E·X Renesas Electronics America Inc - <u>UPD78F0537AGC-GAL-AX Datasheet</u>

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	78K/0
Core Size	8-Bit
Speed	20MHz
Connectivity	3-Wire SIO, I ² C, LINbus, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	55
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	7K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/upd78f0537agc-gal-ax

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

CONTENTS

CHAPT	FER 1 OUTLINE	19
1.1	Differences Between Conventional-specification Products (uPD78F05xx and 78F	-05xxD) and
	Expanded-specification Products (μ PD78F05xxA and 78F05xxDA)	
	1.1.1 A/D conversion time	20
	1.1.2 X1 oscillator characteristics	20
	1.1.3 Time Instruction cycle, peripheral hardware clock frequency, external main system clo	ck frequency,
	external main system clock input high-level width, and external main system clock inp	ut low-level
	width (AC characteristics)	
	1.1.4 Number of flash memory rewrites and retention time	22
	1.1.5 Processing time for self programming library	23
	1.1.6 Interrupt response time for self programming library	29
1.2	Features	33
1.3	Applications	
1.4	Ordering Information	35
	1.5.1 78K0/KB2	42
	1.5.2 78K0/KC2	44
	1.5.3 78K0/KD2	47
	1.5.4 78K0/KE2	48
	1.5.5 78K0/KF2	50
1.6	Pin Identification	51
1.7	Block Diagram	52
	1.7.1 78K0/KB2	52
	1.7.2 78K0/KC2	53
	1.7.3 78K0/KD2	54
	1.7.4 78K0/KE2	55
	1.7.5 78K0/KF2	56
1.8	Outline of Functions	57
CHAPT	TER 2 PIN FUNCTIONS	60
2.1	Pin Function List	60
	2.1.1 78K0/KB2	61
	2.1.2 78K0/KC2	64
	2.1.3 78K0/KD2	67
	2.1.4 78K0/KE2	
	2.1.5 78K0/KF2	74
2.2	Description of Pin Functions	
	2.2.1 P00 to P06 (port 0)	
	2.2.2 P10 to P17 (port 1)	
	2.2.3 P20 to P27 (port 2)	81
	2.2.4 P30 to P33 (port 3)	82
	2.2.5 P40 to P47 (port 4)	83
	2.2.6 P50 to P57 (port 5)	84
	2.2.7 P60 to P67 (port 6)	84
	2.2.8 P70 to P77 (port 7)	85
	2.2.9 P120 to P124 (port 12)	86

2.1.4 78K0/KE2

(1) Port functions (1/2): 78K0/KE2

Function Name	I/O	Function	After Reset	Alternate Function
P00	I/O	Port 0.	Input port	T1000
P01	1	7-bit I/O port.		TI010/TO00
P02]	Input/output can be specified in 1-bit units.		SO11 ^{Note 1}
P03]	setting.		SI11 ^{Note 1}
P04]			SCK11 ^{Note 1}
P05]			TI001 ^{Note 1} / SSI11 ^{Note 1}
P06	1			TI011 ^{Note 1} / TO01 ^{Note 1}
P10	I/O	Port 1.	Input port	SCK10/TxD0
P11	1	8-bit I/O port.		SI10/RxD0
P12	1	Input/output can be specified in 1-bit units.		SO10
P13]	setting.		TxD6
P14]			RxD6
P15				ТОН0
P16				TOH1/INTP5
P17				TI50/TO50
P20 to P27	I/O	Port 2. 8-bit I/O port. Input/output can be specified in 1-bit units.	Analog input	ANI0 to ANI7
P30	I/O	Port 3.	Input port	INTP1
P31	1	4-bit I/O port.		INTP2/OCD1ANote 2
P32	1	Input/output can be specified in 1-bit units.		INTP3/OCD1BNote 2
P33	1	setting.		TI51/TO51/INTP4
P40 to P43	I/O	Port 4. 4-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	_
P50 to P53	I/O	Port 5. 4-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	-
P60	I/O	Port 6.	Input port	SCL0
P61		4-bit I/O port. Output of P60 to P63 is Nich open-drain output (6 V tolerance)		SDA0
P62		Input/output can be specified in 1-bit units.		EXSCL0
P63				-

Notes 1. Available only in the products whose flash memory is at least 48 KB.

2. μ PD78F0537D and 78F0537DA (product with on-chip debug function) only

Address	Special Function Register (SFR) Name	Symbol		R/W	Manipulatable Bit Unit		After	Κ	К	Κ	К	Κ	
					1 Bit	8 Bits	16 Bits	Reset	В	С	D	Е	F
									2	2	2	2	2
FFA5H	IIC shift register 0	IIC0		R/W	-	V	-	00H		V	V		
FFA6H	IIC control register 0	IICC0		R/W		V	-	00H	\checkmark			\checkmark	
FFA7H	Slave address register 0	SVA0		R/W	-	\checkmark	-	00H	\checkmark			\checkmark	
FFA8H	IIC clock selection register 0	IICCL	0	R/W		\checkmark	-	00H	\checkmark			\checkmark	\checkmark
FFA9H	IIC function expansion register 0	IICX0		R/W	\checkmark	\checkmark	-	00H	\checkmark			\checkmark	\checkmark
FFAAH	IIC status register 0	IICS0		R	\checkmark	\checkmark	-	00H	\checkmark			\checkmark	\checkmark
FFABH	IIC flag register 0	IICF0		R/W	\checkmark	\checkmark	-	00H	\checkmark	\checkmark		\checkmark	\checkmark
FFACH	Reset control flag register	RESF		R	-	\checkmark	-	00H ^{Note 1}	\checkmark			\checkmark	
FFB0H	16-bit timer counter 01	TM01		R	-	-	\checkmark	0000H	-	-	-	Note	\checkmark
FFB1H												2	
FFB2H	16-bit timer capture/compare register	CR00	1	R/W	-	_	\checkmark	0000H	_	-	_	Note	\checkmark
FFB3H	001											2	
FFB4H	16-bit timer capture/compare register	CR01	1	R/W	-	_	\checkmark	0000H	-	-	-	Note	\checkmark
FFB5H	011											2	
FFB6H	16-bit timer mode control register 01	TMC0	1	R/W	\checkmark	\checkmark	-	00H	-	-	-	Note 2	\checkmark
FFB7H	Prescaler mode register 01	PRM01		R/W	\checkmark	\checkmark	-	00H	-		_	Note 2	\checkmark
FFB8H	Capture/compare control register 01	CRC0	1	R/W	\checkmark	V	-	00H	-	_	-	Note	\checkmark
FFB9H	16-bit timer output control register 01	TOC01		R/W	\checkmark	V	_	00H	-	-	-	- Note 2	\checkmark
FFBAH	16-bit timer mode control register 00	TMC0	0	R/W			-	00H				√	
FFBBH	Prescaler mode register 00	PRMC	0	R/W			_	00H					
FFBCH	Capture/compare control register 00	CRC0	0	R/W	\checkmark	\checkmark	-	00H					
FFBDH	16-bit timer output control register 00	TOC0	0	R/W	\checkmark	\checkmark	-	00H					
FFBEH	Low-voltage detection register	LVIM		R/W		\checkmark	-	00H ^{Note 3}				\checkmark	
FFBFH	Low-voltage detection level selection register	LVIS		R/W	\checkmark	\checkmark	I	00H ^{Note 3}	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
FFE0H	Interrupt request flag register 0L	IF0	IF0L	R/W		\checkmark	\checkmark	00H	\checkmark			\checkmark	
FFE1H	Interrupt request flag register 0H		IF0H	R/W	\checkmark	\checkmark		00H					
FFE2H	Interrupt request flag register 1L	IF1	IF1L	R/W		\checkmark		00H				\checkmark	
FFE3H	Interrupt request flag register 1H		IF1H	R/W	\checkmark	\checkmark		00H					
FFE4H	Interrupt mask flag register 0L	MK0	MK0L	R/W		\checkmark		FFH					
FFE5H	Interrupt mask flag register 0H		MK0H	R/W		\checkmark		FFH					
FFE6H	Interrupt mask flag register 1L	MK1	MK1L	R/W		\checkmark		FFH				\checkmark	
FFE7H	Interrupt mask flag register 1H		MK1H	R/W	\checkmark	\checkmark		FFH					

 Table 3-8.
 Special Function Register List (4/5)

Notes 1. The reset value of RESF varies depending on the reset source.

- 2. This register is incorporated only in products whose flash memory is at least 48 KB.
- 3. The reset values of LVIM and LVIS vary depending on the reset source.

Figure 5-5. Block Diagram of P04 (2/2)

(2) 78K0/KE2 products whose flash memory is at least 48 KB and 78K0/KF2

P0: Port register 0

- PU0: Pull-up resistor option register 0
- PM0: Port mode register 0
- RD: Read signal
- WR××: Write signal

Remark With products not provided with an EVDD or EVSS pin, replace EVDD with VDD, or replace EVSS with VSS.

Figure 6-14. Examples of Incorrect Resonator Connection (2/2)

- (c) Wiring near high alternating current
- (d) Current flowing through ground line of oscillator (potential at points A, B, and C fluctuates)

(e) Signals are fetched

- **Remark** When using the subsystem clock, replace X1 and X2 with XT1 and XT2, respectively. Also, insert resistors in series on the XT2 side.
- Caution 2. When X2 and XT1 are wired in parallel, the crosstalk noise of X2 may increase with XT1, resulting in malfunctioning.

6.4.3 When subsystem clock is not used

If it is not necessary to use the subsystem $clock^{Note}$ for low power consumption operations, or if not using the subsystem clock as an I/O port, set the XT1 and XT2 pins to I/O mode (OSCSELS = 0) and connect them as follows.

Note The 78K0/KB2 is not provided with a subsystem clock.

Input (PM123/PM124 = 1): Independently connect to V_{DD} or V_{SS} via a resistor. Output (PM123/PM124 = 0): Leave open.

Remark OSCSELS: Bit 4 of clock operation mode select register (OSCCTL) PM123, PM124: Bits 3 and 4 of port mode register 12 (PM12)

6.4.4 Internal high-speed oscillator

The internal high-speed oscillator is incorporated in the 78K0/Kx2 microcontrollers. Oscillation can be controlled by the internal oscillation mode register (RCM).

After a reset release, the internal high-speed oscillator automatically starts oscillation (8 MHz (TYP.)).

6.4.5 Internal low-speed oscillator

The internal low-speed oscillator is incorporated in the 78K0/Kx2 microcontrollers.

The internal low-speed oscillation clock is only used as the watchdog timer and the clock of 8-bit timer H1. The internal low-speed oscillation clock cannot be used as the CPU clock.

"Can be stopped by software" or "Cannot be stopped" can be selected by the option byte. When "Can be stopped by software" is set, oscillation can be controlled by the internal oscillation mode register (RCM).

After a reset release, the internal low-speed oscillator automatically starts oscillation, and the watchdog timer is driven (240 kHz (TYP.)) if the watchdog timer operation is enabled using the option byte.

6.4.6 Prescaler

The prescaler generates the CPU clock by dividing the main system clock when the main system clock is selected as the clock to be supplied to the CPU.

Address: FFB	AH After re	eset: 00H R	/W						
Symbol	7	6	5	4	3	2	1	<0>	
TMC00	0	0	0	0	TMC003	TMC002	TMC001	OVF00	
	TMC003	TMC002		Operation enable of 16-bit timer/event counter 00					
	0	0	Disables 16-b Clears 16-bit	ables 16-bit timer/event counter 00 operation. Stops supplying operating clock. ears 16-bit timer counter 00 (TM00).					
	0	1	Free-running	timer mode					
	1	0	Clear & start	mode entered l	oy TI000 pin va	lid edge input [№]	te		
	1	1	Clear & start	mode entered u	upon a match b	etween TM00	and CR000		
	TMC001			Condition to	reverse timer o	utput (TO00)			
	0	Match betw	een TM00 and	CR000 or mate	ch between TM	00 and CR010			
	1	Match betw	een TM00 and	CR000 or mate	ch between TM	00 and CR010			
		Trigger input	ut of TI000 pin v	alid edge					
	-	_							
	OVF00			IT	M00 overflow fla	ag			
	Clear (0)	Clears OVF0	0 to 0 or TMC0	03 and TMC00	2 = 00				
	Set (1)	Overflow occ	urs.						

Figure 7-6. Format of 16-Bit Timer Mode Control Register 00 (TMC00)

OVF00 is set to 1 when the value of TM00 changes from FFFFH to 0000H in all the operation modes (free-running timer mode, clear & start mode entered by TI000 pin valid edge input, and clear & start mode entered upon a match between TM00 and CR000). It can also be set to 1 by writing 1 to OVF00.

Note The TI000 pin valid edge is set by bits 5 and 4 (ES001, ES000) of prescaler mode register 00 (PRM00).

Figure 7-25. Example of Register Settings in External Event Counter Mode (2/2)

(e) 16-bit timer counter 0n (TM0n)

By reading TM0n, the count value can be read.

(f) 16-bit capture/compare register 00n (CR00n)

If M is set to CR00n, the interrupt signal (INTTM00n) is generated when the number of external events reaches (M + 1).

Setting CR00n to 0000H is prohibited.

(g) 16-bit capture/compare register 01n (CR01n)

Usually, CR01n is not used in the external event counter mode. However, a compare match interrupt (INTTM01n) is generated when the set value of CR01n matches the value of TM0n. Therefore, mask the interrupt request by using the interrupt mask flag (TMMK01n).

Remark n = 0: 78K0/KE2 products whose flash memory is less than 32 KB, and 78K0/KB2, 78K0/KC2, 78K0/KD2 products

n = 0, 1: 78K0/KE2 products whose flash memory is at least 48 KB, and 78K0/KF2 products

- **Notes 2.** If the peripheral hardware clock (fPRs) operates on the internal high-speed oscillation clock (fRH) (XSEL = 0), when $1.8 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}$, the setting of CKS02 = CKS01 = CKS00 = 0 (count clock: fPRs) is prohibited.
 - 3. This is settable only if 4.0 V \leq V_{DD} \leq 5.5 V.
 - 4. Note the following points when selecting the TM50 output as the count clock.
 - Mode in which the count clock is cleared and started upon a match of TM50 and CR50 (TMC506 = 0) Start the operation of 8-bit timer/event counter 50 first and then enable the timer F/F inversion operation (TMC501 = 1).
 - PWM mode (TMC506 = 1) Start the operation of 8-bit timer/event counter 50 first and then set the count clock to make the duty = 50%.
 - It is not necessary to enable (TOE50 = 1) TO50 output in any mode.
- Cautions 1. When TMHE0 = 1, setting the other bits of TMHMD0 is prohibited. However, TMHMD0 can be refreshed (the same value is written).
 - In the PWM output mode, be sure to set the 8-bit timer H compare register 10 (CMP10) when starting the timer count operation (TMHE0 = 1) after the timer count operation was stopped (TMHE0 = 0) (be sure to set again even if setting the same value to CMP10).
 - 3. The actual TOH0/P15 pin output is determined depending on PM15 and P15, besides TOH0 output.
- **Remarks 1.** fprs: Peripheral hardware clock frequency
 - 2. TMC506: Bit 6 of 8-bit timer mode control register 50 (TMC50) TMC501: Bit 1 of TMC50

11.2 Configuration of Watchdog Timer

The watchdog timer includes the following hardware.

Table 11-1. Configuration of Watchdog Timer

Item	Configuration
Control register	Watchdog timer enable register (WDTE)

How the counter operation is controlled, overflow time, and window open period are set by the option byte.

Table 11-2.	Setting of	Option E	vtes and	Watchdog	Timer
	Setting of	Option L	yies and	watchuog	THILET

Setting of Watchdog Timer	Option Byte (0080H)
Window open period	Bits 6 and 5 (WINDOW1, WINDOW0)
Controlling counter operation of watchdog timer	Bit 4 (WDTON)
Overflow time of watchdog timer	Bits 3 to 1 (WDCS2 to WDCS0)

Remark For the option byte, see **CHAPTER 26 OPTION BYTE**.

Figure 11-1. Block Diagram of Watchdog Timer

Figure 13-12 shows the relationship between the analog input voltage and the A/D conversion result.

Figure 13-12. Relationship Between Analog Input Voltage and A/D Conversion Result

Notes 1. The frequency that can be used for the peripheral hardware clock (fPRs) differs depending on the power supply voltage and product specifications.

Supply Voltage	Conventional-specification Products (µPD78F05xx and 78F05xxD)	Expanded-specification Products (µPD78F05xxA and 78F05xxA)
$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	$f_{PRS} \le 20 \text{ MHz}$	$f_{PRS} \le 20 \text{ MHz}$
$2.7~V \leq V_{\text{DD}} < 4.0~V$	fprs ≤ 10 MHz	
$\begin{array}{l} 1.8 \ V \leq V_{\text{DD}} < 2.7 \ V \\ (\text{Standard products and} \\ (\text{A}) \ \text{grade products only}) \end{array}$	fprs ≤ 5 MHz	$f_{PRS} \leq 5 MHz$

(The values shown in the table above are those when fPRS = fXH (XSEL = 1).)

2. Set the serial clock to satisfy the following conditions.

Supply Voltage	Conventional-specification Products (μ PD78F05xx and 78F05xxD) and Expanded-specification Products (μ PD78F05xxA and 78F05xxDA)					
11,7 3	Standard Products (A) Grade Products		(A2) Grade Products			
$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	Serial clock \leq 6.25 MHz	Serial clock \leq 5 MHz	Serial clock \leq 5 MHz			
$2.7~V \leq V_{\text{DD}} < 4.0~V$	Serial clock \leq 4 MHz	Serial clock \leq 2.5 MHz	Serial clock \leq 2.5 MHz			
$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	Serial clock \leq 2 MHz	Serial clock ≤ 1.66 MHz	-			

3. Do not start communication with the external clock from the SCK10 pin when the internal high-speed oscillation clock and high-speed system clock are stopped while the CPU operates with the subsystem clock, or when in the STOP mode.

Cautions 1. Do not write to CSIC10 while CSIE10 = 1 (operation enabled).

- 2. To use P10/SCK10/TxD0 and P12/SO10 as general-purpose ports, set CSIC10 in the default status (00H).
- 3. The phase type of the data clock is type 1 after reset.

Remark fprs: Peripheral hardware clock frequency

(3) Serial trigger register 0 (CSIT0)

This is an 8-bit register used to control execution/stop of automatic data transfer between buffer RAM and serial I/O shift register 0 (SIOA0).

This register can be set by a 1-bit or 8-bit memory manipulation instruction. This register can be set when bit 6 (ATE0) of serial operation mode specification register 0 (CSIMA0) is 1. Reset signal generation clears this register to 00H.

Figure 17-4. Format of Serial Trigger Register 0 (CSIT0)

Address: FF92H After reset: 00H R/W

Symbol	7	6	5	4	3	2	<1>	<0>
CSIT0	0	0	0	0	0	0	ATSTP0	ATSTA0

ATSTP0	Automatic data transfer stop
0	_
1	Automatic data transfer stopped
ATSTA0	Automatic data transfer start
0	_
1	Automatic data transfer started

- Cautions 1. Even if ATSTP0 or ATSTA0 is set to 1, automatic transfer cannot be started/stopped until 1-byte transfer is complete.
 - 2. ATSTP0 and ATSTA0 change to 0 automatically after the interrupt signal INTACSI is generated.
 - 3. After automatic data transfer is stopped, the data address when the transfer stopped is stored in automatic data transfer address count register 0 (ADTC0). However, since no function to restart automatic data transfer is incorporated, when transfer is stopped by setting ATSTP0 = 1, start automatic data transfer by setting ATSTA0 to 1 after re-setting the registers.

18.5.2 Addresses

The address is defined by the 7 bits of data that follow the start condition.

An address is a 7-bit data segment that is output in order to select one of the slave devices that are connected to the master device via the bus lines. Therefore, each slave device connected via the bus lines must have a unique address.

The slave devices include hardware that detects the start condition and checks whether or not the 7-bit address data matches the data values stored in slave address register 0 (SVA0). If the address data matches the SVA0 register values, the slave device is selected and communicates with the master device until the master device generates a start condition or stop condition.

Note INTIIC0 is not issued if data other than a local address or extension code is received during slave device operation.

The slave address and the eighth bit, which specifies the transfer direction as described in **18.5.3** Transfer direction specification below, are together written to IIC shift register 0 (IIC0) and are then output. Received addresses are written to IIC0.

The slave address is assigned to the higher 7 bits of IIC0 register.

18.5.3 Transfer direction specification

In addition to the 7-bit address data, the master device sends 1 bit that specifies the transfer direction.

When this transfer direction specification bit has a value of "0", it indicates that the master device is transmitting data to a slave device. When the transfer direction specification bit has a value of "1", it indicates that the master device is receiving data from a slave device.

Note INTIIC0 is not issued if data other than a local address or extension code is received during slave device operation.

- Cautions 1. To use the peripheral hardware that stops operation in the STOP mode, and the peripheral hardware for which the clock that stops oscillating in the STOP mode after the STOP mode is released, restart the peripheral hardware.
 - 2. Even if "internal low-speed oscillator can be stopped by software" is selected by the option byte, the internal low-speed oscillation clock continues in the STOP mode in the status before the STOP mode is set. To stop the internal low-speed oscillator's oscillation in the STOP mode, stop it by software and then execute the STOP instruction.
 - 3. To shorten oscillation stabilization time after the STOP mode is released when the CPU operates with the high-speed system clock (X1 oscillation), switch the CPU clock to the internal high-speed oscillation clock before the execution of the STOP instruction using the following procedure.

<1> Set RSTOP to 0 (starting oscillation of the internal high-speed oscillator) \rightarrow <2> Set MCM0 to 0 (switching the CPU from X1 oscillation to internal high-speed oscillation) \rightarrow <3> Check that MCS is 0 (checking the CPU clock) \rightarrow <4> Check that RSTS is 1 (checking internal high-speed oscillation operation) \rightarrow <5> Execute the STOP instruction

Before changing the CPU clock from the internal high-speed oscillation clock to the high-speed system clock (X1 oscillation) after the STOP mode is released, check the oscillation stabilization time with the oscillation stabilization time counter status register (OSTC).

- 4. If the STOP instruction is executed when AMPH = 1, supply of the CPU clock is stopped for 4.06 to 16.12 μ s after the STOP mode is released when the internal high-speed oscillation clock is selected as the CPU clock, or for the duration of 160 external clocks when the high-speed system clock (external clock input) is selected as the CPU clock.
- 5. Execute the STOP instruction after having confirmed that the internal high-speed oscillator is operating stably (RSTS = 1).

- Cautions 3. When using LVI as an interrupt, if LVION is cleared (0) in a state below the LVI detection voltage, an INTLVI signal is generated and LVIIF becomes 1.
 - 4. With the conventional-specification products (μ PD78F05xx and 78F05xxD), after an LVI reset has been generated, do not write values to LVIS and LVIM when LVION = 1.

(2) Low-voltage detection level selection register (LVIS)

This register selects the low-voltage detection level.

This register can be set by a 1-bit or 8-bit memory manipulation instruction.

The generation of a reset signal other than an LVI reset clears this register to 00H.

Figure 25-3. Format of Low-Voltage Detection Level Selection Register (LVIS)

Address: FFBFH After reset: 00HNote 1 R/W Symbol 7 6 5 4 3 2 1 0 0 0 LVIS3 LVIS2 LVIS1 LVIS0 LVIS 0 0

1					
LVIS3	LVIS2	LVIS1	LVIS0	Detection level	
0	0	0	0	VLVI0 (4.24 V ±0.1 V)	
0	0	0	1	V _{LVI1} (4.09 V ±0.1 V)	
0	0	1	0	V _{LVI2} (3.93 V ±0.1 V)	
0	0	1	1	VLVI3 (3.78 V ±0.1 V)	
0	1	0	0	VLVI4 (3.62 V ±0.1 V)	
0	1	0	1	VLVI5 (3.47 V ±0.1 V)	
0	1	1	0	V _{LVI6} (3.32 V ±0.1 V)	
0	1	1	1	VLVI7 (3.16 V ±0.1 V)	
1	0	0	0	V _{LVI8} (3.01 V ±0.1 V)	
1	0	0	1	V _{LVI9} (2.85 V ±0.1 V)	
1	0	1	0	VLVI10 (2.70 V ±0.1 V) Note 2	
1	0	1	1	VLVI11 (2.55 V ±0.1 V) Note 2	
1	1	0	0	VLVI12 (2.39 V ±0.1 V) Note 2	
1	1	0	1	VLVI13 (2.24 V ±0.1 V) Note 2	
1	1	1	0	VLVI14 (2.08 V ±0.1 V) Note 2	
1	1	1	1	VLVI15 (1.93 V ±0.1 V) Note 2	

- **Notes 1.** The value of LVIS is not reset but retained as is, upon a reset by LVI. It is cleared to 00H upon other resets.
 - 2. Do not set VLVI10 to VLVI15 for (A2) grade products.

Cautions 1. Be sure to clear bits 4 to 7 to "0".

- 2. Do not change the value of LVIS during LVI operation.
- 3. When an input voltage from the external input pin (EXLVI) is detected, the detection voltage (VEXLVI = 1.21 V (TYP.)) is fixed. Therefore, setting of LVIS is not necessary.
- 4. With the conventional-specification products (μ PD78F05xx and 78F05xxD), after an LVI reset has been generated, do not write values to LVIS and LVIM when LVION = 1.

CHAPTER 27 FLASH MEMORY

The 78K0/Kx2 microcontrollers incorporates the flash memory to which a program can be written, erased, and overwritten while mounted on the board.

27.1 Internal Memory Size Switching Register

Select the internal memory capacity using the internal memory size switching register (IMS). IMS is set by an 8-bit memory manipulation instruction. Reset signal generation sets IMS to CFH.

RAM0

```
Caution Be sure to set each product to the values shown in Table 27-1 after a reset release.
```

Figure 27-1. Format of Internal Memory Size Switching Register (IMS)

4

0

Address:FFF0HAfter reset:CFHR/WSymbol765

RAM1

RAM2

IMS

RAM2	RAM1	RAM0	Internal high-speed RAM capacity selection		
0	0	0	768 bytes		
0	1	0	512 bytes		
1	1	0	1024 bytes		
Other than above		ve	Setting prohibited		

3

ROM3

2

ROM2

1

ROM1

0

ROM0

ROM3	ROM2	ROM1	ROM0	Internal ROM capacity selection	
0	0	1	0	8 KB	
0	1	0	0	16 KB	
0	1	1	0	24 KB	
1	0	0	0	32 KB	
1	1	0	0	48 KB	
1	1	1	1	60 KB	
Other than above				Setting prohibited	

Caution To set the memory size, set IMS and then IXS. Set the memory size so that the internal ROM and internal expansion RAM areas do not overlap.

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.

TI Timing

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	Supply voltage level	VLVIO		4.14	4.24	4.34	V
		VLVI1		3.99	4.09	4.19	V
		VLVI2		3.83	3.93	4.03	V
		V LVI3		3.68	3.78	3.88	V
		VLVI4		3.52	3.62	3.72	V
		VLVI5		3.37	3.47	3.57	V
		VLVI6		3.22	3.32	3.42	V
		VLVI7		3.06	3.16	3.26	V
		VLVI8		2.91	3.01	3.11	V
		VLVI9		2.75	2.85	2.95	V
	External input pin ^{Note 1}	EXLVI	$\text{EXLVI} < \text{V}_{\text{DD}}, 2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	1.11	1.21	1.31	V
Minimum pulse width		t∟w		200			μs
Operation stabilization wait time ^{Note 2}		t lwait		10			μs

LVI Circuit Characteristics (TA = -40 to +125°C, VPoc \leq VDD = EVDD \leq 5.5 V, AVREF \leq VDD, Vss = EVss = 0 V)

Notes 1. The EXLVI/P120/INTP0 pin is used.

2. Time required from setting bit 7 (LVION) of the low-voltage detection register (LVIM) to 1 to operation stabilization

Remark $V_{LVI(n-1)} > V_{LVIn}$: n = 1 to 9

LVI Circuit Timing

34.4 78K0/KE2

• μPD78F0531GB-UEU-A, 78F0532GB-UEU-A, 78F0533GB-UEU-A, 78F0534GB-UEU-A, 78F0535GB-UEU-A, 78F0536GB-UEU-A, 78F0537GB-UEU-A, 78F0537DGB-UEU-A

64-PIN PLASTIC LQFP(FINE PITCH)(10x10)

P64GB-50-UEU