
Microchip Technology - ATSAM3U1CB-AU Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor ARM® Cortex®-M3

Core Size 32-Bit Single-Core

Speed 96MHz

Connectivity EBI/EMI, I²C, Memory Card, SPI, SSC, UART/USART, USB

Peripherals Brown-out Detect/Reset, DMA, I²S, POR, PWM, WDT

Number of I/O 57

Program Memory Size 64KB (64K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 20K x 8

Voltage - Supply (Vcc/Vdd) 1.62V ~ 3.6V

Data Converters A/D 4x10b, 4x12b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 100-LQFP

Supplier Device Package 100-LQFP (14x14)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/atsam3u1cb-au

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atsam3u1cb-au-4385829
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

12.5.1.3 Active

An exception that is being serviced by the processor but has not completed.

An exception handler can interrupt the execution of another exception handler. In this case both exceptions are in
the active state.

12.5.1.4 Active and pending

The exception is being serviced by the processor and there is a pending exception from the same source.

12.5.2 Exception types

The exception types are:

12.5.2.1 Reset

Reset is invoked on power up or a warm reset. The exception model treats reset as a special form of exception.
When reset is asserted, the operation of the processor stops, potentially at any point in an instruction. When reset
is deasserted, execution restarts from the address provided by the reset entry in the vector table. Execution
restarts as privileged execution in Thread mode.

12.5.2.2 Non Maskable Interrupt (NMI)

A non maskable interrupt (NMI) can be signalled by a peripheral or triggered by software. This is the highest
priority exception other than reset. It is permanently enabled and has a fixed priority of -2.

NMIs cannot be:

 Masked or prevented from activation by any other exception.

 Preempted by any exception other than Reset.

12.5.2.3 Hard fault

A hard fault is an exception that occurs because of an error during exception processing, or because an exception
cannot be managed by any other exception mechanism. Hard faults have a fixed priority of -1, meaning they have
higher priority than any exception with configurable priority.

12.5.2.4 Memory management fault

A memory management fault is an exception that occurs because of a memory protection related fault. The MPU
or the fixed memory protection constraints determines this fault, for both instruction and data memory transactions.
This fault is used to abort instruction accesses to Execute Never (XN) memory regions, even if the MPU is
disabled.

12.5.2.5 Bus fault

A bus fault is an exception that occurs because of a memory related fault for an instruction or data memory
transaction. This might be from an error detected on a bus in the memory system.

12.5.2.6 Usage fault

A usage fault is an exception that occurs because of a fault related to instruction execution. This includes:

 an undefined instruction

 an illegal unaligned access

 invalid state on instruction execution

 an error on exception return.

The following can cause a usage fault when the core is configured to report them:

 an unaligned address on word and halfword memory access

 division by zero.
67SAM3U Series [DATASHEET]
Atmel-6430G-ATARM-SAM3U-Series-Datasheet_31-Mar-15

12.11.2 LDR and STR, immediate offset

Load and Store with immediate offset, pre-indexed immediate offset, or post-indexed immediate offset.

12.11.2.1 Syntax

op{type}{cond} Rt, [Rn {, #offset}] ; immediate offset
op{type}{cond} Rt, [Rn, #offset]! ; pre-indexed
op{type}{cond} Rt, [Rn], #offset ; post-indexed
opD{cond} Rt, Rt2, [Rn {, #offset}] ; immediate offset, two words
opD{cond} Rt, Rt2, [Rn, #offset]! ; pre-indexed, two words
opD{cond} Rt, Rt2, [Rn], #offset ; post-indexed, two words

where:

op is one of:

LDR Load Register.

STR Store Register.

type is one of:

B unsigned byte, zero extend to 32 bits on loads.

SB signed byte, sign extend to 32 bits (LDR only).

H unsigned halfword, zero extend to 32 bits on loads.

SH signed halfword, sign extend to 32 bits (LDR only).

- omit, for word.

cond is an optional condition code, see “Conditional execution” on page 87.

Rt is the register to load or store.

Rn is the register on which the memory address is based.

offset is an offset from Rn. If offset is omitted, the address is the contents of Rn.

Rt2 is the additional register to load or store for two-word operations.

12.11.2.2 Operation

LDR instructions load one or two registers with a value from memory.

STR instructions store one or two register values to memory.

Load and store instructions with immediate offset can use the following addressing modes:

12.11.2.3 Offset addressing

The offset value is added to or subtracted from the address obtained from the register Rn. The result is used as the
address for the memory access. The register Rn is unaltered. The assembly language syntax for this mode is:

[Rn, #offset]

12.11.2.4 Pre-indexed addressing

The offset value is added to or subtracted from the address obtained from the register Rn. The result is used as the
address for the memory access and written back into the register Rn. The assembly language syntax for this mode
is:

[Rn, #offset]!

12.11.2.5 Post-indexed addressing

The address obtained from the register Rn is used as the address for the memory access. The offset value is
added to or subtracted from the address, and written back into the register Rn. The assembly language syntax for
this mode is:

[Rn], #offset
SAM3U Series [DATASHEET]
Atmel-6430G-ATARM-SAM3U-Series-Datasheet_31-Mar-15

92

12.11.3.5 Examples
STR R0, [R5, R1] ; Store value of R0 into an address equal to

; sum of R5 and R1
LDRSB R0, [R5, R1, LSL #1] ; Read byte value from an address equal to

; sum of R5 and two times R1, sign extended it
; to a word value and put it in R0

STR R0, [R1, R2, LSL #2] ; Stores R0 to an address equal to sum of R1
; and four times R2
95SAM3U Series [DATASHEET]
Atmel-6430G-ATARM-SAM3U-Series-Datasheet_31-Mar-15

12.12.8 REV, REV16, REVSH, and RBIT

Reverse bytes and Reverse bits.

12.12.8.1 Syntax

op{cond} Rd, Rn

where:

op is any of:

REV Reverse byte order in a word.

REV16 Reverse byte order in each halfword independently.

REVSH Reverse byte order in the bottom halfword, and sign extend to 32 bits.

RBIT Reverse the bit order in a 32-bit word.

cond is an optional condition code, see “Conditional execution” on page 87.

Rd is the destination register.

Rn is the register holding the operand.

12.12.8.2 Operation

Use these instructions to change endianness of data:

REV converts 32-bit big-endian data into little-endian data or 32-bit little-endian data into big-endian data.

REV16 converts 16-bit big-endian data into little-endian data or 16-bit little-endian data into big-endian data.

REVSH converts either:

16-bit signed big-endian data into 32-bit signed little-endian data

16-bit signed little-endian data into 32-bit signed big-endian data.

12.12.8.3 Restrictions

Do not use SP and do not use PC.

12.12.8.4 Condition flags

These instructions do not change the flags.

12.12.8.5 Examples
REV R3, R7 ; Reverse byte order of value in R7 and write it to R3
REV16 R0, R0 ; Reverse byte order of each 16-bit halfword in R0
REVSH R0, R5 ; Reverse Signed Halfword
REVHS R3, R7 ; Reverse with Higher or Same condition
RBIT R7, R8 ; Reverse bit order of value in R8 and write the result to R7
SAM3U Series [DATASHEET]
Atmel-6430G-ATARM-SAM3U-Series-Datasheet_31-Mar-15

116

12.20.9.3 System Handler Priority Register 3

The bit assignments are:

• PRI_15

Priority of system handler 15, SysTick exception

• PRI_14

Priority of system handler 14, PendSV

31 30 29 28 27 26 25 24

PRI_15

23 22 21 20 19 18 17 16

PRI_14

15 14 13 12 11 10 9 8

Reserved

7 6 5 4 3 2 1 0

Reserved
SAM3U Series [DATASHEET]
Atmel-6430G-ATARM-SAM3U-Series-Datasheet_31-Mar-15

176

12.20.12Hard Fault Status Register

The HFSR gives information about events that activate the hard fault handler. See the register summary in Table
12-30 on page 161 for its attributes.

This register is read, write to clear. This means that bits in the register read normally, but writing 1 to any bit clears
that bit to 0. The bit assignments are:

• DEBUGEVT

Reserved for Debug use. When writing to the register you must write 0 to this bit, otherwise behavior is Unpredictable.

• FORCED

Indicates a forced hard fault, generated by escalation of a fault with configurable priority that cannot be handles, either
because of priority or because it is disabled:

0 = no forced hard fault

1 = forced hard fault.

When this bit is set to 1, the hard fault handler must read the other fault status registers to find the cause of the fault.

• VECTTBL

Indicates a bus fault on a vector table read during exception processing:

0 = no bus fault on vector table read

1 = bus fault on vector table read.

This error is always handled by the hard fault handler.

When this bit is set to 1, the PC value stacked for the exception return points to the instruction that was preempted by the
exception.

 The HFSR bits are sticky. This means as one or more fault occurs, the associated bits are set to 1. A bit that is set to 1 is
cleared to 0 only by writing 1 to that bit, or by a reset.

31 30 29 28 27 26 25 24

DEBUGEVT FORCED Reserved

23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8

Reserved

7 6 5 4 3 2 1 0

Reserved VECTTBL Reserved
185SAM3U Series [DATASHEET]
Atmel-6430G-ATARM-SAM3U-Series-Datasheet_31-Mar-15

24.16 NAND Flash Controller Operations

24.16.1 NFC Overview

The NFC can handle automatic transfers, sending the commands and address to the NAND Flash and transferring
the contents of the page (for read and write) to the NFC SRAM. It minimizes the CPU overhead.

24.16.2 NFC Control Registers

NAND Flash Read and NAND Flash Program operations can be performed through the NFC Command Registers.
In order to minimize CPU intervention and latency, commands are posted in a command buffer. This buffer
provides zero wait state latency. The detailed description of the command encoding scheme is explained below.

The NFC handles automatic transfer between the external NAND Flash and the chip via the NFC SRAM. It is done
via NFC Command Registers.

The NFC Command Registers are very efficient to use. When writing to these registers:

 the address of the register (NFCADDR_CMD) contains the command used,

 the data of the register (NFCDATA_ADDT) contains the address to be sent to the NAND Flash.

So, in one single access the command is sent and immediately executed by the NFC. Even two commands can be
programmed within a single access (CMD1, CMD2) depending on the VCMD2 value.

The NFC can send up to 5 Address cycles.

Figure 24-31 below shows a typical NAND Flash Page Read Command of a NAND Flash Memory and
correspondence with NFC Address Command Register.

Figure 24-31. NFC/NAND Flash Access Example

For more details refer to “NFC Address Command” on page 374.

The NFC Command Registers can be found at address 0x68000000 - 0x6FFFFFFF. (See Table 24-4, “External
Memory Mapping”.)

Reading the NFC command register (to any address) will give the status of the NFC. Especially useful to know if
the NFC is busy, for example.

Depends on ACYCLE value

CMD1 ADD cycles (0 to 5) CMD2

If VCMD2 = 1

00h Col. Add1 Col. Add2 Row Add1 Row Add2 Row Add3 30h

Column Address Row Address
SAM3U Series [DATASHEET]
Atmel-6430G-ATARM-SAM3U-Series-Datasheet_31-Mar-15

372

24.18.8 SMC NFC Bank Register

Name: SMC_BANK

Address: 0x400E001C

Access: Read-write

Reset: 0x00000000

• BANK: Bank Identifier

Number of the bank used

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – BANK
SAM3U Series [DATASHEET]
Atmel-6430G-ATARM-SAM3U-Series-Datasheet_31-Mar-15

402

24.18.13 SMC ECC Parity Register 0 for a Page of 512/1024/2048/4096 Bytes

Name: SMC_ECC_PR0

Address: 0x400E002C

Access: Read-only

Reset: 0x00000000

Once the entire main area of a page is written with data, the register content must be stored at any free location of the
spare area.

• BITADDR: Bit Address

During a page read, this value contains the corrupted bit offset where an error occurred, if a single error was detected. If
multiple errors were detected, this value is meaningless.

• WORDADDR: Word Address

During a page read, this value contains the word address (8-bit or 16-bit word depending on the memory plane organiza-
tion).where an error occurred, if a single error was detected. If multiple errors were detected, this value is meaningless.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

WORDADDR

7 6 5 4 3 2 1 0

WORDADDR BITADDR
413SAM3U Series [DATASHEET]
Atmel-6430G-ATARM-SAM3U-Series-Datasheet_31-Mar-15

27. Power Management Controller (PMC)

27.1 Description

The Power Management Controller (PMC) optimizes power consumption by controlling all system and user
peripheral clocks. The PMC enables/disables the clock inputs to many of the peripherals and the Cortex-M3
Processor.

The Power Management Controller provides the following clocks:

 MCK, the Master Clock, programmable from a few hundred Hz to the maximum operating frequency of the
device. It is available to the modules running permanently, such as the Enhanced Embedded Flash
Controller.

 Processor Clock (HCLK) is automatically switched off when the processor enters Sleep Mode.

 Free running processor Clock (FCLK)

 the Cortex-M3 SysTick external clock

 the USB Device HS Clock (UDPCK)

 Peripheral Clocks, typically MCK, provided to the embedded peripherals (USART, PMC, SPI, TWI, TC,
HSMCI, etc.) and independently controllable. In order to reduce the number of clock names in a product, the
Peripheral Clocks are named MCK in the product datasheet.

 Programmable Clock Outputs can be selected from the clocks provided by the clock generator and driven on
the PCKx pins.
SAM3U Series [DATASHEET]
Atmel-6430G-ATARM-SAM3U-Series-Datasheet_31-Mar-15

450

27.14.19 PMC Fault Output Clear Register

Name: PMC_FOCR

Address: 0x400E0478

Access: Write-only

• FOCLR: Fault Output Clear

Clears the clock failure detector fault output.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – – FOCLR
SAM3U Series [DATASHEET]
Atmel-6430G-ATARM-SAM3U-Series-Datasheet_31-Mar-15

484

29.7.16 PIO Controller Interrupt Mask Register

Name: PIO_IMR

Address: 0x400E0C48 (PIOA), 0x400E0E48 (PIOB), 0x400E1048 (PIOC)

Access: Read-only

• P0-P31: Input Change Interrupt Mask

0 = Input Change Interrupt is disabled on the I/O line.

1 = Input Change Interrupt is enabled on the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0
523SAM3U Series [DATASHEET]
Atmel-6430G-ATARM-SAM3U-Series-Datasheet_31-Mar-15

Figure 31-7 shows Transmit Data Register Empty (TDRE), Receive Data Register (RDRF) and Transmission
Register Empty (TXEMPTY) status flags behavior within the SPI_SR (Status Register) during an 8-bit data transfer
in fixed mode and no Peripheral Data Controller involved.

Figure 31-7. Status Register Flags Behavior

31.7.3.3 Clock Generation

The SPI Baud rate clock is generated by dividing the Master Clock (MCK), by a value between 1 and 255.

This allows a maximum operating baud rate at up to Master Clock and a minimum operating baud rate of MCK
divided by 255.

Programming the SCBR field at 0 is forbidden. Triggering a transfer while SCBR is at 0 can lead to unpredictable
results.

At reset, SCBR is 0 and the user has to program it at a valid value before performing the first transfer.

The divisor can be defined independently for each chip select, as it has to be programmed in the SCBR field of the
Chip Select Registers. This allows the SPI to automatically adapt the baud rate for each interfaced peripheral
without reprogramming.

31.7.3.4 Transfer Delays

Figure 31-8 shows a chip select transfer change and consecutive transfers on the same chip select. Three delays
can be programmed to modify the transfer waveforms:

 The delay between chip selects, programmable only once for all the chip selects by writing the DLYBCS field
in the Mode Register. Allows insertion of a delay between release of one chip select and before assertion of
a new one.

 The delay before SPCK, independently programmable for each chip select by writing the field DLYBS.
Allows the start of SPCK to be delayed after the chip select has been asserted.

 The delay between consecutive transfers, independently programmable for each chip select by writing the
DLYBCT field. Allows insertion of a delay between two transfers occurring on the same chip select

These delays allow the SPI to be adapted to the interfaced peripherals and their speed and bus release time.

6

SPCK

MOSI
(from master)

MISO
(from slave)

NPCS0

MSB

MSB

LSB

LSB

6

6

5

5

4

4

3

3

2

2

1

1

1 2 3 4 5 7 86

RDRF

TDRE

TXEMPTY

Write in
SPI_TDR

RDR read

shift register empty
603SAM3U Series [DATASHEET]
Atmel-6430G-ATARM-SAM3U-Series-Datasheet_31-Mar-15

Unlike preamble, the start frame delimiter is shared between Manchester Encoder and Decoder. So, if ONEBIT
field is set to 1, only a zero encoded Manchester can be detected as a valid start frame delimiter. If ONEBIT is set
to 0, only a sync pattern is detected as a valid start frame delimiter. Decoder operates by detecting transition on
incoming stream. If RXD is sampled during one quarter of a bit time to zero, a start bit is detected. See Figure 34-
14. The sample pulse rejection mechanism applies.

Figure 34-14. Asynchronous Start Bit Detection

The receiver is activated and starts Preamble and Frame Delimiter detection, sampling the data at one quarter and
then three quarters. If a valid preamble pattern or start frame delimiter is detected, the receiver continues decoding
with the same synchronization. If the stream does not match a valid pattern or a valid start frame delimiter, the
receiver re-synchronizes on the next valid edge.The minimum time threshold to estimate the bit value is three
quarters of a bit time.

If a valid preamble (if used) followed with a valid start frame delimiter is detected, the incoming stream is decoded
into NRZ data and passed to USART for processing. Figure 34-15 illustrates Manchester pattern mismatch. When
incoming data stream is passed to the USART, the receiver is also able to detect Manchester code violation. A
code violation is a lack of transition in the middle of a bit cell. In this case, MANE flag in US_CSR register is raised.
It is cleared by writing the Control Register (US_CR) with the RSTSTA bit to 1. See Figure 34-16 for an example of
Manchester error detection during data phase.

Figure 34-15. Preamble Pattern Mismatch

Figure 34-16. Manchester Error Flag

Manchester
encoded

data Txd

1 2 3 4

Sampling
Clock
(16 x)

Start
Detection

Manchester
encoded

data Txd SFD DATA

Preamble Length is set to 8

Preamble Mismatch
invalid pattern

Preamble Mismatch
Manchester coding error

Manchester
encoded

data Txd

SFD

Preamble Length
is set to 4

Elementary character bit time

Manchester
Coding Error

detected

sampling points

Preamble subpacket
and Start Frame Delimiter

were successfully
decoded

Entering USART character area
701SAM3U Series [DATASHEET]
Atmel-6430G-ATARM-SAM3U-Series-Datasheet_31-Mar-15

Figure 35-6. Waveform Mode

TC
C

LK
S

C
LK

I

Q
S R

S R

Q

C
LK

S
TA

C
LK

E
N

C
LK

D
IS

C
P

C
D

IS

B
U

R
S

T

TI
O

B

R
eg

is
te

r A
R

eg
is

te
r B

R
eg

is
te

r C

C
om

pa
re

 R
A

 =

C
om

pa
re

 R
B

 =

C
om

pa
re

 R
C

 =

C
P

C
S

TO
P

C
ou

nt
er

E
E

V
T

E
E

V
TE

D
G

S
Y

N
C

S
W

TR
G

E
N

E
TR

G

W
A

V
S

E
L

TC1_IMR

Tr
ig

A
C

P
C

A
C

P
A

A
E

E
V

T

A
S

W
TR

G

B
C

P
C

B
C

P
B

B
E

E
V

T

B
S

W
TR

G

TI
O

A

M
TI

O
A

TI
O

B

M
TI

O
B

CPAS

COVFS

ETRGS

TC1_SR

CPCS

CPBS

C
LK

O
V

F
R

E
S

E
T

Output Controller Output Controller

IN
T

1

E
dg

e
D

et
ec

to
r

Ti
m

er
/C

ou
nt

er
 C

ha
nn

el

TI
M

E
R

_C
LO

C
K

1
TI

M
E

R
_C

LO
C

K
2

TI
M

E
R

_C
LO

C
K

3
TI

M
E

R
_C

LO
C

K
4

TI
M

E
R

_C
LO

C
K

5

X
C

0
X

C
1

X
C

2

W
A

V
S

E
L

P
er

ip
he

ra
l C

lo
ck

S
yn

ch
ro

no
us

E
dg

e
D

et
ec

tio
n

765SAM3U Series [DATASHEET]
Atmel-6430G-ATARM-SAM3U-Series-Datasheet_31-Mar-15

35.6.12 External Event/Trigger Conditions

An external event can be programmed to be detected on one of the clock sources (XC0, XC1, XC2) or TIOB. The
external event selected can then be used as a trigger.

The EEVT parameter in TC_CMR selects the external trigger. The EEVTEDG parameter defines the trigger edge
for each of the possible external triggers (rising, falling or both). If EEVTEDG is cleared (none), no external event
is defined.

If TIOB is defined as an external event signal (EEVT = 0), TIOB is no longer used as an output and the compare
register B is not used to generate waveforms and subsequently no IRQs. In this case the TC channel can only
generate a waveform on TIOA.

When an external event is defined, it can be used as a trigger by setting bit ENETRG in the TC_CMR.

As in Capture mode, the SYNC signal and the software trigger are also available as triggers. RC Compare can
also be used as a trigger depending on the parameter WAVSEL.

35.6.13 Output Controller

The output controller defines the output level changes on TIOA and TIOB following an event. TIOB control is used
only if TIOB is defined as output (not as an external event).

The following events control TIOA and TIOB: software trigger, external event and RC compare. RA compare
controls TIOA and RB compare controls TIOB. Each of these events can be programmed to set, clear or toggle the
output as defined in the corresponding parameter in TC_CMR.

35.6.14 Quadrature Decoder

35.6.14.1 Description

The quadrature decoder (QDEC) is driven by TIOA0, TIOB0, TIOB1 input pins and drives the timer/counter of
channel 0 and 1. Channel 2 can be used as a time base in case of speed measurement requirements (refer to
Figure 35-15).

When writing a 0 to bit QDEN of the TC_BMR, the QDEC is bypassed and the IO pins are directly routed to the
timer counter function. See

TIOA0 and TIOB0 are to be driven by the two dedicated quadrature signals from a rotary sensor mounted on the
shaft of the off-chip motor.

A third signal from the rotary sensor can be processed through pin TIOB1 and is typically dedicated to be driven by
an index signal if it is provided by the sensor. This signal is not required to decode the quadrature signals PHA,
PHB.

Field TCCLKS of TC_CMRx must be configured to select XC0 input (i.e., 0x101). Field TC0XC0S has no effect as
soon as the QDEC is enabled.

Either speed or position/revolution can be measured. Position channel 0 accumulates the edges of PHA, PHB
input signals giving a high accuracy on motor position whereas channel 1 accumulates the index pulses of the
sensor, therefore the number of rotations. Concatenation of both values provides a high level of precision on
motion system position.

In Speed mode, position cannot be measured but revolution can be measured.

Inputs from the rotary sensor can be filtered prior to down-stream processing. Accommodation of input polarity,
phase definition and other factors are configurable.

Interruptions can be generated on different events.

A compare function (using TC_RC) is available on channel 0 (speed/position) or channel 1 (rotation) and can
generate an interrupt by means of the CPCS flag in the TC_SRx.
SAM3U Series [DATASHEET]
Atmel-6430G-ATARM-SAM3U-Series-Datasheet_31-Mar-15

770

Method 1: Manual write of duty-cycle values and manual trigger of the update

In this mode, the update of the period value, the duty-cycle values and the dead-time values must be done by
writing in their respective update registers with the CPU (respectively PWM_CPRDUPDx, PWM_CDTYUPDx and
PWM_DTUPDx).

To trigger the update, the user must use the bit UPDULOCK of the “PWM Sync Channels Update Control
Register” (PWM_SCUC) which allows to update synchronously (at the same PWM period) the synchronous
channels:

 If the bit UPDULOCK is set to 1, the update is done at the next PWM period of the synchronous channels.

 If the UPDULOCK bit is not set to 1, the update is locked and cannot be performed.

After writing the UPDULOCK bit to 1, it is held at this value until the update occurs, then it is read 0.

Sequence for Method 1:

1. Select the manual write of duty-cycle values and the manual update by setting the UPDM field to 0 in the
PWM_SCM register

2. Define the synchronous channels by the SYNCx bits in the PWM_SCM register.

3. Enable the synchronous channels by writing CHID0 in the PWM_ENA register.

4. If an update of the period value and/or the duty-cycle values and/or the dead-time values is required, write
registers that need to be updated (PWM_CPRDUPDx, PWM_CDTYUPDx and PWM_DTUPDx).

5. Set UPDULOCK to 1 in PWM_SCUC.

6. The update of the registers will occur at the beginning of the next PWM period. At this moment the
UPDULOCK bit is reset, go to Step 4.) for new values.

Figure 37-9. Method 1 (UPDM = 0)

CCNT0

CDTYUPD 0x20 0x40 0x60

UPDULOCK

CDTY 0x20 0x40 0x60
879SAM3U Series [DATASHEET]
Atmel-6430G-ATARM-SAM3U-Series-Datasheet_31-Mar-15

• EPT_x: Endpoint x Interrupt Enable

0 = disable the interrupts for this endpoint.

1 = enable the interrupts for this endpoint.

• DMA_x: DMA Channel x Interrupt Enable

0 = disable the interrupts for this channel.

1 = enable the interrupts for this channel.
SAM3U Series [DATASHEET]
Atmel-6430G-ATARM-SAM3U-Series-Datasheet_31-Mar-15

970

39.3.3.2 Chunk Transactions

Writing a 1 to the DMAC_CREQ[2x] register starts a source chunk transaction request, where x is the channel
number. Writing a 1 to the DMAC_CREQ[2x+1] register starts a destination chunk transfer request, where x is the
channel number.

Upon completion of the chunk transaction, the hardware clears the DMAC_CREQ[2x] or DMAC_CREQ[2x+1].

39.3.3.3 Single Transactions

Writing a 1 to the DMAC_SREQ[2x] register starts a source single transaction request, where x is the channel
number. Writing a 1 to the DMAC_SREQ[2x+1] register starts a destination single transfer request, where x is the
channel number.

Upon completion of the chunk transaction, the hardware clears the DMAC_SREQ[x] or DMAC_SREQ[2x+1].

Sof tware can po l l the re levant channel b i t in the DMAC_CREQ[2x] /DMAC_CREQ[2x+1] and
DMAC_SREQ[x]/DMAC_SREQ[2x+1] registers. When both are 0, then either the requested chunk or single
transaction has completed.

39.3.4 DMAC Transfer Types

A DMAC transfer may consist of single or multi-buffers transfers. On successive buffers of a multi-buffer transfer,
the DMAC_SADDRx/DMAC_DADDRx registers in the DMAC are reprogrammed using either of the following
methods:

 Buffer chaining using linked lists

 Contiguous address between buffers

On successive buffers of a multi-buffer transfer, the DMAC_CTRLAx and DMAC_CTRLBx registers in the DMAC
are re-programmed using either of the following methods:

 Buffer chaining using linked lists

When buffer chaining, using linked lists is the multi-buffer method of choice, and on successive buffers, the
DMAC_DSCRx register in the DMAC is re-programmed using the following method:

 Buffer chaining using linked lists

A buffer descriptor (LLI) consists of following registers, DMAC_SADDRx, DMAC_DADDRx, DMAC_DSCRx,
DMAC_CTRLAx, DMAC_CTRLBx.These registers, along with the DMAC_CFGx register, are used by the DMAC
to set up and describe the buffer transfer.

39.3.4.1 Multi-buffer Transfers

39.3.4.2 Buffer Chaining Using Linked Lists

In this case, the DMAC re-programs the channel registers prior to the start of each buffer by fetching the buffer
descriptor for that buffer from system memory. This is known as an LLI update.

DMAC buffer chaining is supported by using a Descriptor Pointer register (DMAC_DSCRx) that stores the address
in memory of the next buffer descriptor. Each buffer descriptor contains the corresponding buffer descriptor
(DMAC_SADDRx, DMAC_DADDRx, DMAC_DSCRx, DMAC_CTRLAx DMAC_CTRLBx).

To set up buffer chaining, a sequence of linked lists must be programmed in memory.

The DMAC_SADDRx, DMAC_DADDRx, DMAC_DSCRx, DMAC_CTRLAx and DMAC_CTRLBx registers are
fetched from system memory on an LLI update. The updated content of the DMAC_CTRLAx register is written
back to memory on buffer completion. Figure 39-4 on page 1010 shows how to use chained linked lists in memory
to define multi-buffer transfers using buffer chaining.

The Linked List multi-buffer transfer is initiated by programming DMAC_DSCRx with DSCRx(0) (LLI(0) base
address) and DMAC_CTRLBx register with both SRC_DSCR and DST_DSCR set to 0. Other fields and registers
are ignored and overwritten when the descriptor is retrieved from memory.
1009SAM3U Series [DATASHEET]
Atmel-6430G-ATARM-SAM3U-Series-Datasheet_31-Mar-15

43.5 Soldering Profile

Table 43-15 gives the recommended soldering profile from J-STD-020C.

Note: The package is certified to be backward compatible with Pb/Sn soldering profile.

A maximum of three reflow passes is allowed per component.

43.6 Packaging Resources

Land Pattern Definition.

Refer to the following IPC Standards:

 IPC-7351A and IPC-782 (Generic Requirements for Surface Mount Design and Land Pattern Standards)
http://landpatterns.ipc.org/default.asp

 Atmel Green and RoHS Policy and Package Material Declaration Data Sheet available on www.atmel.com

Table 43-15. Soldering Profile

Profile Feature Green Package

Average Ramp-up Rate (217°C to Peak) 3°C/sec. max.

Preheat Temperature 175°C ±25°C 180 sec. max.

Temperature Maintained Above 217°C 60 sec. to 150 sec.

Time within 5°C of Actual Peak Temperature 20 sec. to 40 sec.

Peak Temperature Range 260°C

Ramp-down Rate 6°C/sec. max.

Time 25°C to Peak Temperature 8 min. max.
1135SAM3U Series [DATASHEET]
Atmel-6430G-ATARM-SAM3U-Series-Datasheet_31-Mar-15

http://landpatterns.ipc.org/default.asp
http://www.atmel.com

