

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	78K/0
Core Size	8-Bit
Speed	20MHz
Connectivity	3-Wire SIO, I ² C, LINbus, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	55
Program Memory Size	96KB (96K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	5K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	·
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/upd78f0536aga-hab-ax

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

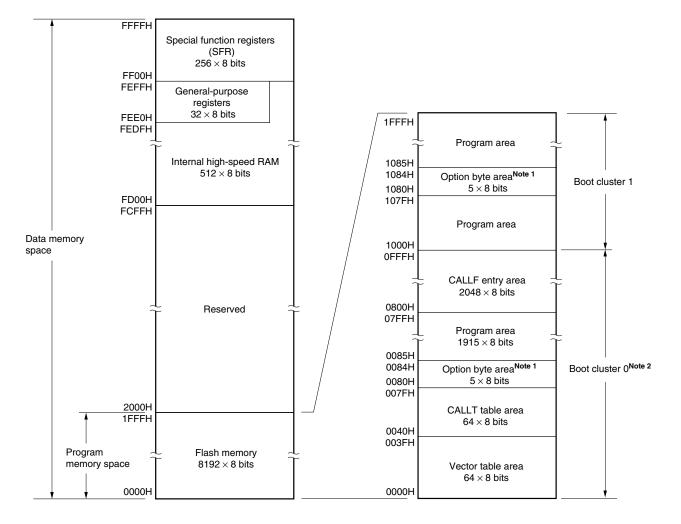
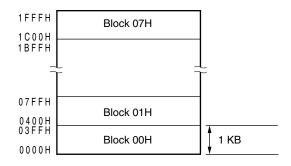



Figure 3-1. Memory Map (µPD78F0500 and 78F0500A)

Notes 1. When boot swap is not used: Set the option bytes to 0080H to 0084H.

When boot swap is used: Set the option bytes to 0080H to 0084H and 1080H to 1084H.

- 2. Writing boot cluster 0 can be prohibited depending on the setting of security (see 27.8 Security Settings).
- **Remark** The flash memory is divided into blocks (one block = 1 KB). For the address values and block numbers, see **Table 3-3 Correspondence Between Address Values and Block Numbers in Flash Memory**.

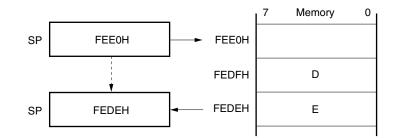
3.4.9 Stack addressing

[Function]

The stack area is indirectly addressed with the stack pointer (SP) contents.

This addressing method is automatically employed when the PUSH, POP, subroutine call and return instructions are executed or the register is saved/reset upon generation of an interrupt request.

With stack addressing, only the internal high-speed RAM area can be accessed.


[Description example]

PUSH DE; when saving DE register

Operation code

1 0 1 1 0 1 0 1

[Illustration]

5.4 Port Function Operations

Port operations differ depending on whether the input or output mode is set, as shown below.

5.4.1 Writing to I/O port

(1) Output mode

A value is written to the output latch by a transfer instruction, and the output latch contents are output from the pin. Once data is written to the output latch, it is retained until data is written to the output latch again. The data of the output latch is cleared when a reset signal is generated.

(2) Input mode

A value is written to the output latch by a transfer instruction, but since the output buffer is off, the pin status does not change.

Once data is written to the output latch, it is retained until data is written to the output latch again. The data of the output latch is cleared when a reset signal is generated.

5.4.2 Reading from I/O port

(1) Output mode

The output latch contents are read by a transfer instruction. The output latch contents do not change.

(2) Input mode

The pin status is read by a transfer instruction. The output latch contents do not change.

5.4.3 Operations on I/O port

(1) Output mode

An operation is performed on the output latch contents, and the result is written to the output latch. The output latch contents are output from the pins.

Once data is written to the output latch, it is retained until data is written to the output latch again. The data of the output latch is cleared when a reset signal is generated.

(2) Input mode

The pin level is read and an operation is performed on its contents. The result of the operation is written to the output latch, but since the output buffer is off, the pin status does not change.

The data of the output latch is cleared when a reset signal is generated.

5.5 Settings of Port Mode Register and Output Latch When Using Alternate Function

To use the alternate function of a port pin, set the port mode register and output latch as shown in Table 5-6.

Remark The port pins mounted depend on the product. See Table 5-3. Port Functions.

Pin Name	Alternate Function	PM××	P××	
	Function Name	I/O		
P30 to P32	INTP1 to INTP3	Input	1	×
P33	INTP4	Input	1	×
	TI51	Input	1	×
	TO51	Output	0	0
P60	SCL0	I/O	0	0
P61	SDA0	I/O	0	0
P62	EXSCL0	Input	1	×
P70 to P77	KR0 to KR7	Input	1	×
P120	INTP0	Input	1	×
	EXLVI	Input	1	×
P121	X1 ^{Note}	-	×	×
P122	X2 ^{Note}	_	х	×
	EXCLK ^{Note}	Input	×	×
P123	XT1 ^{Note}	-	×	×
P124	XT2 ^{Note}	-	×	×
	EXCLKS ^{Note}	Input	×	×
P140	PCL	Output	0	0
	INTP6	Input	1	×
P141	BUZ	Output	0	0
	INTP7	Input	1	×
	BUSY0	Input	1	×
P142	SCKAO	Input	1	×
		Output	0	1
P143	SIA0	Input	1	×
P144	SOA0	Output	0	0
P145	STB0	Output	0	0

Table 5-6. Settings of Port Mode Register and Output Latch When Using Alternate Function (2/2)

- Note When using the P121 to P124 pins to connect a resonator for the main system clock (X1, X2) or subsystem clock (XT1, XT2), or to input an external clock for the main system clock (EXCLK) or subsystem clock (EXCLKS), the X1 oscillation mode, XT1 oscillation mode, or external clock input mode must be set by using the clock operation mode select register (OSCCTL) (for details, see 6.3 (1) Clock operation mode select register (OSCCTL) and (3) Setting of operation mode for subsystem clock pin). The reset value of OSCCTL is 00H (all of the P121 to P124 are I/O port pins). At this time, setting of PM121 to PM124 and P121 to P124 is not necessary.
- Remarks 1. ×: Don't care
 - PM××: Port mode register
 - Pxx: Port output latch
 - X1, X2, P31, and P32 of the product with an on-chip debug function (μPD78F05xxD and 78F05xxDA) can be used as on-chip debug mode setting pins (OCD0A, OCD0B, OCD1A, and OCD1B) when the on-chip debug function is used. For how to connect an on-chip debug emulator (QB-MINI2), see CHAPTER 28 ON-CHIP DEBUG FUNCTION (μPD78F05xxD AND 78F05xxDA ONLY).

Address: FF	FBH Afte	r reset: 01H	R/W ^{Note 1}					
Symbol	7	6	<5>	<4>	3	2	1	0
PCC	0	XTSTART Note2	CLS	CSS	0	PCC2	PCC1	PCC0
	CLS			C	PU clock statu	JS		
0 Main system clock								
	1	Subsystem c	lock					
	1	1						
	CSS	PCC2	PCC1	PCC0		CPU clock (fe	CPU) selection	
	0	0	0	0	fxp			
		0	0	1	fxp/2 (default	t)		
		0	1	0	fxp/2 ²			
		0	1	1	fxp/2 ³			
		1	0	0	fxp/2 ⁴			
	1	0	0	0	fsuв/2			
		0	0	1				
		0	1	0				
		0	1	1				
1 0 0								
		Other tha	n above		Setting proh	ibited		

Figure 6-6. Format of Processor Clock Control Register (PCC) (78K0/KC2, 78K0/KD2, 78K0/KE2, and 78K0/KF2)

Notes 1. Bit 5 is read-only.

 XTSTART is used in combination with EXCLKS and OSCSELS (bits 5 and 4 of the clock operation mode select register (OSCCTL)). See (3) Setting of operation mode for subsystem clock pin.

Cautions 1. Be sure to clear bits 3 and 7 to "0".

- 2. The peripheral hardware clock (fprs) is not divided when the division ratio of the PCC is set.
- Remark
 fxp:
 Main system clock oscillation frequency

 fsub:
 Subsystem clock oscillation frequency

The fastest instruction can be executed in 2 clocks of the CPU clock in the 78K0/Kx2 microcontrollers. Therefore, the relationship between the CPU clock (fcPu) and the minimum instruction execution time is as shown in Table 6-2.

(3) Example of setting procedure when stopping the internal high-speed oscillation clock

- The internal high-speed oscillation clock can be stopped in the following two ways.
- Executing the STOP instruction to set the STOP mode
- Setting RSTOP to 1 and stopping the internal high-speed oscillation clock

(a) To execute a STOP instruction

<1> Setting of peripheral hardware

Stop peripheral hardware that cannot be used in the STOP mode (for peripheral hardware that cannot be used in STOP mode, see **CHAPTER 22 STANDBY FUNCTION**).

<2> Setting the X1 clock oscillation stabilization time after standby release

When the CPU is operating on the X1 clock, set the value of the OSTS register before the STOP instruction is executed. To operate the CPU immediately after the STOP mode has been released, set MCM0 to 0, switch the CPU clock to the internal high-speed oscillation clock, and check that RSTS is 1.

<3> Executing the STOP instruction When the STOP instruction is executed, the system is placed in the STOP mode and internal high-speed oscillation clock is stopped.

(b) To stop internal high-speed oscillation clock by setting RSTOP to 1

<1> Confirming the CPU clock status (PCC and MCM registers)

Confirm with CLS and MCS that the CPU is operating on a clock other than the internal high-speed oscillation clock.

When CLS = 0 and MCS = 0, the internal high-speed oscillation clock is supplied to the CPU, so change the CPU clock to a clock other than the internal high-speed oscillation clock.

• 78K0/KB2

MCS	CPU Clock Status				
0	nternal high-speed oscillation clock				
1	High-speed system clock				

• 78K0/KC2, 78K0/KD2, 78K0/KE2, and 78K0/KF2

CLS	MCS	CPU Clock Status				
0	0	nternal high-speed oscillation clock				
0	1	gh-speed system clock				
1	×	Subsystem clock				

<2> Stopping the internal high-speed oscillation clock (RCM register) When RSTOP is set to 1, internal high-speed oscillation clock is stopped.

Caution Be sure to confirm that MCS = 1 or CLS = 1 when setting RSTOP to 1. In addition, stop peripheral hardware that is operating on the internal high-speed oscillation clock.

6.6.3 Example of controlling subsystem clock

- The following two types of subsystem clocks^{Note} are available.
- XT1 clock: Crystal/ceramic resonator is connected across the XT1 and XT2 pins.
- External subsystem clock: External clock is input to the EXCLKS pin.

When the subsystem clock is not used, the XT1/P123 and XT2/EXCLKS/P124 pins can be used as I/O port pins.

Note The 78K0/KB2 is not provided with a subsystem clock.

Cautions 1. The XT1/P123 and XT2/EXCLKS/P124 pins are in the I/O port mode after a reset release.

2. Do not start the peripheral hardware operation with the external clock from peripheral hardware pins when the internal high-speed oscillation clock and high-speed system clock are stopped while the CPU operates with the subsystem clock, or when in the STOP mode.

The following describes examples of setting procedures for the following cases.

- (1) When oscillating XT1 clock
- (2) When using external subsystem clock
- (3) When using subsystem clock as CPU clock
- (4) When stopping subsystem clock

(1) Example of setting procedure when oscillating the XT1 clock

<1> Setting XT1 and XT2 pins and selecting operation mode (PCC and OSCCTL registers) When XTSTART, EXCLKS, and OSCSELS are set as any of the following, the mode is switched from port mode to XT1 oscillation mode.

XTSTART	EXCLKS	OSCSELS	Operation Mode of Subsystem Clock Pin	P123/XT1 Pin	P124/XT2/ EXCLKS Pin	
0	0	1	XT1 oscillation mode	Crystal/ceramic resonator connection		
1	×	×				

Remark ×: don't care

<2> Waiting for the stabilization of the subsystem clock oscillation Wait for the oscillation stabilization time of the subsystem clock by software, using a timer function.

Caution Do not change the value of XTSTART, EXCLKS, and OSCSELS while the subsystem clock is operating.

(2) Example of setting procedure when using the external subsystem clock

<1> Setting XT1 and XT2 pins, selecting XT1 clock/external clock and controlling oscillation (PCC and OSCCTL registers)

When XTSTART is cleared to 0 and EXCLKS and OSCSELS are set to 1, the mode is switched from port mode to external clock input mode. In this case, input the external clock to the EXCLKS/XT2/P124 pins.

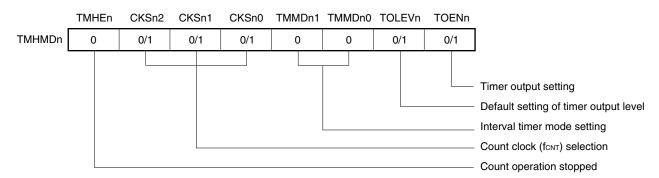
XTSTART	EXCLKS	OSCSELS	Operation Mode of Subsystem Clock Pin	P123/XT1 Pin	P124/XT2/ EXCLKS Pin
0	1	1	External clock input mode	I/O port	External clock input

Caution Do not change the value of XTSTART, EXCLKS, and OSCSELS while the subsystem clock is operating.

9.4 Operation of 8-Bit Timers H0 and H1

9.4.1 Operation as interval timer/square-wave output

When the 8-bit timer counter Hn and compare register 0n (CMP0n) match, an interrupt request signal (INTTMHn) is generated and the 8-bit timer counter Hn is cleared to 00H.


Compare register 1n (CMP1n) is not used in interval timer mode. Since a match of the 8-bit timer counter Hn and the CMP1n register is not detected even if the CMP1n register is set, timer output is not affected.

By setting bit 0 (TOENn) of timer H mode register n (TMHMDn) to 1, a square wave of any frequency (duty = 50%) is output from TOHn.

Setting

<1> Set each register.

Figure 9-9. Register Setting During Interval Timer/Square-Wave Output Operation

(i) Setting timer H mode register n (TMHMDn)

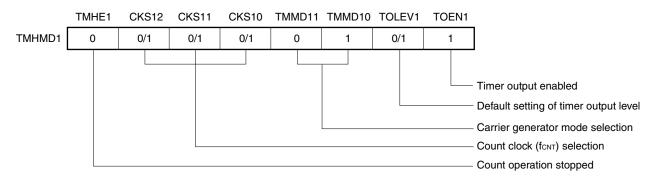
(ii) CMP0n register setting

The interval time is as follows if N is set as a comparison value.

- Interval time = (N +1)/fCNT
- <2> Count operation starts when TMHEn = 1.
- <3> When the values of the 8-bit timer counter Hn and the CMP0n register match, the INTTMHn signal is generated and the 8-bit timer counter Hn is cleared to 00H.
- <4> Subsequently, the INTTMHn signal is generated at the same interval. To stop the count operation, clear TMHEn to 0.

Remarks 1. For the setting of the output pin, see 9.3 (3) Port mode register 1 (PM1).

2. For how to enable the INTTMHn signal interrupt, see CHAPTER 20 INTERRUPT FUNCTIONS.
3. n = 0, 1



Setting

<1> Set each register.

Figure 9-14. Register Setting in Carrier Generator Mode

(i) Setting 8-bit timer H mode register 1 (TMHMD1)

(ii) CMP01 register setting

· Compare value

(iii) CMP11 register setting

• Compare value

(iv) TMCYC1 register setting

- RMC1 = 1 ... Remote control output enable bit
- NRZB1 = 0/1 ... carrier output enable bit

(v) TCL51 and TMC51 register setting

- See 8.3 Registers Controlling 8-Bit Timer/Event Counters 50 and 51.
- <2> When TMHE1 = 1, the 8-bit timer H1 starts counting.
- <3> When TCE51 of the 8-bit timer mode control register 51 (TMC51) is set to 1, the 8-bit timer/event counter 51 starts counting.
- <4> After the count operation is enabled, the first compare register to be compared is the CMP01 register. When the count value of the 8-bit timer counter H1 and the CMP01 register value match, the INTTMH1 signal is generated, the 8-bit timer counter H1 is cleared. At the same time, the compare register to be compared with the 8-bit timer counter H1 is switched from the CMP01 register to the CMP11 register.
- <5> When the count value of the 8-bit timer counter H1 and the CMP11 register value match, the INTTMH1 signal is generated, the 8-bit timer counter H1 is cleared. At the same time, the compare register to be compared with the 8-bit timer counter H1 is switched from the CMP11 register to the CMP01 register.
- <6> By performing procedures <4> and <5> repeatedly, a carrier clock is generated.
- <7> The INTTM51 signal is synchronized with count clock of the 8-bit timer H1 and output as the INTTM5H1 signal. The INTTM5H1 signal becomes the data transfer signal for the NRZB1 bit, and the NRZB1 bit value is transferred to the NRZ1 bit.
- <8> Write the next value to the NRZB1 bit in the interrupt servicing program that has been started by the INTTM5H1 interrupt or after timing has been checked by polling the interrupt request flag. Write data to count the next time to the CR51 register.
- <9> When the NRZ1 bit is high level, a carrier clock is output by TOH1 output.

10.4 Watch Timer Operations

10.4.1 Watch timer operation

The watch timer generates an interrupt request signal (INTWT) at a specific time interval by using the peripheral hardware clock or subsystem clock.

When bit 0 (WTM0) and bit 1 (WTM1) of the watch timer operation mode register (WTM) are set to 1, the count operation starts. When these bits are cleared to 0, the 5-bit counter is cleared and the count operation stops.

When the interval timer is simultaneously operated, zero-second start can be achieved only for the watch timer by clearing WTM1 to 0. In this case, however, the 11-bit prescaler is not cleared. Therefore, an error up to $2^9 \times 1/f_W$ seconds occurs in the first overflow (INTWT) after zero-second start.

The interrupt request is generated at the following time intervals.

WTM3	WTM2	Interrupt Time Selection	When Operated at fsub = 32.768 kHz	•	When Operated at fprs = 5 MHz	When Operated at fPRS = 10 MHz	When Operated at fPRS = 20 MHz
			(WTM7 = 1)	(WTM7 = 0)	(WTM7 = 0)	(WTM7 = 0)	(WTM7 = 0)
0	0	2 ¹⁴ /fw	0.5 s	1.05 s	0.419 s	0.210 s	0.105 s
0	1	2 ¹³ /fw	0.25 s	0.52 s	0.210 s	0.105 s	52.5 ms
1	0	2⁵/fw	977 <i>μ</i> s	2.05 ms	819 <i>µ</i> s	410 <i>µ</i> s	205 <i>μ</i> s
1	1	2 ⁴ /fw	488 <i>µ</i> s	1.02 ms	410 <i>μ</i> s	205 <i>μ</i> s	102 <i>μ</i> s

Table 10-4. Watch Timer Interrupt Time

Remarks 1. fw: Watch timer clock frequency (fprs/2⁷ or fsub)

2. fprs: Peripheral hardware clock frequency

3. fsub: Subsystem clock frequency

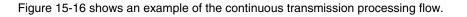
10.4.2 Interval timer operation

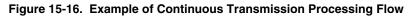
The watch timer operates as interval timer which generates interrupt request signals (INTWTI) repeatedly at an interval of the preset count value.

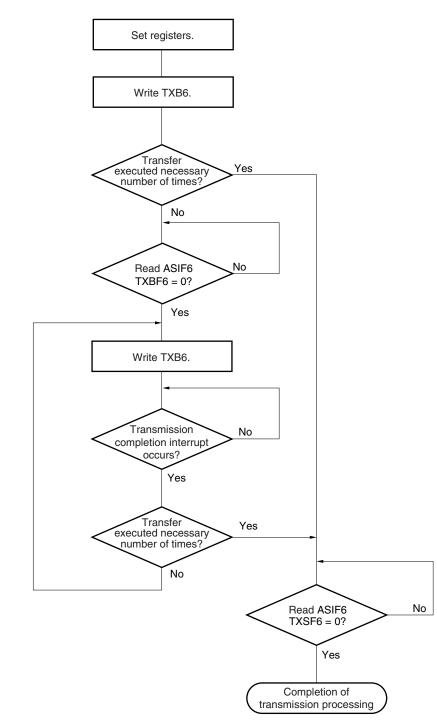
The interval time can be selected with bits 4 to 6 (WTM4 to WTM6) of the watch timer operation mode register (WTM).

When bit 0 (WTM0) of the WTM is set to 1, the count operation starts. When this bit is set to 0, the count operation stops.

WTM6	WTM5	WTM4	Interval Time	When Operated at f _{SUB} = 32.768 kHz (WTM7 = 1)	When Operated at fPRS = 2 MHz (WTM7 = 0)	•	When Operated at fPRS = 10 MHz (WTM7 = 0)	When Operated at fPRS = 20 MHz (WTM7 = 0)
0	0	0	2 ⁴ /fw	488 <i>μ</i> s	1.02 ms	410 <i>μ</i> s	205 <i>µ</i> s	102 <i>μ</i> s
0	0	1	2⁵/fw	977 <i>μ</i> s	2.05 ms	820 <i>µ</i> s	410 <i>μ</i> s	205 <i>µ</i> s
0	1	0	2 ⁶ /fw	1.95 ms	4.10 ms	1.64 ms	820 <i>µ</i> s	410 <i>µ</i> s
0	1	1	2 ⁷ /fw	3.91 ms	8.20 ms	3.28 ms	1.64 ms	820 <i>µ</i> s
1	0	0	2 ⁸ /fw	7.81 ms	16.4 ms	6.55 ms	3.28 ms	1.64 ms
1	0	1	2 ⁹ /fw	15.6 ms	32.8 ms	13.1 ms	6.55 ms	3.28 ms
1	1	0	2 ¹⁰ /fw	31.3 ms	65.5 ms	26.2 ms	13.1 ms	6.55 ms
1	1	1	2 ¹¹ /fw	62.5 ms	131.1 ms	52.4 ms	26.2 ms	13.1 ms


Table 10-5. Interval Timer Interval Time


Remarks 1. fw: Watch timer clock frequency (fprs/2⁷ or fsub)


2. fprs: Peripheral hardware clock frequency

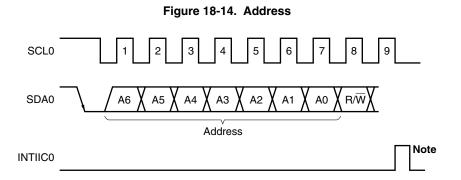
3. fsub: Subsystem clock frequency

 Remark
 TXB6:
 Transmit buffer register 6

 ASIF6:
 Asynchronous serial interface transmission status register 6

 TXBF6:
 Bit 1 of ASIF6 (transmit buffer data flag)

 TXSF6:
 Bit 0 of ASIF6 (transmit shift register data flag)



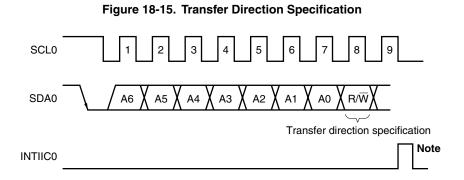
18.5.2 Addresses

The address is defined by the 7 bits of data that follow the start condition.

An address is a 7-bit data segment that is output in order to select one of the slave devices that are connected to the master device via the bus lines. Therefore, each slave device connected via the bus lines must have a unique address.

The slave devices include hardware that detects the start condition and checks whether or not the 7-bit address data matches the data values stored in slave address register 0 (SVA0). If the address data matches the SVA0 register values, the slave device is selected and communicates with the master device until the master device generates a start condition or stop condition.

Note INTIIC0 is not issued if data other than a local address or extension code is received during slave device operation.


The slave address and the eighth bit, which specifies the transfer direction as described in **18.5.3** Transfer direction specification below, are together written to IIC shift register 0 (IIC0) and are then output. Received addresses are written to IIC0.

The slave address is assigned to the higher 7 bits of IIC0 register.

18.5.3 Transfer direction specification

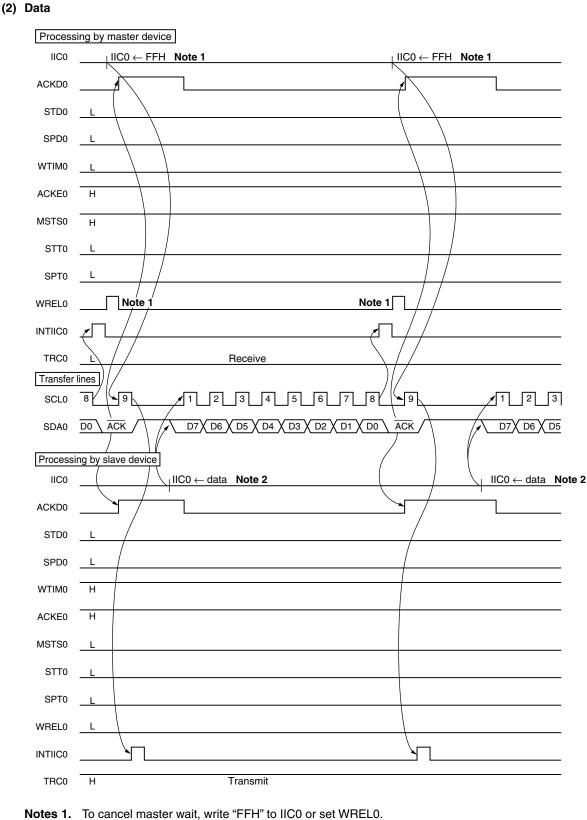
In addition to the 7-bit address data, the master device sends 1 bit that specifies the transfer direction.

When this transfer direction specification bit has a value of "0", it indicates that the master device is transmitting data to a slave device. When the transfer direction specification bit has a value of "1", it indicates that the master device is receiving data from a slave device.

Note INTIIC0 is not issued if data other than a local address or extension code is received during slave device operation.

18.6 Timing Charts

When using the l²C bus mode, the master device outputs an address via the serial bus to select one of several slave devices as its communication partner.


After outputting the slave address, the master device transmits the TRC0 bit (bit 3 of IIC status register 0 (IICS0)), which specifies the data transfer direction, and then starts serial communication with the slave device.

Figures 18-27 and 18-28 show timing charts of the data communication.

IIC shift register 0 (IIC0)'s shift operation is synchronized with the falling edge of the serial clock (SCL0). The transmit data is transferred to the SO0 latch and is output (MSB first) via the SDA0 pin.

Data input via the SDA0 pin is captured into IIC0 at the rising edge of SCL0.

Figure 18-28. Example of Slave to Master Communication (When 8-Clock Wait Is Selected for Master, 9-Clock Wait Is Selected for Slave) (2/3)

2. Write data to IIC0, not setting WREL0, in order to cancel a wait state during slave transmission.

20.4.3 Multiple interrupt servicing

Multiple interrupt servicing occurs when another interrupt request is acknowledged during execution of an interrupt.

Multiple interrupt servicing does not occur unless the interrupt request acknowledgment enabled state is selected (IE = 1). When an interrupt request is acknowledged, interrupt request acknowledgment becomes disabled (IE = 0). Therefore, to enable multiple interrupt servicing, it is necessary to set (1) the IE flag with the EI instruction during interrupt servicing to enable interrupt acknowledgment.

Moreover, even if interrupts are enabled, multiple interrupt servicing may not be enabled, this being subject to interrupt priority control. Two types of priority control are available: default priority control and programmable priority control. Programmable priority control is used for multiple interrupt servicing.

In the interrupt enabled state, if an interrupt request with a priority equal to or higher than that of the interrupt currently being serviced is generated, it is acknowledged for multiple interrupt servicing. If an interrupt with a priority lower than that of the interrupt currently being serviced is generated during interrupt servicing, it is not acknowledged for multiple interrupt servicing. Interrupt requests that are not enabled because interrupts are in the interrupt disabled state or because they have a lower priority are held pending. When servicing of the current interrupt ends, the pending interrupt request is acknowledged following execution of at least one main processing instruction execution.

Table 20-5 shows relationship between interrupt requests enabled for multiple interrupt servicing and Figure 20-22 shows multiple interrupt servicing examples.

Table 20-5. Relationship Between Interrupt Requests Enabled for Multiple Interrupt Servicing During Interrupt Servicing

Multiple Interru		Software				
	PR = 0		PR = 1		Interrupt	
Interrupt Being Serviced		IE = 1	IE = 0	IE = 1	IE = 0	Request
Maskable interrupt	ISP = 0	0	×	×	×	0
	ISP = 1	0	×	0	×	0
Software interrupt		0	×	0	×	0

Remarks 1. O: Multiple interrupt servicing enabled

- 2. ×: Multiple interrupt servicing disabled
- 3. ISP and IE are flags contained in the PSW.
 - ISP = 0: An interrupt with higher priority is being serviced.
 - ISP = 1: No interrupt request has been acknowledged, or an interrupt with a lower priority is being serviced.
 - IE = 0: Interrupt request acknowledgment is disabled.
 - IE = 1: Interrupt request acknowledgment is enabled.
- 4. PR is a flag contained in PR0L, PR0H, PR1L, and PR1H.
 - PR = 0: Higher priority level
 - PR = 1: Lower priority level

23.1 Register for Confirming Reset Source

Many internal reset generation sources exist in the 78K0/Kx2 microcontrollers. The reset control flag register (RESF) is used to store which source has generated the reset request.

RESF can be read by an 8-bit memory manipulation instruction.

RESET input, reset by power-on-clear (POC) circuit, and reading RESF set RESF to 00H.

Figure 23-5. Format of Reset Control Flag Register (RESF)

Address: FFA	ACH After	reset: 00H ^{Note}	R					
Symbol	7	6	5	4	3	2	1	0
RESF	0	0	0	WDTRF	0	0	0	LVIRF

ſ	WDTRF	Internal reset request by watchdog timer (WDT)
ſ	0	Internal reset request is not generated, or RESF is cleared.
	1	Internal reset request is generated.

LVIRF	Internal reset request by low-voltage detector (LVI)		
0	Internal reset request is not generated, or RESF is cleared.		
1	Internal reset request is generated.		

Note The value after reset varies depending on the reset source.

Caution Do not read data by a 1-bit memory manipulation instruction.

The status of RESF when a reset request is generated is shown in Table 23-3.

Table 23-3. RESF Status When Reset Request Is Generated

Reset Source	RESET Input	Reset by POC	Reset by WDT	Reset by LVI
Flag				
WDTRF	Cleared (0)	Cleared (0)	Set (1)	Held
LVIRF			Held	Set (1)

(1) Signal collision

If the dedicated flash memory programmer (output) is connected to a pin (input) of a serial interface connected to another device (output), signal collision takes place. To avoid this collision, either isolate the connection with the other device, or make the other device go into an output high-impedance state.

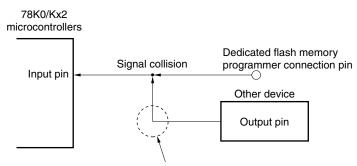
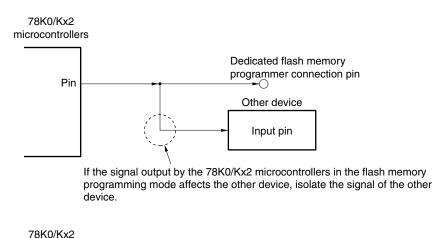
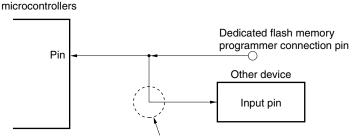



Figure 27-7. Signal Collision (Input Pin of Serial Interface)


In the flash memory programming mode, the signal output by the device collides with the signal sent from the dedicated flash programmer. Therefore, isolate the signal of the other device.

(2) Malfunction of other device

If the dedicated flash memory programmer (output or input) is connected to a pin (input or output) of a serial interface connected to another device (input), a signal may be output to the other device, causing the device to malfunction. To avoid this malfunction, isolate the connection with the other device.

If the signal output by the dedicated flash memory programmer in the flash memory programming mode affects the other device, isolate the signal of the other device.

CHAPTER 31 ELECTRICAL SPECIFICATIONS ((A) GRADE PRODUCTS)

Target Products	Conventional-specification Products	Expanded-specification Products
78K0/KB2	μθD78F0500(A), 78F0501(A), 78F0502(A), 78F0503(A)	μΦD78F0500A(A), 78F0501A(A), 78F0502A(A), 78F0503A(A)
78K0/KC2	μPD78F0511(A), 78F0512(A), 78F0513(A), 78F0514(A), 78F0515(A)	μΦD78F0511A(A), 78F0512A(A), 78F0513A(A), 78F0514A(A), 78F0515A(A)
78K0/KD2	μPD78F0521(A), 78F0522(A), 78F0523(A), 78F0524(A), 78F0525(A), 78F0526(A), 78F0527(A)	μPD78F0521A(A), 78F0522A(A), 78F0523A(A), 78F0524A(A), 78F0525A(A), 78F0526A(A), 78F0527A(A)
78K0/KE2	μPD78F0531(A), 78F0532(A), 78F0533(A), 78F0534(A), 78F0535(A), 78F0536(A), 78F0537(A)	μPD78F0531A(A), 78F0532A(A), 78F0533A(A), 78F0534A(A), 78F0535A(A), 78F0536A(A), 78F0537A(A)
78K0/KF2	μιΡD78F0544(A), 78F0545(A), 78F0546(A), 78F0547(A)	μΦD78F0544A(A), 78F0545A(A), 78F0546A(A), 78F0547A(A)

The following items are described separately for conventional-specification products (μ PD78F05xx(A)) and expanded-specification products (μ PD78F05xxA(A)).

- X1 clock oscillation frequency (X1 oscillator characteristics)
- Instruction cycle, peripheral hardware clock frequency, external main system clock frequency, external main system clock input high-level width, and external main system clock input low-level width (**(1) Basic operation** in **AC characteristics**)
- A/D conversion time (A/D Converter Characteristics)
- Number of rewrites per chip (Flash Memory Programming Characteristics)

Caution The pins mounted depend on the product as follows.

(1) Port functions

Port	78K0/KB2	78K0/KC2			78K0/KD2	78K0/KE2	78K0/KF2
	30/36 Pins	38 Pins	44 Pins	48 Pins	52 Pins	64 Pins	80 Pins
Port 0	P00, P01				P00 to P03	P00 to P06	
Port 1	P10 to P17						
Port 2	P20 to P23	P20 to P25	P20 to P27				
Port 3	P30 to P33						
Port 4	-	_	P40, P41			P40 to P43	P40 to P47
Port 5			-			P50 to P53	P50 to P57
Port 6	P60, P61	P60 to P63					P60 to P67
Port 7	-	P70, P71	P70 to P73	P70 to P75	P70 to P77		
Port 12	P120 to P122	P120 to P124					
Port 13	-			P130			
Port 14	_			P140		P140, P141	P140 to P145

(The remaining table is on the next page.)

	Ι	(2/	
Edition	Description	Chapter	
3nd Edition	Modification of Note 1 in and addition of Note 4 to Figure 8-5 Format of Timer Clock Selection Register 50 (TCL50) and Figure 8-6 Format of Timer Clock Selection Register 51 (TCL51)	CHAPTER 8 8-BIT TIMER/EVENT COUNTERS 50 AND 5 ¹	
	Modification of Note 1 in and addition of Note 3 to Figure 9-5 Format of 8-Bit Timer H Mode Register 0 (TMHMD0) and Figure 9-6 Format of 8-Bit Timer H Mode Register 1 (TMHMD1)	CHAPTER 9 8-BIT TIMERS H0 AND H1	
	Addition of Note to Figure 10-2 Format of Watch Timer Operation Mode Register (WTM)	CHAPTER 10 WATCH TIMER	
	Modification of Note and description in 11.1 Functions of Watchdog Timer	CHAPTER 11	
	Modification of Note and description in 11.4.1 Controlling operation of watchdog timer	WATCHDOG TIMER	
	Modification of Remark in 11.4.3 Setting window open period of watchdog timer		
	Modification of Note 1 in Figure 12-3 Format of Clock Output Selection Register (CKS) (78K0/KD2, 48-pin Products of 78K0/KC2) and Figure 12-4 Format of Clock Output Selection Register (CKS) (78K0/KE2, 78K0/KF2)	CHAPTER 12 CLOCK OUTPUT/BUZZER OUTPUT CONTROLLER	
	Addition of Table 13-2 A/D Conversion Time Selection (Conventional- specification Products	CHAPTER 13 A/D CONVERTER	
	(μPD78F05xx and 78F05xxD))		
	Modification of Table 13-3 A/D Conversion Time Selection (Expanded- specification Products		
	(μPD78F05xxA and 78F05xxDA))		
	Modification of Figure 13-6 Format of 10-Bit A/D Conversion Result Register (ADCR)		
	Modification of Note 1 in Figure 14-4 Format of Baud Rate Generator Control Register 0 (BRGC0)	CHAPTER 14 SERIAL INTERFACE UART0	
	Modification of Note 1 in Table 14-4 Set Value of TPS01 and TPS00		
	Modification of Table 14-5 Set Data of Baud Rate Generator		
	Modification of Note 1 in Figure 15-5 Format of Asynchronous Serial Interface Operation Mode Register 6 (ASIM6) (1/2)	CHAPTER 15 SERIAL INTERFACE UART6	
	Modification of Note 1 in and addition of Note 3 to Figure 15-8 Format of Clock Selection Register 6 (CKSR6)		
	Addition of Caution 8 to Figure 15-10 Format of Asynchronous Serial Interface Control Register 6 (ASICL6) (2/2)		
	Modification of Note 1 in 15.4.1 (1) Register used		
	Modification of Note 1 in and addition of Note 3 to Table 15-4 Set Value of TPS63 to TPS60		
	Modification of Notes 1 and 2 in Figure 16-5 Format of Serial Clock Selection Register 10 (CSIC10) and Figure 16-6 Format of Serial Clock Selection Register 11 (CSIC11)	CHAPTER 16 SERIAL INTERFACES CSI10 AND CSI11	
	Addition of Note 2 in and modification of Table 16-2 Relationship Between Register Settings and Pins		
	Modification of 16.4.2 (5) SO1n output		

78K0/Kx2 User's Manual: Hardware

Publication Date:	Rev.0.01 Rev.4.01	January 10, 2008 July 15, 2010
Published by:	Renesas E	lectronics Corporation