

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

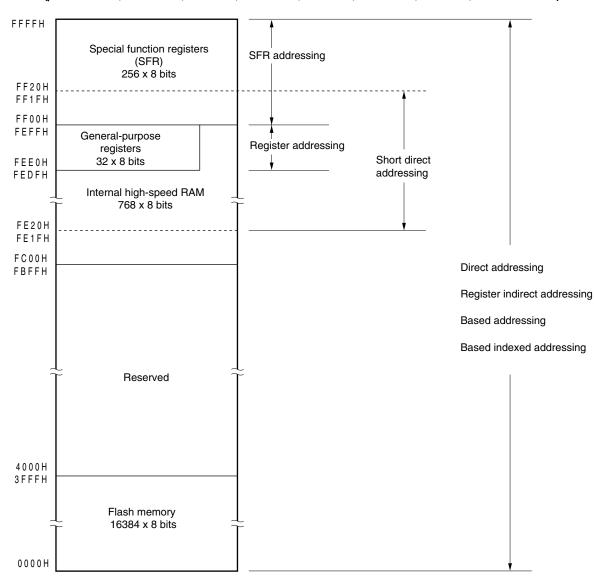
Detalls	
Product Status	Active
Core Processor	78K/0
Core Size	8-Bit
Speed	20MHz
Connectivity	3-Wire SIO, I ² C, LINbus, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	71
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	7K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/upd78f0547agc-gad-ax

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

				(5/6
78K0/Kx2 Microcontrollers	Package	Product type	Quality grace	Part Number
78K0/KE2	64-pin plastic LQFP (12x12)	Conventional- specification products	Standard products	μPD78F0531GK-UET-A, 78F0532GK-UET-A, 78F0533GK-UET-A, 78F0534GK-UET-A, 78F0535GK-UET-A, 78F0536GK-UET-A, 78F0537GK-UET-A, 78F0537DGK-UET-A ^{Note}
			(A) grade products	μPD78F0531GK(A)-GAJ-AX, 78F0532GK(A)-GAJ-AX, 78F0533GK(A)-GAJ-AX, 78F0534GK(A)-GAJ-AX, 78F0535GK(A)-GAJ-AX, 78F0536GK(A)-GAJ-AX, 78F0537GK(A)-GAJ-AX
			(A2) grade products	μPD78F0531GK(A2)-GAJ-AX, 78F0532GK(A2)-GAJ-AX, 78F0533GK(A2)-GAJ-AX, 78F0534GK(A2)-GAJ-AX, 78F0535GK(A2)-GAJ-AX, 78F0536GK(A2)-GAJ-AX, 78F0537GK(A2)-GAJ-AX
		Expanded- specification products	Standard products	µPD78F0531AGK-GAJ-AX, 78F0532AGK-GAJ-AX, 78F0533AGK-GAJ-AX, 78F0534AGK-GAJ-AX, 78F0535AGK-GAJ-AX, 78F0536AGK-GAJ-AX, 78F0537AGK-GAJ-AX, 78F0537DAGK-GAJ-AX ^{№0®}
			(A) grade products	µPD78F0531AGKA-GAJ-G, 78F0532AGKA-GAJ-G, 78F0533AGKA-GAJ-G, 78F0534AGKA-GAJ-G, 78F0535AGKA-GAJ-G, 78F0536AGKA-GAJ-G, 78F0537AGKA-GAJ-G
			(A2) grade products	μPD78F0531AGKA2-GAJ-G, 78F0532AGKA2-GAJ-G, 78F0533AGKA2-GAJ-G, 78F0534AGKA2-GAJ-G, 78F0535AGKA2-GAJ-G, 78F0536AGKA2-GAJ-G, 78F0537AGKA2-GAJ-G
	64-pin plastic TQFP (fine pitch) (7x7)	Conventional- specification products	Standard products	µPD78F0531GA-9EV-A, 78F0532GA-9EV-A, 78F0533GA-9EV-A, 78F0534GA-9EV-A, 78F0535GA-9EV-A, 78F0536GA-9EV-A, 78F0537GA-9EV-A, 78F0537DGA-9EV-A ^{№0®}
		Expanded- specification products	Standard products	μPD78F0531AGA-HAB-AX, 78F0532AGA-HAB-AX, 78F0533AGA-HAB-AX, 78F0534AGA-HAB-AX, 78F0535AGA-HAB-AX, 78F0536AGA-HAB-AX, 78F0537AGA-HAB-AX, 78F0537DAGA-HAB-AX ^{№0®}

Note The μPD78F0537D and 78F0537DA have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.



(2) Non-port functions (3/3): 78K0/KE2

	Function Name	I/O	Function	After Reset	Alternate Function
	Vdd	-	Positive power supply for P121 to P124 and other than ports	-	-
	EVDD	_	Positive power supply for ports other than P20 to P27 and P121 to P124. Make EV_{DD} the same potential as V_{DD} .	_	-
<r></r>	AVREF	_	A/D converter reference voltage input and positive power supply for P20 to P27 and A/D converter	_	-
	Vss	-	Ground potential for P121 to P124 and other than ports	-	-
	EVss	_	Ground potential for ports other than P20 to P27 and P121 to P124. Make EVss the same potential as Vss.	_	-
	AVss	-	A/D converter ground potential. Make the same potential as Vss.	-	-
	OCD0A ^{Note}	Input	Connection for on-chip debug mode setting pins	Input port	P121/X1
	OCD1A ^{Note}		(µPD78F0537D and 78F0537DA only)		P31/INTP2
	OCD0B ^{Note}	_			P122/X2/EXCLK
	OCD1B ^{Note}				P32/INTP3

Note μ PD78F0537D and 78F0537DA (product with on-chip debug function) only

Figure 3-13. Correspondence Between Data Memory and Addressing (μPD78F0501, 78F0501A, 78F0511, 78F0511A, 78F0521, 78F0521A, 78F0531, and 78F0531A)

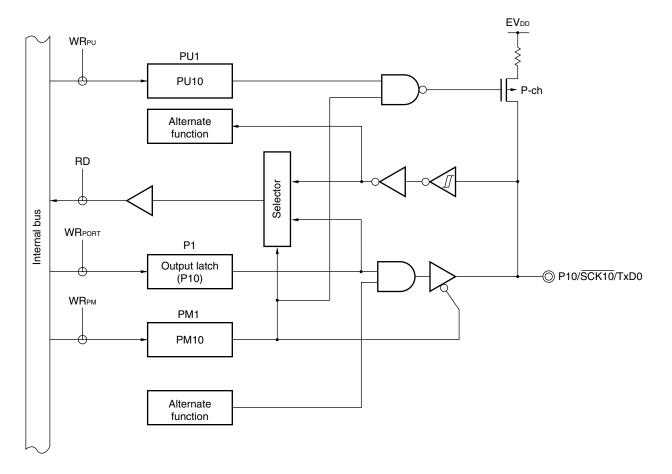


Figure 5-7. Block Diagram of P10

- P1: Port register 1
- PU1: Pull-up resistor option register 1
- PM1: Port mode register 1
- RD: Read signal
- WR××: Write signal

Remark With products not provided with an EVDD or EVSS pin, replace EVDD with VDD, or replace EVSS with VSS.

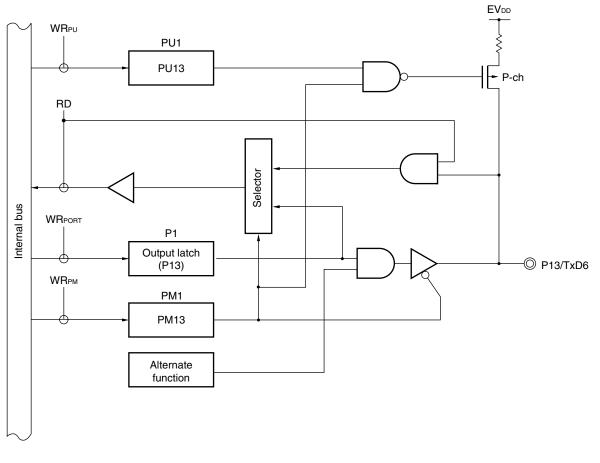


Figure 5-10. Block Diagram of P13

- P1: Port register 1
- PU1: Pull-up resistor option register 1
- PM1: Port mode register 1
- RD: Read signal
- WR××: Write signal

Remark With products not provided with an EVDD or EVSS pin, replace EVDD with VDD, or replace EVSS with VSS.

Symbol	7	6	5	4	3	2	1	0	Address	After reset	R/W
PM0	1	PM06	PM05	PM04	PM03	PM02	PM01	PM00	FF20H	FFH	R/W
PM1	PM17	PM16	PM15	PM14	PM13	PM12	PM11	PM10	FF21H	FFH	R/W
		1		1	1	1		1			
PM2	PM27	PM26	PM25	PM24	PM23	PM22	PM21	PM20	FF22H	FFH	R/W
				1	L	8	1	1			
PM3	1	1	1	1	PM33	PM32	PM31	PM30	FF23H	FFH	R/W
				1	L	I	1	1			
PM4	PM47	PM46	PM45	PM44	PM43	PM42	PM41	PM40	FF24H	FFH	R/W
PM5	PM57	PM56	PM55	PM54	PM53	PM52	PM51	PM50	FF25H	FFH	R/W
PM6	PM67	PM66	PM65	PM64	PM63	PM62	PM61	PM60	FF26H	FFH	R/W
PM7	PM77	PM76	PM75	PM74	PM73	PM72	PM71	PM70	FF27H	FFH	R/W
PM12	1	1	1	PM124	PM123	PM122	PM121	PM120	FF2CH	FFH	R/W
PM14	1	1	PM145	PM144	PM143	PM142	PM141	PM140	FF2EH	FFH	R/W
	PMmn					Pmn pin I/0	O mode se	election			
					(1	m = 0 to 7,	12, 14; n =	= 0 to 7)			
	0	Output m	ode (outpu	ut buffer on)						
	1	Input mo	de (output	buffer off)							

Figure 5-33. Format of Port Mode Register (78K0/KF2)

Caution Be sure to set bit 7 of PM0, bits 4 to 7 of PM3, bits 5 to 7 of PM12, and bits 6 and 7 of PM14 to "1".

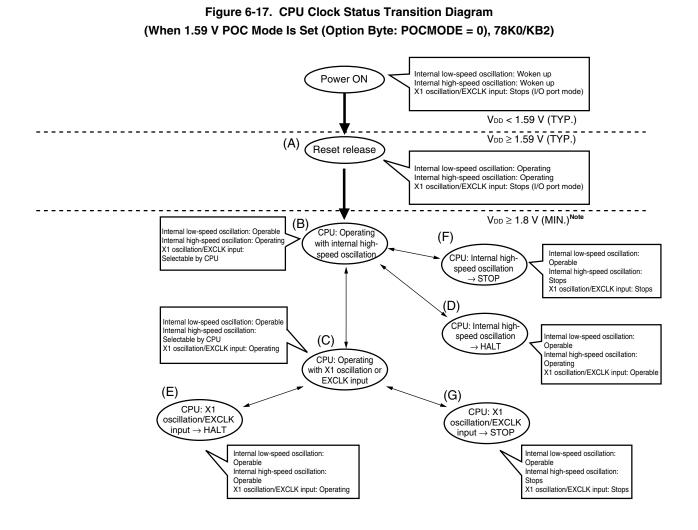

Symbol	7	6	5	4	3	2	1	0	Address	After reset	R/W
PU0	0	0	0	0	PU03	PU02	PU01	PU00	FF30H	00H	R/W
PU1	PU17	PU16	PU15	PU14	PU13	PU12	PU11	PU10	FF31H	00H	R/W
									-		
PU3	0	0	0	0	PU33	PU32	PU31	PU30	FF33H	00H	R/W
PU4	0	0	0	0	0	0	PU41	PU40	FF34H	00H	R/W
PU7	PU77	PU76	PU75	PU74	PU73	PU72	PU71	PU70	FF37H	00H	R/W
						-					
PU12	0	0	0	0	0	0	0	PU120	FF3CH	00H	R/W
PU14	0	0	0	0	0	0	0	PU140	FF3EH	00H	R/W
	PUmn				Pmn pi	n on-chip p	oull-up res	istor select	ion		
					(m =	= 0, 1, 3, 4,	7, 12, 14;	n = 0 to 7)			
	0	On-chip p	oull-up resi	stor not co	nnected						
	1	On-chip p	oull-up resi	stor conne	cted						

Figure 5-41. Format of Pull-up Resistor Option Register (78K0/KD2)

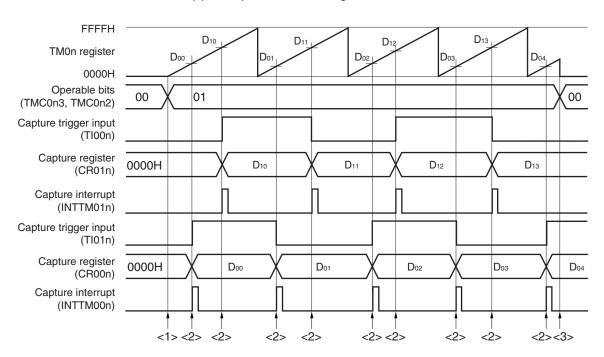

6.6.6 CPU clock status transition diagram

Figure 6-17 and 6-18 shows the CPU clock status transition diagram of this product.

- Note Standard and (A) grade products: 1.8 V, (A2) grade products: 2.7 V
- **Remark** In the 2.7 V/1.59 V POC mode (option byte: POCMODE = 1), the CPU clock status changes to (A) in the above figure when the supply voltage exceeds 2.7 V (TYP.), and to (B) after reset processing (11 to $45 \ \mu$ s).

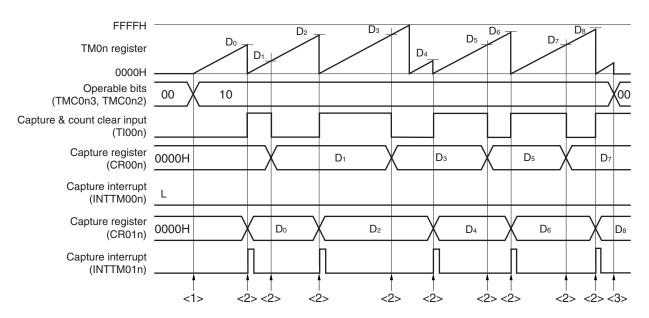


Figure 7-57. Example of Software Processing for Pulse Width Measurement (1/2)

(a) Example of free-running timer mode

(b) Example of clear & start mode entered by TI00n pin valid edge

Remark n = 0: 78K0/KE2 products whose flash memory is less than 32 KB, and 78K0/KB2, 78K0/KC2, 78K0/KD2 products

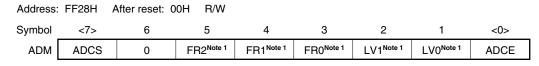
n = 0, 1: 78K0/KE2 products whose flash memory is at least 48 KB, and 78K0/KF2 products

Caution Do not change the count clock and interval time (by setting bits 4 to 7 (WTM4 to WTM7) of WTM) during watch timer operation.

Remarks 1. fw: Watch timer clock frequency (fPRs/2⁷ or fsub)

- 2. fprs: Peripheral hardware clock frequency
- 3. fsub: Subsystem clock frequency

13.3 Registers Used in A/D Converter


The A/D converter uses the following six registers.

- A/D converter mode register (ADM)
- A/D port configuration register (ADPC)
- Analog input channel specification register (ADS)
- Port mode register 2 (PM2)
- 10-bit A/D conversion result register (ADCR)
- 8-bit A/D conversion result register (ADCRH)

(1) A/D converter mode register (ADM)

This register sets the conversion time for analog input to be A/D converted, and starts/stops conversion. ADM can be set by a 1-bit or 8-bit memory manipulation instruction. Reset signal generation clears this register to 00H.

Figure 13-3. Format of A/D Converter Mode Register (ADM)

ADCS	A/D conversion operation control				
0	Stops conversion operation				
1	Enables conversion operation				

ADCE	Comparator operation control ^{Note 2}
0	Stops comparator operation
1	Enables comparator operation

- Notes 1. For details of FR2 to FR0, LV1, LV0, and A/D conversion, see Table 13-2 A/D Conversion Time Selection (Conventional-specification Products (μPD78F05xx and 78F05xxD)), and Table 13-3 A/D Conversion Time Selection (Expanded-specification Products (μPD78F05xxA and 78F05xxDA)).
 - 2. The operation of the comparator is controlled by ADCS and ADCE, and it takes 1 μ s from operation start to operation stabilization. Therefore, when ADCS is set to 1 after 1 μ s or more has elapsed from the time ADCE is set to 1, the conversion result at that time has priority over the first conversion result. Otherwise, ignore data of the first conversion.

Table 13-1.	Settings	of ADCS	and ADCE
-------------	----------	---------	----------

ADCS	ADCE	A/D Conversion Operation
0	0	Stop status (DC power consumption path does not exist)
0	1	Conversion waiting mode (comparator operation, only comparator consumes power)
1	0	Conversion mode (comparator operation stopped ^{Note})
1	1	Conversion mode (comparator operation)

Note Ignore the first conversion data.

14.2 Configuration of Serial Interface UART0

Serial interface UART0 includes the following hardware.

Item	Configuration
Registers	Receive buffer register 0 (RXB0) Receive shift register 0 (RXS0) Transmit shift register 0 (TXS0)
Control registers	Asynchronous serial interface operation mode register 0 (ASIM0) Asynchronous serial interface reception error status register 0 (ASIS0) Baud rate generator control register 0 (BRGC0) Port mode register 1 (PM1) Port register 1 (P1)

Table 14-1. Configuration of Serial Interface UART0

(1) Receive buffer register 6 (RXB6)

This 8-bit register stores parallel data converted by receive shift register 6 (RXS6).

Each time 1 byte of data has been received, new receive data is transferred to this register from RXS6. If the data length is set to 7 bits, data is transferred as follows.

• In LSB-first reception, the receive data is transferred to bits 0 to 6 of RXB6 and the MSB of RXB6 is always 0.

• In MSB-first reception, the receive data is transferred to bits 1 to 7 of RXB6 and the LSB of RXB6 is always 0. If an overrun error (OVE6) occurs, the receive data is not transferred to RXB6.

RXB6 can be read by an 8-bit memory manipulation instruction. No data can be written to this register. Reset signal generation sets this register to FFH.

(2) Receive shift register 6 (RXS6)

This register converts the serial data input to the RxD6 pin into parallel data. RXS6 cannot be directly manipulated by a program.

(3) Transmit buffer register 6 (TXB6)

This buffer register is used to set transmit data. Transmission is started when data is written to TXB6. This register can be read or written by an 8-bit memory manipulation instruction. Reset signal generation sets this register to FFH.

- Cautions 1. Do not write data to TXB6 when bit 1 (TXBF6) of asynchronous serial interface transmission status register 6 (ASIF6) is 1.
 - 2. Do not refresh (write the same value to) TXB6 by software during a communication operation (when bits 7 and 6 (POWER6, TXE6) of asynchronous serial interface operation mode register 6 (ASIM6) are 1 or when bits 7 and 5 (POWER6, RXE6) of ASIM6 are 1).
 - 3. Set transmit data to TXB6 at least one base clock (fxcLK6) after setting TXE6 = 1.

(4) Transmit shift register 6 (TXS6)

This register transmits the data transferred from TXB6 from the TxD6 pin as serial data. Data is transferred from TXB6 immediately after TXB6 is written for the first transmission, or immediately before INTST6 occurs after one frame was transmitted for continuous transmission. Data is transferred from TXB6 and transmitted from the TxD6 pin at the falling edge of the base clock.

TXS6 cannot be directly manipulated by a program.

Figure 16-4. Format of Serial Operation Mode Register 11 (CSIM11)

Address: FF88H After reset: 00H R/WNote1

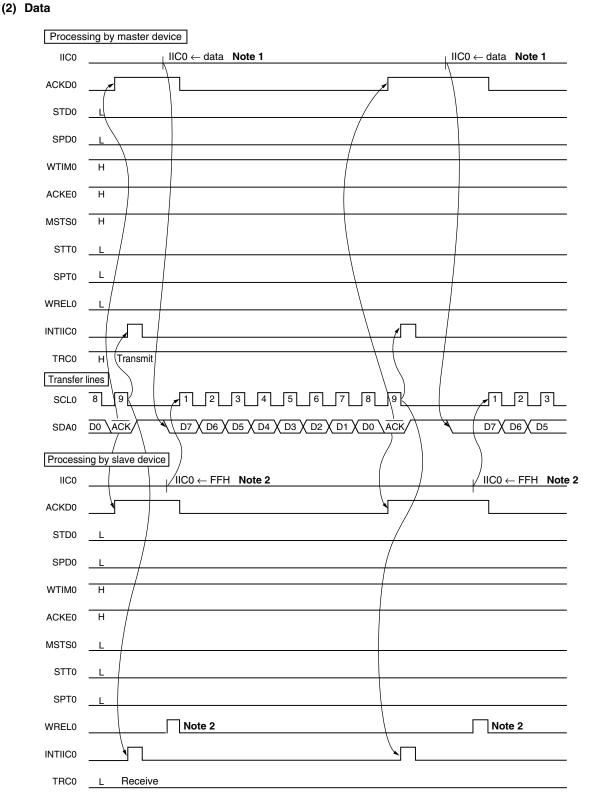
Symbo CSIM1

bol	<7>	6	5	4	3	2	1	0
111	CSIE11	TRMD11	SSE11	DIR11	0	0	0	CSOT11

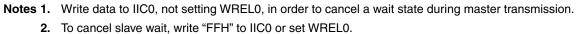
CSIE11	Operation control in 3-wire serial I/O mode
0	Disables operation ^{Note 2} and asynchronously resets the internal circuit ^{Note 3} .
1	Enables operation

TRMD11 ^{Note 4}	Transmit/receive mode control
0 ^{Note 5}	Receive mode (transmission disabled).
1	Transmit/receive mode

SSE11 ^{Notes 6, 7}	SSI11 pin use selection
0	SSI11 pin is not used
1	SSI11 pin is used


DIR11 ^{Note 8}	First bit specification
0	MSB
1	LSB

CSOT11	Communication status flag
0	Communication is stopped.
1	Communication is in progress.


Notes 1. Bit 0 is a read-only bit.

- 2. To use P02/SO11, P04/SCK11, and P05/SSI11/TI001 as general-purpose ports, set CSIM11 in the default status (00H).
- 3. Bit 0 (CSOT11) of CSIM11 and serial I/O shift register 11 (SIO11) are reset.
- 4. Do not rewrite TRMD11 when CSOT11 = 1 (during serial communication).
- 5. The SO11 output (see Figure 16-2) is fixed to the low level when TRMD11 is 0. Reception is started when data is read from SIO11.
- 6. Do not rewrite SSE11 when CSOT11 = 1 (during serial communication).
- 7. Before setting this bit to 1, fix the SSI11 pin input level to 0 or 1.
- 8. Do not rewrite DIR11 when CSOT11 = 1 (during serial communication).

Figure 18-27. Example of Master to Slave Communication (When 9-Clock Wait Is Selected for Both Master and Slave) (2/3)

RENESAS

CHAPTER 21 KEY INTERRUPT FUNCTION

	78K0/KB2	78K0/KC2	78K0/KD2	78K0/KE2	78K0/KF2
Key interrupt	-	38 pins: 2 ch 44/48 pins: 4 ch		8 ch	

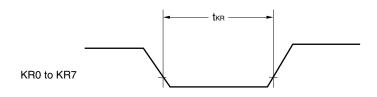
21.1 Functions of Key Interrupt

A key interrupt (INTKR) can be generated by setting the key return mode register (KRM) and inputting a falling edge to the key interrupt input pins (KRn).

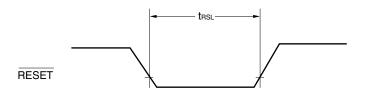
Table 21-1.	Assignment of	Key Interrupt	Detection Pins
-------------	---------------	----------------------	-----------------------

Flag	Description
KRMn	Controls KRn signal in 1-bit units.

Remark n = 0, 1: 38-pin products of 78K0/KC2


n = 0 to 3: 44-pin and 48-pin products of 78K0/KC2

n = 0 to 7: 78K0/KD2, 78K0/KE2, 78K0/KF2



Caution The pins mounted depend on the product. Refer to Caution 2 at the beginning of this chapter.

Key Interrupt Input Timing

RESET Input Timing

(2) Non-port functions

	Port 78K0/KB2 78K0/KC2			78K0/KD2	78K0/KE2	78K0/KF2		
		30/36 Pins	38 Pins	44 Pins	48 Pins	52 Pins	64 Pins	80 Pins
Power supply, ground		Vdd, EVdd ^{Note 1} , Vss, EVss ^{Note 1} , AVref, AVss				Vdd, EVdd, Vss, EVss, AVref, AVss		
Reg	gulator	REGC						
Res	set RESET							
Clo osc	ck illation	X1, X2, EXCLK	X1, X2, XT1, X	T2, EXCLK, EX	CLKS			
	ting to h memory	FLMD0						
Inte	errupt	INTP0 to INTP	5	•	INTP0 to INTP	6	INTP0 to INTP3	7
Key	v interrupt	-	KR0, KR1	KR0 to KR3		KR0 to KR7		
	ТМ00	TI000, TI010, T	ГО00					
	TM01			-			TI001 ^{Note 2} , TI01	1 ^{Note 2} , TO01 ^{Note 2}
Timer	TM50	TI50, TO50						
Ę	TM51	TI51, TO51						
	тмно	TOH0						
TMH1 TOH1								
	UART0	RxD0, TxD0						
	UART6	RxD6, TxD6						
ce	IIC0	SCL0, SDA0	SCL0, SDA0, E	EXSCL0				
iterfa	CSI10	SCK10, SI10, S	SO10					
Serial interface	CSI11			-			SCK11 ^{Note 2} , SI1 SO11 ^{Note 2} , SSI1	$\frac{1}{1}^{Note 2}$, $\frac{1}{1}^{Note 2}$
0,	CSIA0				_			SCKAO, SIAO, SOAO, BUSYO, STBO
A/D	converter	ANI0 to ANI3	ANI0 to ANI5	ANI0 to ANI7				
Clo	ck output		-		PCL		<u>.</u>	
Buz	zer output			-			BUZ	
	v-voltage ector (LVI)	EXLVI						

Notes 1. This is not mounted onto 30-pin products.

2. This is not mounted onto the 78K0/KE2 products whose flash memory is less than 32 KB.

Caution The pins mounted depend on the product. Refer to Caution at the beginning of this chapter.

A/D Converter Characteristics

(TA = -40 to +85°C, 2.3 V \leq AVREF \leq VDD = EVDD \leq 5.5 V, Vss = EVss = AVss = 0 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	Res					10	bit
Overall error ^{Notes 1, 2}	AINL	$4.0~V \leq AV_{\text{REF}} \leq 5.5~V$				±0.4	%FSR
		$2.7 \text{ V} \leq \text{AV}_{\text{REF}} < 4.0 \text{ V}$				±0.6	%FSR
		$2.3 \text{ V} \leq AV_{\text{REF}} < 2.7$	7 V			±1.2	%FSR
Conversion time	tconv	Conventional-	$4.0~V \leq AV_{\text{REF}} \leq 5.5~V$	6.1		36.7	μs
		specification	$2.7~V \leq AV_{\text{REF}} < 4.0~V$	12.2		36.7	μs
		Products (µPD78F05xx(A))	$2.3~V \leq AV_{\text{REF}} < 2.7~V$	27		66.6	μS
		Expanded-	$4.0~V \leq AV_{\text{REF}} \leq 5.5~V$	6.1		66.6	μs
		specification	$2.7~V \leq AV_{\text{REF}} < 4.0~V$	12.2		66.6	μs
		Products (μPD78F05xxA(A))	$2.3~V \leq AV_{\text{REF}} < 2.7~V$	27		66.6	μS
Zero-scale error ^{Notes 1, 2}	Ezs	$4.0 \text{ V} \le \text{AV}_{\text{REF}} \le 5.5 \text{ V}$				±0.4	%FSR
		$2.7~V \leq AV_{\text{REF}} < 4.0~V$				±0.6	%FSR
		$2.3 \text{ V} \leq \text{AV}_{\text{REF}} < 2.7 \text{ V}$				±0.6	%FSR
Full-scale error ^{Notes 1, 2}	E _F s	$4.0~V \leq AV_{\text{REF}} \leq 5.5~V$				±0.4	%FSR
		$2.7~V \leq AV_{\text{REF}} < 4.0~V$				±0.6	%FSR
		$2.3~V \leq AV_{\text{REF}} < 2.7~V$				±0.6	%FSR
Integral non-linearity error ^{Note 1}	ILE	$4.0~V \leq AV_{\text{REF}} \leq 5.5$	5 V			±2.5	LSB
		$2.7 \text{ V} \leq \text{AV}_{\text{REF}} < 4.0 \text{ V}$				±4.5	LSB
		$2.3~V \leq AV_{\text{REF}} < 2.7~V$				±6.5	LSB
Differential non-linearity error Note 1	DLE	$4.0~V \leq AV_{\text{REF}} \leq 5.5$	5 V			±1.5	LSB
		$2.7 \text{ V} \leq AV_{\text{REF}} < 4.0$	V			±2.0	LSB
		$2.3~V \leq AV_{\text{REF}} < 2.7~V$				±2.0	LSB
Analog input voltage	VAIN			AVss		AVREF	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

2. This value is indicated as a ratio (%FSR) to the full-scale value.

A.1 Software Package

SP78K0	Development tools (software) common to the 78K0 microcontrollers are combined in this
78K0 microcontroller software	package.
package	

A.2 Language Processing Software

RA78K0 ^{Note 1}	This assembler converts programs written in mnemonics into object codes executable
Assembler package	with a microcontroller.
	This assembler is also provided with functions capable of automatically creating symbol
	tables and branch instruction optimization.
	This assembler should be used in combination with a device file (DF780547).
	<precaution environment="" in="" pc="" ra78k0="" using="" when=""></precaution>
	This assembler package is a DOS-based application. It can also be used in Windows,
	however, by using the Project Manager (PM+) on Windows. PM+ is included in
	assembler package.
CC78K0 ^{Note 1}	This compiler converts programs written in C language into object codes executable with
C compiler package	a microcontroller.
	This compiler should be used in combination with an assembler package and device file.
	<precaution cc78k0="" environment="" in="" pc="" using="" when=""></precaution>
	This C compiler package is a DOS-based application. It can also be used in Windows,
	however, by using the Project Manager (PM+) on Windows. PM+ is included in
	assembler package.
DF780547 ^{Note 2}	This file contains information peculiar to the device.
Device file	This device file should be used in combination with a tool (RA78K0, CC78K0, ID78K0-
	QB, and the system simulator).
	The corresponding OS and host machine differ depending on the tool to be used.

- **Notes 1.** If the versions of RA78K0 and CC78K0 are Ver.4.00 or later, different versions of RA78K0 and CC78K0 can be installed on the same machine.
 - The DF780547 can be used in common with the RA78K0, CC78K0, ID78K0-QB, and the system simulator. Download the DF780547 from the download site for development tools (http://www2.renesas.com/micro/en/ods/index.html).

