminating noise

The sampling clock for eliminating noise differs depending on whether the valid edge of TI00n is used as the count clock or capture trigger. In the former case, the sampling clock is fixed to fPRs. In the latter, the count clock selected by PRM0n is used for sampling.

When the signal input to the TI00n pin is sampled and the valid level is detected two times in a row, the valid edge is detected. Therefore, noise having a short pulse width can be eliminated (see **Figure 7-9**).

(11) Timer operation

The signal input to the TI00n/TI01n pin is not acknowledged while the timer is stopped, regardless of the operation mode of the CPU.

Remarks 1. fprs: Peripheral hardware clock frequency

- n = 0: 78K0/KE2 products whose flash memory is less than 32 KB, and 78K0/KB2, 78K0/KC2, 78K0/KD2 products
 - n = 0, 1: 78K0/KE2 products whose flash memory is at least 48 KB, and 78K0/KF2 products

(1) Watch timer

When the peripheral hardware clock or subsystem clock is used, interrupt request signals (INTWT) are generated at preset intervals.

Interrupt Time	When Operated at fsub = 32.768 kHz	When Operated at fPRS = 2 MHz	When Operated at fPRS = 5 MHz	When Operated at fprs = 10 MHz	When Operated at fprs = 20 MHz
2 ⁴ /fw	488 <i>µ</i> s	1.02 ms	410 <i>µ</i> s	205 <i>µ</i> s	102 <i>μ</i> s
2 ⁵ /fw	977 <i>μ</i> s	2.05 ms	819 <i>µ</i> s	410 <i>µ</i> s	205 <i>µ</i> s
2 ¹³ /fw	0.25 s	0.52 s	0.210 s	0.105 s	52.5 ms
2 ¹⁴ /fw	0.5 s	1.05 s	0.419 s	0.210 s	0.105 s

Table 10-1. Watch Timer Interrupt Time

Remark fprs: Peripheral hardware clock frequency

- fsub: Subsystem clock frequency
- fw: Watch timer clock frequency (fPRs/2⁷ or fsub)

(2) Interval timer

Interrupt request signals (INTWTI) are generated at preset time intervals.

Interval Time	When Operated at fsub = 32.768 kHz	When Operated at fPRs = 2 MHz	When Operated at fPRs = 5 MHz	When Operated at fPRS = 10 MHz	When Operated at fPRS = 20 MHz
2 ⁴ /fw	488 <i>µ</i> s	1.02 ms	410 <i>μ</i> s	205 <i>µ</i> s	102 <i>µ</i> s
2⁵/fw	977 <i>μ</i> s	2.05 ms	820 <i>µ</i> s	410 <i>µ</i> s	205 <i>μ</i> s
2 ⁶ /fw	1.95 ms	4.10 ms	1.64 ms	820 <i>µ</i> s	410 <i>μ</i> s
2 ⁷ /fw	3.91 ms	8.20 ms	3.28 ms	1.64 ms	820 <i>μ</i> s
2 ⁸ /fw	7.81 ms	16.4 ms	6.55 ms	3.28 ms	1.64 ms
2 ⁹ /fw	15.6 ms	32.8 ms	13.1 ms	6.55 ms	3.28 ms
2 ¹⁰ /fw	31.3 ms	65.5 ms	26.2 ms	13.1 ms	6.55 ms
2 ¹¹ /fw	62.5 ms	131.1 ms	52.4 ms	26.2 ms	13.1 ms

Table 10-2. Interval Timer Interval Time

Remark fPRS: Peripheral hardware clock frequency

fsub: Subsystem clock frequency

fw: Watch timer clock frequency (fprs/2⁷ or fsub)

13.4 A/D Converter Operations

13.4.1 Basic operations of A/D converter

- <1> Set bit 0 (ADCE) of the A/D converter mode register (ADM) to 1 to start the operation of the comparator.
- <2> Set channels for A/D conversion to analog input by using the A/D port configuration register (ADPC) and set to input mode by using port mode register 2 (PM2).
- <3> Set A/D conversion time by using bits 5 to 1 (FR2 to FR0, LV1, and LV0) of ADM.
- <4> Select one channel for A/D conversion using the analog input channel specification register (ADS).
- <5> Start the conversion operation by setting bit 7 (ADCS) of ADM to 1. (<6> to <12> are operations performed by hardware.)
- <6> The voltage input to the selected analog input channel is sampled by the sample & hold circuit.
- <7> When sampling has been done for a certain time, the sample & hold circuit is placed in the hold state and the sampled voltage is held until the A/D conversion operation has ended.
- <8> Bit 9 of the successive approximation register (SAR) is set. The series resistor string voltage tap is set to (1/2) AVREF by the tap selector.
- <9> The voltage difference between the series resistor string voltage tap and sampled voltage is compared by the voltage comparator. If the analog input is greater than (1/2) AV_{REF}, the MSB of SAR remains set to 1. If the analog input is smaller than (1/2) AV_{REF}, the MSB is reset to 0.
- <10> Next, bit 8 of SAR is automatically set to 1, and the operation proceeds to the next comparison. The series resistor string voltage tap is selected according to the preset value of bit 9, as described below.
 - Bit 9 = 1: (3/4) AVREF
 - Bit 9 = 0: (1/4) AVREF

The voltage tap and sampled voltage are compared and bit 8 of SAR is manipulated as follows.

- Analog input voltage \geq Voltage tap: Bit 8 = 1
- Analog input voltage < Voltage tap: Bit 8 = 0
- <11> Comparison is continued in this way up to bit 0 of SAR.
- <12> Upon completion of the comparison of 10 bits, an effective digital result value remains in SAR, and the result value is transferred to the A/D conversion result register (ADCR, ADCRH) and then latched.

At the same time, the A/D conversion end interrupt request (INTAD) can also be generated.

<13> Repeat steps <6> to <12>, until ADCS is cleared to 0.

To stop the A/D converter, clear ADCS to 0.

To restart A/D conversion from the status of ADCE = 1, start from <5>. To start A/D conversion again when ADCE = 0, set ADCE to 1, wait for 1 μ s or longer, and start <5>. To change a channel of A/D conversion, start from <4>.

Caution Make sure the period of <1> to <5> is 1 μ s or more.

Remark Two types of A/D conversion result registers are available.

- ADCR (16 bits): Store 10-bit A/D conversion value
- ADCRH (8 bits): Store 8-bit A/D conversion value

(3) Baud rate generator control register 0 (BRGC0)

This register selects the base clock of serial interface UART0 and the division value of the 5-bit counter. BRGC0 can be set by an 8-bit memory manipulation instruction. Reset signal generation sets this register to 1FH.

Figure 14-4. Format of Baud Rate Generator Control Register 0 (BRGC0)

Address: FF71H After reset: 1FH R/W

Symbol	7	6	5	4	3	2	1	0
BRGC0	TPS01	TPS00	0	MDL04	MDL03	MDL02	MDL01	MDL00

TPS01	TPS00	Base clock (fxcLk0) selection ^{Note 1}					
			fprs = 2 MHz	fprs = 5 MHz	fprs = 10 MHz	fprs = 20 MHz	
0	0	TM50 output ^{Note 2}					
0	1	fprs/2	1 MHz	2.5 MHz	5 MHz	10 MHz	
1	0	fprs/2 ³	250 kHz	625 kHz	1.25 MHz	2.5 MHz	
1	1	fprs/2⁵	62.5 kHz	156.25 kHz	312.5 kHz	625 kHz	

MDL04	MDL03	MDL02	MDL01	MDL00	k	Selection of 5-bit counter output clock
0	0	×	×	×	×	Setting prohibited
0	1	0	0	0	8	fxclko/8
0	1	0	0	1	9	fxclko/9
0	1	0	1	0	10	fxclko/10
•	•	•	•	•	•	•
•	•	•	•	•	•	•
•	•	•	•	•	•	•
•	•	•	•	•	•	•
•	•	•	•	•	•	•
1	1	0	1	0	26	fxclk0/26
1	1	0	1	1	27	fxclko/27
1	1	1	0	0	28	fxclk0/28
1	1	1	0	1	29	fxclk0/29
1	1	1	1	0	30	fxclk0/30
1	1	1	1	1	31	fxclko/31

Note1. The frequency that can be used for the peripheral hardware clock (fprs) differs depending on the power supply voltage and product specifications.

Supply Voltage	Conventional-specification Products (µPD78F05xx and 78F05xxD)	Expanded-specification Products (μPD78F05xxA and 78F05xxDA)
$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	$f_{PRS} \le 20 \text{ MHz}$	$f_{PRS} \le 20 \text{ MHz}$
$2.7~V \leq V_{\text{DD}} < 4.0~V$	fprs ≤ 10 MHz	
$\begin{array}{l} 1.8 \ V \leq V_{\text{DD}} < 2.7 \ V \\ (\text{Standard products and} \\ (\text{A}) \ \text{grade products only}) \end{array}$	$f_{PRS} \leq 5 \text{ MHz}$	fprs ≤ 5 MHz

(The values shown in the table above are those when fPRS = fXH (XSEL = 1).)

15.4 Operation of Serial Interface UART6

Serial interface UART6 has the following two modes.

- Operation stop mode
- Asynchronous serial interface (UART) mode

15.4.1 Operation stop mode

In this mode, serial communication cannot be executed; therefore, the power consumption can be reduced. In addition, the pins can be used as ordinary port pins in this mode. To set the operation stop mode, clear bits 7, 6, and 5 (POWER6, TXE6, and RXE6) of ASIM6 to 0.

(1) Register used

The operation stop mode is set by asynchronous serial interface operation mode register 6 (ASIM6). ASIM6 can be set by a 1-bit or 8-bit memory manipulation instruction. Reset signal generation sets this register to 01H.

Address: FF50H After reset: 01H R/W

Symbol	<7>	<6>	<5>	4	3	2	1	0
ASIM6	POWER6	TXE6	RXE6	PS61	PS60	CL6	SL6	ISRM6

POWER6	Enables/disables operation of internal operation clock
O ^{Note 1}	Disables operation of the internal operation clock (fixes the clock to low level) and asynchronously
	resets the internal circuit ^{Note 2} .

TXE6	Enables/disables transmission
0	Disables transmission operation (synchronously resets the transmission circuit).

RXE6	Enables/disables reception
0	Disables reception (synchronously resets the reception circuit).

- **Notes 1.** If POWER6 = 0 is set while transmitting data, the output of the TxD6 pin will be fixed to high level (if TXDLV6 = 0). Furthermore, the input from the RxD6 pin will be fixed to high level.
 - 2. Asynchronous serial interface reception error status register 6 (ASIS6), asynchronous serial interface transmission status register 6 (ASIF6), bit 7 (SBRF6) and bit 6 (SBRT6) of asynchronous serial interface control register 6 (ASICL6), and receive buffer register 6 (RXB6) are reset.
- Caution Clear POWER6 to 0 after clearing TXE6 and RXE6 to 0 to stop the operation. To start the communication, set POWER6 to 1, and then set TXE6 or RXE6 to 1.
- Remark To use the RxD6/P14 and TxD6/P13 pins as general-purpose port pins, see CHAPTER 5 PORT FUNCTIONS.

The relationship between the register settings and pins is shown below.

CSIAE0	ATE0	MASTER0	PM143	P143	PM144	P144	PM142	P142	Serial I/O	Serial Clock		Pin Function	
									Shift Register 0 Operation	Counter Operation Control	SIA0/ P143	SOA0/ P144	SCKA0/ P142
0	×	×	× ^{Note 1}	Operation stopped	Clear	P143	P144	P142					
1	0	0	1 ^{Note 2}	× ^{Note 2}	0 ^{Note 3}	0 ^{Note 3}	1	×	Operation enabled	Count operation	SIA0 ^{Note 2}	SOA0 ^{Note 3}	SCKA0 (input)
		1					0	1					SCKA0 (output)

Table 17-3. Relationship Between Register Settings and Pins

Notes 1. Can be set as port function.

- 2. Can be used as P143 when only transmission is performed. Clear bit 2 (RXEA0) of CSIMA0 to 0.
- 3. Can be used as P144 when only reception is performed. Clear bit 3 (TXEA0) of CSIMA0 to 0.

Remark×:don't careCSIAE0:Bit 7 of serial operation mode specification register 0 (CSIMA0)ATE0:Bit 6 of CSIMA0MASTER0:Bit 4 of CSIMA0PM14×:Port mode registerP14×:Port output latch

Address	: FFABH	After re	eset: 00H	R/W ^{Note}							
Symbol	<7>	<6>	5	4	3	2	<1>	<0>			
IICF0	STCF	IICBSY	0	0	0	0	STCEN	IICRSV			
	STCF	STT0 clear flag									
	0	Generate	Generate start condition								
	1	Start cond	dition gene	ration unsu	ccessful: cl	ear STT0	flag				
	Condition for clearing (STCF = 0)						Condition for setting (STCF = 1)				
 Cleared by STT0 = 1 When IICE0 = 0 (operation stop) Reset 						 Generating start condition unsuccessful and STT0 bit cleared to 0 when communication reservation is disabled (IICRSV = 1). 					

Figure 18-7. Format of IIC Flag Register 0 (IICF0)

IICBSY	l ² C bus status flag					
0	Bus release status (communication initial status when STCEN = 1)					
1	Bus communication status (communication initial status when STCEN = 0)					
Condition	n for clearing (IICBSY = 0)	Condition for setting (IICBSY = 1)				
DetectWhenReset	ion of stop condition IICE0 = 0 (operation stop)	 Detection of start condition Setting of IICE0 bit when STCEN = 0 				

STCEN	Initial start enable trigger					
0	After operation is enabled (IICE0 = 1), enable generation of a start condition upon detection of a stop condition.					
1	After operation is enabled (IICE0 = 1), enable generation of a start condition without detecting a stop condition.					
Condition	for clearing (STCEN = 0)	Condition for setting (STCEN = 1)				
DetectionReset	on of start condition	Set by instruction				

IICRSV	Communication reservation function disable bit					
0	Enable communication reservation					
1	Disable communication reservation					
Condition for clearing (IICRSV = 0)		Condition for setting (IICRSV = 1)				
Cleared by instructionReset		Set by instruction				

Note Bits 6 and 7 are read-only.

Cautions 1. Write to STCEN bit only when the operation is stopped (IICE0 = 0).

- As the bus release status (IICBSY = 0) is recognized regardless of the actual bus status when STCEN = 1, when generating the first start condition (STT0 = 1), it is necessary to verify that no third party communications are in progress in order to prevent such communications from being destroyed.
- 3. Write to IICRSV bit only when the operation is stopped (IICE0 = 0).

Remark STT0: Bit 1 of IIC control register 0 (IICC0) IICE0: Bit 7 of IIC control register 0 (IICC0)

Figure 18-22. Communication Reservation Protocol

- **Note** The communication reservation operation executes a write to IIC shift register 0 (IIC0) when a stop condition interrupt request occurs.
- Remark
 STT0:
 Bit 1 of IIC control register 0 (IICC0)

 MSTS0:
 Bit 7 of IIC status register 0 (IICS0)

 IIC0:
 IIC shift register 0
- (2) When communication reservation function is disabled (bit 0 (IICRSV) of IIC flag register 0 (IICF0) = 1) When bit 1 (STT0) of IIC control register 0 (IICC0) is set to 1 when the bus is not used in a communication during bus communication, this request is rejected and a start condition is not generated. The following two statuses are included in the status where bus is not used.
 - When arbitration results in neither master nor slave operation
 - When an extension code is received and slave operation is disabled (ACK is not returned and the bus was released when bit 6 (LREL0) of IICC0 register was set to 1)

To confirm whether the start condition was generated or request was rejected, check STCF flag (bit 7 of IICF0). The time shown in Table 18-7 is required until STCF flag is set to 1 after setting STT0 = 1. Therefore, secure the time by software.

(2) Interrupt mask flag registers (MK0L, MK0H, MK1L, MK1H)

The interrupt mask flags are used to enable/disable the corresponding maskable interrupt servicing.

MK0L, MK0H, MK1L, and MK1H are set by a 1-bit or 8-bit memory manipulation instruction. When MK0L and MK0H, and MK1L and MK1H are combined to form 16-bit registers MK0 and MK1, they are set by a 16-bit memory manipulation instruction.

Reset signal generation sets these registers to FFH.

Figure 20-7. Format of Interrupt Mask Flag Registers (MK0L, MK0H, MK1L, MK1H) (78K0/KB2)

Address: FF	E4H After r	eset: FFH	R/W							
Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>		
MK0L	SREMK6	PMK5	PMK4	PMK3	PMK2	PMK1	PMK0	LVIMK		
Address: FFE5H After reset: FFH R/W										
Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>		
МКОН	TMMK010	ТММК000	TMMK50	TMMKH0	TMMKH1	DUALMK0	STMK6	SRMK6		
						CSIMK10				
						STMK0				
Address: FF	E6H After r	eset: FFH	R/W							
Symbol	7	6	5	4	<3>	2	<1>	<0>		
MK1L	1	1	1	1	TMMK51	1	SRMK0	ADMK		
Address: FF	E7H After r	eset: FFH	R/W							
Symbol	7	6	5	4	3	2	1	<0>		
MK1H	1	1	1	1	1	1	1	IICMK0		
	ХХМКХ	Interrupt servicing control								
	0	Interrupt servicing enabled								
	1	Interrupt servicing disabled								

Caution Be sure to set bits 2, 4 to 7 of MK1L and bits 1 to 7 of MK1H to 1.

Figure 25-8. Timing of Low-Voltage Detector Interrupt Signal Generation (Detects Level of Input Voltage from External Input Pin (EXLVI))

- **Notes 1.** The LVIMK flag is set to "1" by reset signal generation.
 - 2. The interrupt request signal (INTLVI) is generated and the LVIF and LVIIF flags may be set (1).
 - 3. If LVION is cleared (0) in a state below the LVI detection voltage, an INTLVI signal is generated and LVIIF becomes 1.
- Remark <1> to <8> in Figure 25-8 above correspond to <1> to <8> in the description of "When starting operation" in 25.4.2 (2) When detecting level of input voltage from external input pin (EXLVI).

27.5 Communication Mode

Communication between the dedicated flash memory programmer and the 78K0/Kx2 microcontrollers is established by serial communication via CSI10 or UART6 of the 78K0/Kx2 microcontrollers.

(1) CSI10

Transfer rate: 2.4 kHz to 2.5 MHz

(2) UART6

Transfer rate: 115200 bps

Figure 27-5. Communication with Dedicated Flash memory programmer (UART6)

Dedicated flash memory programmer

FLMD0		FLMD0	
Vdd		VDD/EVDD/A	VREF
GND		Vss/EVss/AV	/ss
/RESET		RESET	
SI/RxD	•	TxD6	AA
SO/TxD		RxD6	78K0/Kx2
CLK		EXCLK	microcontrollers

(2) Non-port functions

Port		78K0/KB2	78K0/KC2			78K0/KD2	78K0/KE2	78K0/KF2			
		30/36 Pins	38 Pins	44 Pins	48 Pins	52 Pins	64 Pins	80 Pins			
Power supply, ground		Vdd, EVdd ^{Note 1} , Vss, EVss ^{Note 1} , AVref, AVss	Vdd, AVref, Vss	s, AVss	Vdd, EVdd, Vss, EVss, AVref, AVss						
Reg	gulator	REGC	REGC								
Res	set	RESET									
Clock oscillation		X1, X2, EXCLK	X1, X2, XT1, X	X1, X2, XT1, XT2, EXCLK, EXCLKS							
Writ flas	ting to h memory	FLMD0	FLMD0								
Inte	rrupt	INTP0 to INTP	5		INTP0 to INTP6		INTP0 to INTP7				
Key	r interrupt	-	KR0, KR1	KR0 to KR3		KR0 to KR7					
	ТМ00	TI000, TI010, TO00									
	TM01	- TI001 ^{Note 2} , TI011 ^{Note 2} , TO01 ^{Note 2}									
Jer	TM50	TI50, TO50									
Tin	TM51	TI51, TO51									
	тмно	ТОНО									
	TMH1	ТОН1									
	UART0	RxD0, TxD0									
	UART6	RxD6, TxD6									
ee	IIC0	SCL0, SDA0	CL0, SDA0 SCL0, SDA0, EXSCL0								
terfa	CSI10	SCK10, SI10, SO10									
Serial in	CSI11		- SCK11 ^{Note 2} , SI11 ^{Note 2} , SO11 ^{Note 2} , SSI11 ^{Note 2}								
0,	CSIA0	- SCK SOA STBO						SCKAO, SIAO, SOAO, BUSYO, STBO			
A/D converter		ANI0 to ANI3	ANI0 to ANI5	ANI0 to ANI7							
Clock output			_		PCL						
Buzzer output				-			BUZ				
Low dete	/-voltage ector (LVI)	EXLVI									
On-chip debug function		OCD0A, OCD1A, OCD0B, OCD1B (mounted only onto µPD78F05xxD and 78F05xxDA (products with on-chip debug function))									

Notes 1. This is not mounted onto 30-pin products.

2. This is not mounted onto the 78K0/KE2 products whose flash memory is less than 32 KB.

Caution The pins mounted depend on the product. Refer to Caution 2 at the beginning of this chapter.

AC Timing Test Points

External Main System Clock Timing, External Subsystem Clock Timing

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.

Supply Voltage Rise Time (TA = -40 to +125°C, Vss = EVss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Maximum time to rise to 2.7 V (V_DD (MIN.)) (V_DD: 0 V \rightarrow 2.7 V)	t pup1	POCMODE (option byte) = 0, when $\overrightarrow{\text{RESET}}$ input is not used			3.6	ms
Maximum time to rise to 2.7 V (V _{DD} (MIN.)) (releasing $\overrightarrow{\text{RESET}}$ input \rightarrow V _{DD} : 2.7 V)	tpup2	POCMODE (option byte) = 0, when RESET input is used			1.9	ms

Supply Voltage Rise Time Timing

 \bullet When $\overline{\text{RESET}}$ pin input is not used

• When $\overline{\text{RESET}}$ pin input is used

Figure B-4. For 48-Pin GA Package

: Exchange adapter area: Components up to 17.45 mm in height can be mounted^{Note} Emulation probe tip area: Components up to 24.45 mm in height can be mounted Note Note Height can be adjusted by using space adapters (each adds 2.4 mm)

: Exchange adapter area: Components up to 17.45 mm in height can be mounted^{Note} Components up to 24.45 mm in height can be mounted^{Note} Emulation probe tip area:

Note Height can be adjusted by using space adapters (each adds 2.4 mm)