

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	25MHz
Connectivity	EBI/EMI, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	68
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.75K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f8620-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC18FXX20

In addition to the code memory space, there are three blocks in the configuration and ID space that are accessible to the user through Table Reads and Table Writes. Their locations in the memory map are shown in Figure 2-3.

Users may store identification information (ID) in eight ID registers. These ID registers are mapped in addresses 200000h through 200007h. The ID locations read out normally, even after code protection is applied.

Locations 300000h through 30000Dh are reserved for the Configuration bits. These bits select various device options, and are described in Section 5.0. These Configuration bits read out normally, even after code protection.

Locations 3FFFFEh and 3FFFFFh are reserved for the Device ID bits. These bits may be used by the programmer to identify what device type is being programmed, and are described in Section 5.0. These Device ID bits read out normally, even after code protection.

2.3.1 MEMORY ADDRESS POINTER

Memory in the address space 0000000h to 3FFFFh is addressed via the Table Pointer, which is comprised of three pointer registers:

- TBLPTRU, at RAM address 0FF8h
- TBLPTRH, at RAM address 0FF7h
- TBLPTRL, at RAM address 0FF6h

TBLPTRU	TBLPTRH	TBLPTRL
Addr[21:16]	Addr[15:8]	Addr[7:0]

The 4-bit command, '0000' (Core Instruction), is used to load the Table Pointer prior to using many Read or Write operations.

FIGURE 2-3: CONFIGURATION AND ID LOCATIONS FOR PIC18FXX20 DEVICES

3.0 DEVICE PROGRAMMING

3.1 High Voltage ICSP Bulk Erase

Erasing Code or Data EEPROM is accomplished by writing an "erase option" to address 3C0004h. Code memory may be erased portions at a time, or the user may erase the entire device in one action. "Bulk Erase" operations will also clear any code protect settings associated with the memory block erased. Erase options are detailed in Table 3-1.

Description	Data
Chip Erase	80h
Erase Data EEPROM	81h
Erase Boot Block	83h
Erase Block 1	88h
Erase Block 2	89h
Erase Block 3	8Ah
Erase Block 4	8Bh
Erase Block 5	8Ch
Erase Block 6	8Dh
Erase Block 7	8Eh
Erase Block 8	8Fh

TABLE 3-1: BULK ERASE OPTIONS

The actual Bulk Erase function is a self-timed operation. Once the erase has started (falling edge of the 4th SCLK after the NOP command), serial execution will cease until the erase completes (parameter P11). During this time, SCLK may continue to toggle, but SDATA must be held low.

The code sequence to erase the entire device is shown in Figure 3-1 and the flowchart is shown in Figure 3-2.

Note: A bulk erase is the only way to reprogram code protect bits from an on-state to an off-state.
Non-code protect bits are not returned to default settings by a bulk erase. These bits should be programmed to ones, as outlined in Section 3.6, "Configuration Bits Programming".

FIGURE 3-1:	BULK ERASE COMMAND	
	SEQUENCE	

4-Bit Command	Data Payload	Core Instruction	
0000	0E 3C	MOVLW 3Ch	
0000	6E F8	MOVWF TBLPTRU	
0000	0E 00	MOVLW 00h	
0000	6E F7	MOVWF TBLPTRH	
0000	0E 04	MOVLW 04h	
0000	6E F6	MOVWF TBLPTRL	
1100	00 80	Write 80h TO 3C0004h to	
		erase entire device.	
0000	00 00	NOP	
0000	00 00	Hold SDATA low until	
		erase completes.	

BULK ERASE FLOW

4-Bit Command	Data Payload	Core Instruction		
Step 1: Direct acc	ess to config memory.			
0000	8E A6 8C A6	BSF EECON1, EEPGD BSF EECON1, CFGS		
0000	86 A6	BSF EECON1, WREN		
Step 2: Configure	Step 2: Configure device for multi-panel writes.			
0000	0E 3C	MOVLW 3Ch		
0000	6E F8	MOVWF TBLPTRU		
0000	0E 00	MOVLW 00h		
0000	6E F7	MOVWF TBLPTRH		
0000	0E 06	MOVLW 06h		
0000	6E F6	MOVWF TBLPTRL		
1100	00 40	Write 40h to 3C0006h to enable multi-panel erase.		
Step 3: Direct acc	ess to code memory an	d enable erase.		
0000	8E A6	BSF EECON1, EEPGD		
0000	9C A6	BCF EECON1, CFGS		
0000	88 A6	BSF EECON1, FREE		
0000	6A F8	CLRF TBLPTRU		
0000	6A F7	CLRF TBLPTRH		
0000	6A F6	CLRF TBLPTRL		
Step 4: Erase sinç	Step 4: Erase single row of all panels at an offset.			
1111	<dummylsb> <dummymsb></dummymsb></dummylsb>	Write 2 dummy bytes and start programming.		
0000	00 00	NOP - hold SCLK high for time P9.		
Step 5: Repeat st	Step 5: Repeat step 4, with Address Pointer incremented by 64 until all panels are erased.			

TABLE 3-2: ERASE CODE MEMORY CODE SEQUENCE

© 2010 Microchip Technology Inc.

3.2 Code Memory Programming

Programming code memory is accomplished by first loading data into the appropriate write buffers and then initiating a programming sequence. Each panel in the code memory space (see Figure 2-2) has an 8-byte deep write buffer that must be loaded prior to initiating a write sequence. The actual memory write sequence takes the contents of these buffers and programs the associated EEPROM code memory.

Typically, all of the program buffers are written in parallel (Multi-Panel Write mode). In other words, in the case of a 128-Kbyte device (16 panels with an 8-byte buffer per panel), 128 bytes will be simultaneously programmed during each programming sequence. In this case, the offset of the write within each panel is the same (see Figure 3-5). Multi-Panel Write mode is enabled by appropriately configuring the Programming Control register located at 3C0006h. The programming duration is externally timed and is controlled by SCLK. After a "Start Programming" command is issued (4-bit command, '1111'), a NOP is issued, where the 4th SCLK is held high for the duration of the programming time, P9.

After SCLK is brought low, the programming sequence is terminated. SCLK must be held low for the time specified by parameter P10 to allow high voltage discharge of the memory array.

The code sequence to program a PIC18FXX20 device is shown in Figure 3-3. The flowchart shown in Figure 3-6 depicts the logic necessary to completely write a PIC18FXX20 device. The timing diagram that details the "Start Programming" command, and parameters P9 and P10, is shown in Figure 3-7.

Note: The TBLPTR register must contain the same offset value when initiating the programming sequence as it did when the write buffers were loaded.

4-Bit Command	Data Payload	Core Instruction	
Step 1: Direct acc	Step 1: Direct access to config memory.		
0000	8E A6	BSF EECON1, EEPGD	
0000	8C A6	BSF EECON1, CFGS	
0000	86 A6	BSF EECON1, WREN	
Step 2: Configure	device for multi-panel w	vrites.	
0000	OE 3C	MOVLW 3Ch	
0000	6E F8	MOVWF TBLPTRU	
0000	0E 00	MOVLW 00h	
0000	6E F7	MOVWF TBLPTRH	
0000	0E 06	MOVLW 06h	
0000	6E E6	MOVWE TBLPTRI	
1100	00 40	Write 40h to 3C0006h to enable multi-panel writes.	
Step 3: Direct acc	Less to code memory.	-	
	8F 76	RSF FFCON1 FFDCD	
0000	9C A6	BCF EECON1, CFGS	
Step 4: Load write	e buffer for Panel 1.		
0000	OE <addr[21:16]></addr[21:16]>	MOVLW < Addr[21:16]>	
0000	6F F8		
0000	$0E < Addr[1E \cdot 9]$		
0000	CE E7		
0000			
0000	UE <addr[.0]=""></addr[>		
0000	9F. F.P	MOVWF TBLPTRL	
1101	<lsb><msb></msb></lsb>	Write 2 bytes and post-increment address by 2	
1101	<lsb><msb></msb></lsb>	Write 2 bytes and post-increment address by 2	
1101	<lsb><msb></msb></lsb>	Write 2 bytes and post-increment address by 2	
1100	<lsb><msb></msb></lsb>	Write 2 bytes	
Step 5: Repeat fo	r Panel 2.		
Step 6: Repeat fo	r all but the last panel (N	J − 1).	
Step 7: Load write	e buffer for last panel.		
0000	0E <addr[21:16]></addr[21:16]>	MOVLW <addr[21:16]></addr[21:16]>	
0000	6E F8	MOVWF TBLPTRU	
0000	0E <addr[15:8]></addr[15:8]>	MOVLW <addr[15:8]></addr[15:8]>	
0000	6E F7	MOVWF TBLPTRH	
0000	0E <addr[7:0]></addr[7:0]>	MOVLW <addr[7:0]></addr[7:0]>	
0000	6E E6	MOVWE TBLPTRI	
1101		Write 2 bytes and post-increment address by 2	
1101		Write 2 bytes and post increment address by 2	
1101		Write 2 bytes and post-increment address by 2	
1111		Write 2 bytes and post-increment address by 2	
1111	00 00	NOP - hold SCLK high for time P9	
0000	00 00		
To continue writing the loop.	g data, repeat steps 2 th	arough 5, where the Address Pointer is incremented by 8 in each panel at each iteration of	

TABLE 3-3: WRITE CODE MEMORY CODE SEQUENCE

3.3 Data EEPROM Programming

Data EEPROM is accessed one byte at a time via an Address Pointer (register pair EEADR:EEADRH) and a data latch (EEDATA). Data EEPROM is written by loading EEADR:EEADRH with the desired memory location, EEDATA with the data to be written, and initiating a memory write by appropriately configuring the EECON1 and EECON2 registers. A byte write automatically erases the location and writes the new data (erase-before-write).

When using the EECON1 register to perform a data EEPROM write, both the EEPGD and CFGS bits must be cleared (EECON1<7:6> = 00). The WREN bit must be set (EECON1<2> = 1) to enable writes of any sort, and this must be done prior to initiating a write sequence. The write sequence is initiated by setting the WR bit (EECON1<1> = 1). It is strongly recommended that the WREN bit be set only when absolutely necessary.

To help prevent inadvertent writes when using the EECON1 register, EECON2 is used to "enable" the WR bit. This register must be sequentially loaded with 55h and then AAh, immediately prior to asserting the WR bit in order for the write to occur.

The write begins on the falling edge of the 4th SCLK after the WR bit is set. It ends when the WR bit is cleared by hardware.

After the programming sequence terminates, SCLK must still be held low for the time specified by parameter P10 to allow high voltage discharge of the memory array.

FIGURE 3-8: F

PROGRAM DATA FLOW

4-Bit Command	Data Payload	Core Instruction	
Step 1: Direct acc	Step 1: Direct access to data EEPROM.		
0000 0000	9E A6 9C A6	BCF EECON1, EEPGD BCF EECON1, CFGS	
Step 2: Set the da	ata EEPROM Address Point	er.	
0000 0000 0000 0000	OE <addr> 6E A9 OE <addrh> 6E AA</addrh></addr>	MOVLW <addr> MOVWF EEADR MOVLW <addrh> MOVWF EEADRH</addrh></addr>	
Step 3: Load the o	data to be written.		
0000 0000	OE <data> 6E A8</data>	MOVLW <data> MOVWF EEDATA</data>	
Step 4: Enable me	emory writes.		
0000	84 A6	BSF EECON1, WREN	
Step 5: Perform re	equired sequence.		
0000 0000 0000 0000	0E 55 6E A7 0E AA 6E A7	MOVLW 0X55 MOVWF EECON2 MOVLW 0XAA MOVWF EECON2	
Step 6: Initiate wr	Step 6: Initiate write.		
0000	82 A6	BSF EECON1, WR	
Step 7: Poll WR b	Step 7: Poll WR bit, repeat until the bit is clear.		
0000 0000 0010	50 A6 6E F5 <lsb><msb></msb></lsb>	MOVF EECON1, W, 0 MOVWF TABLAT Shift out data ⁽¹⁾	
Step 8: Disable w	rites.		
0000	94 A6	BCF EECON1, WREN	
Repeat steps 2 through 8 to write more data.			

TABLE 3-5: PROGRAMMING DATA MEMORY

Note 1: See Figure 4-4 for details on Shift Out Data timing.

3.4 ID Location Programming

The ID Locations are programmed much like the code memory, except that multi-panel writes must be disabled. The single panel that will be written will automatically be enabled, based on the value of the Table Pointer. The ID registers are mapped in addresses 200000h through 200007h. These locations read out normally, even after code protection.

Note:	Even though multi-panel writes are dis-
	abled, the user must still fill the 8-byte data
	buffer for the panel.

Figure 3-6 demonstrates the code sequence required to write the ID locations.

4-Bit Command	Data Payload	Core Instruction			
Step 1: Direct acc	Step 1: Direct access to config memory.				
0000	8E A6 8C A6	BSF EECON1, EEPGD BSF EECON1, CFGS			
Step 2: Configure	device for single panel write				
0000 0000 0000 0000 0000 0000 1100	0E 3C 6E F8 0E 00 6E F7 0E 06 6E F6 00 00	MOVLW 3Ch MOVWF TBLPTRU MOVLW 00h MOVWF TBLPTRH MOVLW 06h MOVWF TBLPTRL Write 00h to 3C0006h to enable single panel writes.			
Step 3: Direct acc	ess to code memory.				
0000 0000	8E A6 9C A6	BSF EECON1, EEPGD BCF EECON1, CFGS			
Step 4: Load write	buffer. Panel will be automa	atically determined by address.			
0000 0000 0000 0000 0000 1101 1101 110	0E 20 6E F8 0E 00 6E F7 0E 00 6E F6 <lsb><msb> <lsb><msb> <lsb><msb> <lsb><msb></msb></lsb></msb></lsb></msb></lsb></msb></lsb>	MOVLW 20h MOVWF TBLPTRU MOVWF TBLPTRH MOVWF TBLPTRH MOVWF TBLPTRL Write 2 bytes and post-increment address by 2 Write 2 bytes and post-increment address by 2 Write 2 bytes and post-increment address by 2 Write 2 bytes and start programming NOP - hold SCLK high for time P9			

TABLE 3-6: WRITE ID SEQUENCE

In order to modify the ID locations, refer to the methodology described in Section 3.2.2, "Modifying Code Memory". As with code memory, the ID locations must be erased before modified.

3.5 Boot Block Programming

The Boot Block segment is programmed in exactly the same manner as the ID locations (see Section 3.4). Multi-panel writes must be disabled so that only addresses in the range 0000h to 01FFh will be written.

The code sequence detailed in Figure 3-6 should be used, except that the address data used in "Step 2" will be in the range 000000h to 0001FFh.

3.6 Configuration Bits Programming

Unlike code memory, the configuration bits are programmed a byte at a time. The "Table Write, Begin Programming" 4-bit command (1111) is used, but only 8 bits of the following 16-bit payload will be written. The LSB of the payload will be written to even addresses, and the MSB will be written to odd addresses. The code sequence to program two consecutive configuration locations is shown in Figure 3-7.

TABLE 3-7: SET ADDRESS POINTER TO CONFIGURATION LOCATION

4-Bit Command	Data Payload	Core Instruction
Step 1: Direct acc	ess to config memory.	
0000 0000	8E A6 8C A6	BSF EECON1, EEPGD BSF EECON1, CFGS
Step 2: Position th	e program counter ⁽¹⁾ .	
0000 0000	EF 00 F8 00	GOTO 100000h
Step 3 ⁽²⁾ : Set Tabl	e Pointer for config byte to I	be written. Write even/odd addresses.
0000 0000 0000 0000 0000 1111 0000 0000 1111 0000	0E 30 6E F8 0E 00 6E F7 0E 00 6E F6 <lsb><msb ignored=""> 00 00 2A F6 <lsb ignored=""><msb> 00 00</msb></lsb></msb></lsb>	MOVLW 30h MOVWF TBLPTRU MOVLW 00h MOVWF TBLPRTH MOVLW 00h MOVWF TBLPTRL Load 2 bytes and start programming NOP - hold SCLK high for time P9 INCF TBLPTRL Load 2 bytes and start programming NOP - hold SCLK high for time P9

Note 1: If the code protection bits are programmed while the program counter resides in the same block, then the interaction of code protection logic may prevent further table write. To avoid this situation, move the program counter outside the code protection area (e.g., GOTO 100000h).

2: Enabling the write protection of configuration bits (WRTC = 0 in CONFIG6H) will prevent further writing of configuration bits. Always write all the configuration bits before enabling the write protection for configuration bits.

FIGURE 3-10: CONFIGURATION PROGRAMMING FLOW

4.3 Verify Configuration Bits

A configuration address may be read and output on SDATA via the 4-bit command, '1001'. Configuration data is read and written in a byte-wise fashion, so it is not necessary to merge two bytes into a word prior to a compare. The result may then be immediately compared to the appropriate configuration data in the programmer's memory for verification. Refer to Section 4.1 for implementation details of reading configuration data.

4.4 Read Data EEPROM Memory

Data EEPROM is accessed one byte at a time via an Address Pointer (register pair EEADR:EEADRH) and a data latch (EEDATA). Data EEPROM is read by loading EEADR:EEADRH with the desired memory location and initiating a memory read by appropriately configuring the EECON1 register. The data will be loaded into EEDATA, where it may be serially output on SDATA via the 4-bit command, '0010' (Shift Out Data Holding register). A delay of P6 must be introduced after the falling edge of the 8th SCLK of the operand to allow SDATA to transition from an input to an output. During this time, SCLK must be held low (see Figure 4-4).

The command sequence to read a single byte of data is shown in Figure 4-2.

FIGURE 4-3: READ DATA EEPROM FLOW

4.5 Verify Data EEPROM

A data EEPROM address may be read via a sequence of core instructions (4-bit command, '0000') and then output on SDATA via the 4-bit command, '0010' (Shift Out Data Holding register). The result may then be immediately compared to the appropriate data in the programmer's memory for verification. Refer to Section 4.4 for implementation details of reading data EEPROM.

4.6 Blank Check

The term "Blank Check" means to verify that the device has no programmed memory cells. All memories must be verified: Code Memory, Data EEPROM, ID Locations, and Configuration bits. The Device ID registers (3FFFFEh:3FFFFFh) should be ignored.

A "blank" or "erased" memory cell will read as a '1'. So, "Blank Checking" a device merely means to verify that all bytes read as FFh, except the Configuration bits. Unused (reserved) Configuration bits will read '0' (programmed). Refer to Table 5-2 for blank configuration expect data for the various PIC18FXX20 devices. Given that "Blank Checking" is merely code and data EEPROM verification with FFh expect data, refer to Section 4.4 and Section 4.2 for implementation details.

5.0 CONFIGURATION WORD

The PIC18FXX20 devices have several configuration words. These bits can be set or cleared to select various device configurations. All other memory areas should be programmed and verified prior to setting configuration words. These bits may be read out normally, even after read or code protection.

5.1 ID Locations

A user may store identification information (ID) in eight ID locations mapped in 200000h:200007h. It is recommended that the Most Significant nibble of each ID be 0Fh. In doing so, if the user code inadvertently tries to execute from the ID space, the ID data will execute as NOP.

5.2 Device ID Word

The device ID word for the PIC18FXX20 is located at 3FFFFEh:3FFFFh. These bits may be used by the programmer to identify what device type is being programmed and read out normally, even after code or read protection.

5.3 Low Voltage Programming (LVP) Bit

The LVP bit in Configuration register, CONFIG4L, enables low voltage ICSP programming. The LVP bit defaults to a '1' from the factory.

If Low Voltage Programming mode is not used, the LVP bit can be programmed to a '0' and RB5/PGM becomes a digital I/O pin. However, the LVP bit may only be programmed by entering the high voltage ICSP mode, where MCLR/VPP is raised to VIHH. Once the LVP bit is programmed to a '0', only the high voltage ICSP mode is available and only the high voltage ICSP mode can be used to program the device.

- Note 1: The normal ICSP mode is always available, regardless of the state of the LVP bit, by applying VIHH to the MCLR/VPP pin.
 - 2: While in low voltage ICSP mode, the RB5 pin can no longer be used as a general purpose I/O.

Device	Device ID Value		
	DEVID2	DEVID1	
PIC18F6520	0Bh	001x xxxx	
PIC18F6620	06h	011x xxxx	
PIC18F6720	06h	001x xxxx	
PIC18F8520	0Bh	000x xxxx	
PIC18F8620	06h	010x xxxx	
PIC18F8720	06h	000x xxxx	

TABLE 5-1: DEVICE ID VALUES

Note: The 'x's in DEVID1 contain the device revision code.

Bit Name	Configuration Words	Description			
OSCEN	CONFIG1H	Low Power System Clock Option (Timer1) Enable bit 1 = Disabled 0 = Timer1 oscillator system clock option enabled			
FOSC2:FOSC0	CONFIG1H	Oscillator Selection bits 111 = RC oscillator w/ OSC2 configured as RA6 110 = HS oscillator w/ PLL enabled 101 = EC oscillator w/ OSC2 configured as RA6 100 = RC oscillator w/ OSC2 configured as "divide by 4 clock output" 011 = RC oscillator 010 = HS oscillator 001 = XT oscillator 000 = LP oscillator			
BORV1:BORV0	CONFIG2L	Brown-out Reset Voltage bits 11 = VBOR set to 2.0V 10 = VBOR set to 2.7V 01 = VBOR set to 4.2V 00 = VBOR set to 4.5V			
BOREN	CONFIG2L	Brown-out Reset Enable bit 1 = Brown-out Reset enabled 0 = Brown-out Reset disabled			
PWRTEN	CONFIG2L	Power-up Timer Enable bit 1 = PWRT disabled 0 = PWRT enabled			
WDTPS2:WDTPS0	CONFIG2H	Watchdog Timer Postscaler Select bits 111 = 1:128 110 = 1:64 101 = 1:32 100 = 1:16 011 = 1:8 010 = 1:4 001 = 1:2 000 = 1:1			
WDTEN	CONFIG2H	Watchdog Timer Enable bit 1 = WDT enabled 0 = WDT disabled (control is placed on SWDTEN bit)			
WAIT ⁽¹⁾	CONFIG3L	External Bus Data Wait Enable bit 1 = Wait selections unavailable 0 = Wait selections determined by WAIT1:WAIT0 bits of MEMCOM register			
PM1:PM0 ⁽¹⁾	CONFIG3L	Processor Mode Select bits 11 = Microcontroller mode 10 = Microprocessor mode 01 = Microprocessor with Boot Block mode 00 = Extended Microcontroller mode			

Note 1: Unimplemented in PIC18F6X20 (64-pin) devices; maintain this bit set.

2: Unimplemented in PIC18FX620 devices; maintain this bit set.

3: PIC18F8520/8620 devices only.

PIC18FXX20

TABLE 5-3: PIC18FXX20 CONFIGURATION BIT DESCRIPTIONS (CONTINUED)

Bit Name	Configuration Words	Description		
T1OSCMX ⁽³⁾	CONFIG3H	Timer1 Oscillator MUX bit 1 = Legacy Timer1 oscillator selected 0 = Low power Timer1 oscillator selected		
CCP2MX	CONFIG3H	CCP2 MUX bit 1 = CCP2 input/output is multiplexed with RC1 0 = CCP2 input/output is multiplexed with RB3		
DEBUG	CONFIG4L	Background Debugger Enable bit 1 = Background debugger disabled 0 = Background debugger enabled		
LVP	CONFIG4L	Low Voltage Programming Enable bit 1 = Low voltage programming enabled 0 = Low voltage programming disabled		
STVREN	CONFIG4L	Stack Overflow/Underflow Reset Enable bit 1 = Stack overflow/underflow will cause RESET 0 = Stack overflow/underflow will not cause RESET		
CP0	CONFIG5L	Code Protection bits (Block 0) 1 = Code memory not code protected 0 = Code memory code protected		
CP1	CONFIG5L	Code Protection bits (Block 1) 1 = Code memory not code protected 0 = Code memory code protected		
CP2	CONFIG5L	Code Protection bits (Block 2) 1 = Code memory not code protected 0 = Code memory code protected		
CP3	CONFIG5L	Code Protection bits (Block 3) 1 = Code memory not code protected 0 = Code memory code protected		
CP4 ⁽²⁾	CONFIG5L	Code Protection bits (Block 4) 1 = Code memory not code protected 0 = Code memory code protected		
CP5 ⁽²⁾	CONFIG5L	Code Protection bits (Block 5) 1 = Code memory not code protected 0 = Code memory code protected		
CP6 ⁽²⁾	CONFIG5L	Code Protection bits (Block 6) 1 = Code memory not code protected 0 = Code memory code protected		
CP7 ⁽²⁾	CONFIG5L	Code Protection bits (Block 7) 1 = Code memory not code protected 0 = Code memory code protected		

Note 1: Unimplemented in PIC18F6X20 (64-pin) devices; maintain this bit set.

2: Unimplemented in PIC18FX620 devices; maintain this bit set.

3: PIC18F8520/8620 devices only.

TABLE 5-3:	PIC18FXX20 CONFIGURATION BIT DESCRIPTIONS	(CONTINUED)	
TABLE 5-3:	PIC18FXX20 CONFIGURATION BIT DESCRIPTIONS	(CONTINUED)	1

Bit Name	Configuration Words Description		
CPD	CONFIG5H	Code Protection bits (Data EEPROM) 1 = Data EEPROM not code protected 0 = Data EEPROM code protected	
СРВ	CONFIG5H	Code Protection bits (Boot Block) 1 = Boot block not code protected 0 = Boot block code protected	
WRT0	CONFIG6L	Table Write Protection bit (Block 0) 1 = Code memory not write protected 0 = Code memory write protected	
WRT1	CONFIG6L	Table Write Protection bit (Block 1) 1 = Code memory not write protected 0 = Code memory write protected	
WRT2	CONFIG6L	Table Write Protection bit (Block 2) 1 = Code memory not write protected 0 = Code memory write protected	
WRT3	CONFIG6L	Table Write Protection bit (Block 3)1 = Code memory not write protected0 = Code memory write protected	
WRT4 ⁽²⁾	CONFIG6L	Table Write Protection bit (Block 4)1 = Code memory not write protected0 = Code memory write protected	
WRT5 ⁽²⁾	CONFIG6L	Table Write Protection bit (Block 5)1 = Code memory not write protected0 = Code memory write protected	
WRT6 ⁽²⁾	CONFIG6L	Table Write Protection bit (Block 6)1 = Code memory not write protected0 = Code memory write protected	
WRT7 ⁽²⁾	CONFIG6L	Table Write Protection bit (Block 7) 1 = Code memory not write protected 0 = Code memory write protected	
WRTD	CONFIG6H	Table Write Protection bit (Data EEPROM) 1 = Data EEPROM not write protected 0 = Data EEPROM write protected	
WRTB	CONFIG6H	Table Write Protection bit (Boot Block)1 = Boot block not write protected0 = Boot block write protected	
WRTC	CONFIG6H	Table Write Protection bit (Configuration registers)1 = Configuration registers not write protected0 = Configuration registers write protected	

Note 1: Unimplemented in PIC18F6X20 (64-pin) devices; maintain this bit set.

2: Unimplemented in PIC18FX620 devices; maintain this bit set.

3: PIC18F8520/8620 devices only.

PIC18FXX20

Device	Code Protect	Checksum	Blank Value	0xAA at 0 and Max Address
PIC18F6720	None	SUM(0000:01FF)+SUM(0200:3FFF)+SUM(4000:7FFF)+ SUM(8000:BFFF)+SUM(C000:FFFF)+SUM(10000:13FFF)+ SUM(14000:17FFF)+SUM(18000:1BFFF)+SUM(1C000:1FFFF)+ (CFGW1L & 0000)+(CFGW1H & 0027)+(CFGW2L & 000F)+ (CFGW2H & 000F)+(CFGW3L & 0000)+(CFGW3H & 0001)+ (CFGW4L & 0085)+(CFGW4H & 0000)+(CFGW5L & 00FF)+ (CFGW5H & 00C0)+(CFGW6L & 00FF)+(CFGW6H & 00E0)+ (CFGW7L & 00FF)+(CFGW7H & 0040)	05A8	04FE
	Boot Block	SUM(0200:3FFF)+SUM(4000:7FFF)+SUM(8000:BFFF)+ SUM(C000:FFFF)+SUM(10000:13FFF)+SUM(14000:17FFF)+ SUM(18000:1BFFF)+SUM(1C000:1FFFF)+(CFGW1L & 0000)+ (CFGW1H & 0027)+(CFGW2L & 000F)+(CFGW2H & 000F)+ (CFGW3L & 0000)+(CFGW3H & 0001)+(CFGW4L & 0085)+ (CFGW4H & 0000)+(CFGW5L & 00FF)+(CFGW5H & 00C0)+ (CFGW6L & 00FF)+(CFGW6H & 00E0)+(CFGW7L & 00FF)+ (CFGW7H & 0040)+SUM(IDs)	077F	0734
	Boot/ Block1/ Block2	SUM(8000:BFFF)+SUM(C000:FFFF)+SUM(10000:13FFF)+ SUM(14000:17FFF)+SUM(18000:1BFFF)+SUM(1C000:1FFFF)+ (CFGW1L & 0000)+(CFGW1H & 0027)+(CFGW2L & 000F)+ (CFGW2H & 000F)+(CFGW3L & 0000)+(CFGW3H & 0001)+ (CFGW4L & 0085)+(CFGW4H & 0000)+(CFGW5L & 00FF)+ (CFGW5H & 00C0)+(CFGW6L & 00FF)+(CFGW6H & 00E0)+ (CFGW7L & 00FF)+(CFGW7H & 0040)+SUM(IDs)	857C	8531
	All	(CFGW1L & 0000)+(CFGW1H & 0027)+(CFGW2L & 000F)+ (CFGW2H & 000F)+(CFGW3L & 0000)+(CFGW3H & 0001)+ (CFGW4L & 0085)+(CFGW4H & 0000)+(CFGW5L & 00FF)+ (CFGW5H & 00C0)+(CFGW6L & 00FF)+(CFGW6H & 00E0)+ (CFGW7L & 00FF)+(CFGW7H & 0040)+SUM(IDs)	480	048A

Legend: Item

+

<u>Description</u>Configuration Word CFGW

SUM[a:b] = Sum of locations, a to b inclusive

SUM_ID = Byte-wise sum of lower four bits of all customer ID locations

= Addition

& = Bit-wise AND

Device	Code Protect	Checksum	Blank Value	0xAA at 0 and Max Address
PIC18F8520	None	SUM(0000:07FF)+SUM(0800:1FFF)+SUM(2000:3FFF)+ SUM(4000:5FFF)+SUM(6000:7FFF)+(CFGW1L & 0000)+ (CFGW1H & 0027)+(CFGW2L & 000F)+(CFGW2H & 000F)+ (CFGW3L & 0000)+(CFGW3H & 0002)+(CFGW4L & 0085)+ (CFGW4H & 0000)+(CFGW5L & 00FF)+(CFGW5H & 00C0)+ (CFGW6L & 00FF)+(CFGW6H & 00E0)+(CFGW7L & 00FF)+ (CFGW7H & 0040)	05AA	500
	Boot Block	SUM(0800:1FFF)+SUM(2000:3FFF)+SUM(4000:5FFF)+ SUM(6000:7FFF)+(CFGW1L & 0000)+(CFGW1H & 0027)+ (CFGW2L & 000F)+(CFGW2H & 000F)+(CFGW3L & 0000)+ (CFGW3H & 0002)+(CFGW4L & 0085)+(CFGW4H & 0000)+ (CFGW5L & 00FF)+(CFGW5H & 00C0)+(CFGW6L & 00FF)+ (CFGW6H & 00E0)+(CFGW7L & 00FF)+(CFGW7H & 0040)+ SUM(IDs)	783	071A
	Boot/ Block1/ Block2	SUM(4000:5FFF)+SUM(6000:7FFF)+(CFGW1L & 0000)+ (CFGW1H & 0027)+(CFGW2L & 000F)+(CFGW2H & 000F)+ (CFGW3L & 0000)+(CFGW3H & 0002)+(CFGW4L & 0085)+ (CFGW4H & 0000)+(CFGW5L & 00FF)+(CFGW5H & 00C0)+ (CFGW6L & 00FF)+(CFGW6H & 00E0)+(CFGW7L & 00FF)+ (CFGW7H & 0040)+SUM(IDs)	8580	8517
	All	(CFGW1L & 0000)+(CFGW1H & 0027)+(CFGW2L & 000F)+ (CFGW2H & 000F)+(CFGW3L & 0000)+(CFGW3H & 0002)+ (CFGW4L & 0085)+(CFGW4H & 0000)+(CFGW5L & 00FF)+ (CFGW5H & 00C0)+(CFGW6L & 00FF)+(CFGW6H & 00E0)+ (CFGW7L & 00FF)+(CFGW7H & 0040)+SUM(IDs)	484	470

Legend: Item

<u>Item</u> <u>Description</u> CFGW = Configuration Word

SUM[a:b] = Sum of locations, a to b inclusive

SUM_ID = Byte-wise sum of lower four bits of all customer ID locations

- = Addition +
- & = Bit-wise AND

6.0 AC/DC CHARACTERISTICS TIMING REQUIREMENTS FOR PROGRAM/VERIFY TEST MODE

Standard Operating Conditions Operating Temperature: 25°C is recommended						
Param No.	Sym	Characteristic	Min	Max	Units	Conditions
D110	Vihh	High Voltage Programming Voltage on MCLR/VPP	9.00	13.25	V	
D110A	VIHL	Low Voltage Programming Voltage on MCLR/VPP	2.00	5.50	V	
D111	Vdd	Supply Voltage During Programming	2.00	5.50	V	Normal programming
			4.50	5.50	V	Bulk erase operations
D112	IPP	Programming Current on MCLR/VPP	—	300	μΑ	
D113	IDDP	Supply Current During Programming	—	10	mA	
D031	VIL	Input Low Voltage	Vss	0.2 Vdd	V	
D041	Vih	Input High Voltage	0.8 Vdd	Vdd	V	
D080	Vol	Output Low Voltage	—	0.6	V	IOL = 8.5 mA @ 4.5V
D090	Vон	Output High Voltage	Vdd - 0.7		V	ЮН = -3.0 mA @ 4.5V
D012	Сю	Capacitive Loading on I/O pin (SDATA)		50	pF	To meet AC specifications
	-					
P1	Tr	MCLR/VPP Rise Time to enter Program/Verify mode	_	1.0	μS	(Note 1)
P2	Tsclk	Serial Clock (SCLK) Period	100		ns	
P2A	TsclkL	Serial Clock (SCLK) Low Time	40		ns	
P2B	TsclkH	Serial Clock (SCLK) High Time	40		ns	
P3	Tset1	Input Data Setup Time to Serial Clock \downarrow	15	_	ns	
P4	Thld1	Input Data Hold Time from SCLK \downarrow	15		ns	
P5	Tdly1	Delay between 4-bit Command and Command Operand	40	_	ns	
P5A	Tdly1a	Delay between 4-bit Command Operand and next 4-bit Command	40	_	ns	
P6	Tdly2	Delay between Last SCLK ↓ of Command Byte to First SCLK ↑ of Read of Data Word	20	_	ns	
P9	Tdly5	SCLK High Time (minimum programming time)	1	_	ms	
P10	Tdly6	SCLK Low Time after Programming (high voltage discharge time)	5	_	μs	
P11	Tdly7	Delay to allow Self-Timed Data Write or Bulk Erase to occur	10	_	ms	
P11A	Tdrwt	Data Write Polling Time	4	_	ms	
P12	Thld2	Input Data Hold Time from MCLR/VPP ↑	2	_	μs	
P13	Tset2	VDD ↑ Setup Time to MCLR/VPP ↑	100	_	ns	
P14	Tvalid	Data Out Valid from SCLK ↑	10	_	ns	
P15	Tset3	PGM ↑ Setup Time to MCLR/VPP ↑	2		μS	

Note 1: Do not allow excess time when transitioning MCLR between VIL and VIHH; this can cause spurious program executions to occur. The maximum transition time is:

1 TCY + TPWRT (if enabled) + 1024 TOSC (for LP, HS, HS/PLL, and XT modes only)

+ 2 ms (for HS/PLL mode only) + 1.5 μ s (for EC mode only)

where TCY is the Instruction Cycle Time, TPWRT is the Power-up Timer Period, and TOSC is the Oscillator Period. For specific values, refer to the Electrical Characteristics section of the Device Data Sheet for the particular device.

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, PIC³² logo, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2010, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.