
Microchip Technology - ATSAM3U1CB-CU Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor ARM® Cortex®-M3

Core Size 32-Bit Single-Core

Speed 96MHz

Connectivity EBI/EMI, I²C, Memory Card, SPI, SSC, UART/USART, USB

Peripherals Brown-out Detect/Reset, DMA, I²S, POR, PWM, WDT

Number of I/O 57

Program Memory Size 64KB (64K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 20K x 8

Voltage - Supply (Vcc/Vdd) 1.62V ~ 3.6V

Data Converters A/D 4x10b, 4x12b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 100-TFBGA

Supplier Device Package 100-TFBGA (9x9)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/atsam3u1cb-cu

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atsam3u1cb-cu-4409999
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

4.2.4 100-ball TFBGA Pinout

Table 4-4. 100-ball TFBGA Pinout (SAM3U4C / SAM3U2C / SAM3U1C Devices)

A1 VBG C6 PB22 F1 PB1 H6 PA15/PGMD7

A2 XIN C7 TMS/SWDIO F2 PB12 H7 PA18/PGMD10

A3 XOUT C8 NRSTB F3 VDDIO H8 PA24

A4 PB17 C9 JTAGSEL F4 PA31 H9 PA1/PGMRDY

A5 PB21 C10 VDDBU F5 VDDIO H10 PA2/PGMNOE

A6 PB23 D1 DFSDM F6 GND J1 PB6

A7 TCK/SWCLK D2 DHSDM F7 PB16 J2 PB8

A8 VDDIN D3 VDDPLL F8 PA6/PGMM2 J3 ADVREF

A9 VDDOUT D4 VDDCORE F9 VDDCORE J4 PA30

A10 XIN32 D5 PB20 F10 PA7/PGMM3 J5 PB3

B1 VDDCORE D6 ERASE G1 PB11 J6 PA16/PGMD8

B2 GNDUTMI D7 TST G2 PB2 J7 PA19/PGMD11

B3 VDDUTMI D8 FWUP G3 PB0 J8 PA21/PGMD13

B4 PB10 D9 PA11/PGMD3 G4 PB13 J9 PA26

B5 PB18 D10 PA12/PGMD4 G5 VDDCORE J10 PA0/PGMNCMD

B6 PB24 E1 PA29 G6 GND K1 PB7

B7 NRST E2 GND G7 PB15 K2 VDDANA

B8 TDO/TRACESWO E3 PA28 G8 PA3/PGMNVALID K3 GNDANA

B9 TDI E4 PB9 G9 PA5/PGMM1 K4 AD12BVREF

B10 XOUT32 E5 GNDBU G10 PA4/PGMM0 K5 PB4

C1 DFSDP E6 VDDIO H1 VDDCORE K6 PA14/PGMD6

C2 DHSDP E7 VDDCORE H2 PB5 K7 PA17/PGMD9

C3 GNDPLL E8 PA10/PGMD2 H3 PA27 K8 PA20/PGMD12

C4 PB14 E9 PA9/PGMD1 H4 PA22/PGMD14 K9 PA23/PGMD15

C5 PB19 E10 PA8/PGMD0 H5 PA13/PGMD5 K10 PA25
SAM3U Series [DATASHEET]
Atmel-6430G-ATARM-SAM3U-Series-Datasheet_31-Mar-15

16

12.11.9 CLREX

Clear Exclusive.

12.11.9.1 Syntax

CLREX{cond}

where:

cond is an optional condition code, see “Conditional execution” on page 87.

12.11.9.2 Operation

Use CLREX to make the next STREX, STREXB, or STREXH instruction write 1 to its destination register and fail to
perform the store. It is useful in exception handler code to force the failure of the store exclusive if the exception
occurs between a load exclusive instruction and the matching store exclusive instruction in a synchronization
operation.

See “Synchronization primitives” on page 65 for more information.

12.11.9.3 Condition flags

These instructions do not change the flags.

12.11.9.4 Examples
CLREX
SAM3U Series [DATASHEET]
Atmel-6430G-ATARM-SAM3U-Series-Datasheet_31-Mar-15

104

12.15 Bitfield instructions

Table 12-22 shows the instructions that operate on adjacent sets of bits in registers or bitfields:

Table 12-22. Packing and unpacking instructions

Mnemonic Brief description See

BFC Bit Field Clear “BFC and BFI” on page 125

BFI Bit Field Insert “BFC and BFI” on page 125

SBFX Signed Bit Field Extract “SBFX and UBFX” on page 126

SXTB Sign extend a byte “SXT and UXT” on page 127

SXTH Sign extend a halfword “SXT and UXT” on page 127

UBFX Unsigned Bit Field Extract “SBFX and UBFX” on page 126

UXTB Zero extend a byte “SXT and UXT” on page 127

UXTH Zero extend a halfword “SXT and UXT” on page 127
SAM3U Series [DATASHEET]
Atmel-6430G-ATARM-SAM3U-Series-Datasheet_31-Mar-15

124

• USERSETMPEND

Enables unprivileged software access to the STIR, see “Software Trigger Interrupt Register” on page 158:

0 = disable

1 = enable.

• NONEBASETHRDENA

Indicates how the processor enters Thread mode:

0 = processor can enter Thread mode only when no exception is active.

1 = processor can enter Thread mode from any level under the control of an EXC_RETURN value, see “Exception return”
on page 72.
SAM3U Series [DATASHEET]
Atmel-6430G-ATARM-SAM3U-Series-Datasheet_31-Mar-15

172

12.20.9.1 System Handler Priority Register 1

The bit assignments are:

• PRI_7

Reserved

• PRI_6

Priority of system handler 6, usage fault

• PRI_5

Priority of system handler 5, bus fault

• PRI_4

Priority of system handler 4, memory management fault

31 30 29 28 27 26 25 24

PRI_7: Reserved

23 22 21 20 19 18 17 16

PRI_6

15 14 13 12 11 10 9 8

PRI_5

7 6 5 4 3 2 1 0

PRI_4
SAM3U Series [DATASHEET]
Atmel-6430G-ATARM-SAM3U-Series-Datasheet_31-Mar-15

174

12.22.2 MPU Control Register

The MPU CTRL register:

 enables the MPU

 enables the default memory map background region

 enables use of the MPU when in the hard fault, Non-maskable Interrupt (NMI), and FAULTMASK escalated
handlers.

See the register summary in Table 12-35 on page 195 for the MPU CTRL attributes. The bit assignments are:

• PRIVDEFENA

Enables privileged software access to the default memory map:

0 = If the MPU is enabled, disables use of the default memory map. Any memory access to a location not covered by any
enabled region causes a fault.

1 = If the MPU is enabled, enables use of the default memory map as a background region for privileged software
accesses.

When enabled, the background region acts as if it is region number -1. Any region that is defined and enabled has priority
over this default map.

If the MPU is disabled, the processor ignores this bit.

• HFNMIENA

Enables the operation of MPU during hard fault, NMI, and FAULTMASK handlers.

When the MPU is enabled:

0 = MPU is disabled during hard fault, NMI, and FAULTMASK handlers, regardless of the value of the ENABLE bit

1 = the MPU is enabled during hard fault, NMI, and FAULTMASK handlers.

When the MPU is disabled, if this bit is set to 1 the behavior is Unpredictable.

• ENABLE

Enables the MPU:

0 = MPU disabled

1 = MPU enabled.

When ENABLE and PRIVDEFENA are both set to 1:

For privileged accesses, the default memory map is as described in “Memory model” on page 58. Any access by privileged
software that does not address an enabled memory region behaves as defined by the default memory map.

Any access by unprivileged software that does not address an enabled memory region causes a memory management
fault.

XN and Strongly-ordered rules always apply to the System Control Space regardless of the value of the ENABLE bit.

31 30 29 28 27 26 25 24

Reserved

23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8

Reserved

7 6 5 4 3 2 1 0

Reserved PRIVDEFENA HFNMIENA ENABLE
197SAM3U Series [DATASHEET]
Atmel-6430G-ATARM-SAM3U-Series-Datasheet_31-Mar-15

Doubleword-aligned

A data item having a memory address that is divisible by eight.

Endianness

Byte ordering. The scheme that determines the order that successive bytes of a data word are stored in memory.
An aspect of the system’s memory mapping.

See also “Little-endian (LE)”

Exception

An event that interrupts program execution. When an exception occurs, the processor suspends the normal
program flow and starts execution at the address indicated by the corresponding exception vector. The indicated
address contains the first instruction of the handler for the exception.

An exception can be an interrupt request, a fault, or a software-generated system exception. Faults include
attempting an invalid memory access, attempting to execute an instruction in an invalid processor state, and
attempting to execute an undefined instruction.

Exception service routine

See “Interrupt handler”.

Exception vector

See “Interrupt vector”.

Flat address mapping

A system of organizing memory in which each physical address in the memory space is the same as the
corresponding virtual address.

Halfword

A 16-bit data item.

Illegal instruction

An instruction that is architecturally Undefined.

Implementation-defined

The behavior is not architecturally defined, but is defined and documented by individual implementations.

Implementation-specific

The behavior is not architecturally defined, and does not have to be documented by individual implementations.
Used when there are a number of implementation options available and the option chosen does not affect software
compatibility.

Index register

In some load and store instruction descriptions, the value of this register is used as an offset to be added to or
subtracted from the base register value to form the address that is sent to memory. Some addressing modes
optionally enable the index register value to be shifted prior to the addition or subtraction.

See also “Base register”

Instruction cycle count

The number of cycles that an instruction occupies the Execute stage of the pipeline.

Interrupt handler

A program that control of the processor is passed to when an interrupt occurs.

Interrupt vector

One of a number of fixed addresses in low memory, or in high memory if high vectors are configured, that contains
the first instruction of the corresponding interrupt handler.
SAM3U Series [DATASHEET]
Atmel-6430G-ATARM-SAM3U-Series-Datasheet_31-Mar-15

208

Little-endian (LE)

Byte ordering scheme in which bytes of increasing significance in a data word are stored at increasing addresses
in memory.

See also “Condition field”, “Endianness”.

Little-endian memory

Memory in which:

a byte or halfword at a word-aligned address is the least significant byte or halfword within the word at that address

a byte at a halfword-aligned address is the least significant byte within the halfword at that address.

Load/store architecture

A processor architecture where data-processing operations only operate on register contents, not directly on
memory contents.

Memory Protection Unit (MPU)

Hardware that controls access permissions to blocks of memory. An MPU does not perform any address
translation.

Prefetching

In pipelined processors, the process of fetching instructions from memory to fill up the pipeline before the
preceding instructions have finished executing. Prefetching an instruction does not mean that the instruction has to
be executed.

Read

Reads are defined as memory operations that have the semantics of a load. Reads include the Thumb instructions
LDM, LDR, LDRSH, LDRH, LDRSB, LDRB, and POP.

Region

A partition of memory space.

Reserved

A field in a control register or instruction format is reserved if the field is to be defined by the implementation, or
produces Unpredictable results if the contents of the field are not zero. These fields are reserved for use in future
extensions of the architecture or are implementation-specific. All reserved bits not used by the implementation
must be written as 0 and read as 0.

Should Be One (SBO)

Write as 1, or all 1s for bit fields, by software. Writing as 0 produces Unpredictable results.

Should Be Zero (SBZ)

Write as 0, or all 0s for bit fields, by software. Writing as 1 produces Unpredictable results.

Should Be Zero or Preserved (SBZP)

Write as 0, or all 0s for bit fields, by software, or preserved by writing the same value back that has been previously
read from the same field on the same processor.

Thread-safe

In a multi-tasking environment, thread-safe functions use safeguard mechanisms when accessing shared
resources, to ensure correct operation without the risk of shared access conflicts.

Thumb instruction

One or two halfwords that specify an operation for a processor to perform. Thumb instructions must be halfword-
aligned.
209SAM3U Series [DATASHEET]
Atmel-6430G-ATARM-SAM3U-Series-Datasheet_31-Mar-15

The PMC_MCKR must not be programmed in a single write operation. The preferred programming
sequence for the PMC_MCKR is as follows:

If a new value for CSS field corresponds to PLL Clock,

a. Program PMC_MCKR.PRES field

b. Wait for PMC_SR.MCKRDY bit to be set

c. Program PMC_MCKR.CSS field

d. Wait for PMC_SR.MCKRDY bit to be set

If a new value for CSS field corresponds to Main Clock or Slow Clock,

a. Program PMC_MCKR.CSS field

b. Wait for PMC_SR.MCKRDY bit to be set

c. Program PMC_MCKR.PRES field

d. Wait for PMC_SR.MCKRDY bit to be set

If at some stage one of the following parameters, CSS or PRES, is modified, the MCKRDY bit will go low to
indicate that the Master Clock and the Processor Clock are not ready yet. The user must wait for MCKRDY
bit to be set again before using the Master and Processor Clocks.

Note: IF PLLx clock was selected as the Master Clock and the user decides to modify it by writing in CKGR_PLLR, the
MCKRDY flag will go low while PLL is unlocked. Once PLL is locked again, LOCK goes high and MCKRDY is set.
While PLL is unlocked, the Master Clock selection is automatically changed to Slow Clock. For further information, see
Section 27.12.2 “Clock Switching Waveforms” on page 460.

Code Example:

write_register(PMC_MCKR,0x00000001)
wait (MCKRDY=1)
write_register(PMC_MCKR,0x00000011)
wait (MCKRDY=1)

The Master Clock is main clock divided by 16.

The Processor Clock is the Master Clock.

5. Selection of Programmable Clocks

Programmable clocks are controlled via registers; PMC_SCER, PMC_SCDR and PMC_SCSR.

Programmable clocks can be enabled and/or disabled via the PMC_SCER and PMC_SCDR. Three
programmable clocks can be enabled or disabled. The PMC_SCSR provides a clear indication as to which
programmable clock is enabled. By default all programmable clocks are disabled.

PMC_PCKx registers are used to configure programmable clocks.

The CSS field is used to select the programmable clock divider source. Four clock options are available:
main clock, slow clock, PLLACK and UPLLCK. By default, the clock source selected is main clock.

The PRES field is used to control the programmable clock prescaler. It is possible to choose between
different values (1, 2, 4, 8, 16, 32, 64). Programmable clock output is prescaler input divided by PRES
parameter. By default, the PRES parameter is set to 0 which means that master clock is equal to slow clock.

Once the PMC_PCKx register has been programmed, The corresponding programmable clock must be
enabled and the user is constrained to wait for the PCKRDYx bit to be set in the PMC_SR. This can be done
either by polling the status register or by waiting the interrupt line to be raised if the associated interrupt to
PCKRDYx has been enabled in the PMC_IER. All parameters in PMC_PCKx can be programmed in a single
write operation.
457SAM3U Series [DATASHEET]
Atmel-6430G-ATARM-SAM3U-Series-Datasheet_31-Mar-15

Figure 27-6. Change PLLA Programming

Figure 27-7. Programmable Clock Output Programming

Slow Clock

Slow Clock

PLLA Clock

LOCKA

MCKRDY

Master Clock

Write CKGR_PLLAR

PLL Clock

PCKRDY

PCKx Output

Write PMC_PCKx

Write PMC_SCER

Write PMC_SCDR PCKx is disabled

PCKx is enabled

PLL Clock is selected
461SAM3U Series [DATASHEET]
Atmel-6430G-ATARM-SAM3U-Series-Datasheet_31-Mar-15

29.5.2 I/O Line or Peripheral Function Selection

When a pin is multiplexed with one or two peripheral functions, the selection is controlled with the registers
PIO_PER (PIO Enable Register) and PIO_PDR (PIO Disable Register). The register PIO_PSR (PIO Status
Register) is the result of the set and clear registers and indicates whether the pin is controlled by the
corresponding peripheral or by the PIO Controller. A value of 0 indicates that the pin is controlled by the
corresponding on-chip peripheral selected in the PIO_ABSR (AB Select Register). A value of 1 indicates the pin is
controlled by the PIO controller.

If a pin is used as a general purpose I/O line (not multiplexed with an on-chip peripheral), PIO_PER and PIO_PDR
have no effect and PIO_PSR returns 1 for the corresponding bit.

After reset, most generally, the I/O lines are controlled by the PIO controller, i.e. PIO_PSR resets at 1. However, in
some events, it is important that PIO lines are controlled by the peripheral (as in the case of memory chip select
lines that must be driven inactive after reset or for address lines that must be driven low for booting out of an
external memory). Thus, the reset value of PIO_PSR is defined at the product level, depending on the multiplexing
of the device.

29.5.3 Peripheral A or B Selection

The PIO Controller provides multiplexing of up to two peripheral functions on a single pin. The selection is
performed by writing PIO_ABSR (AB Select Register). For each pin, the corresponding bit at level 0 means
peripheral A is selected whereas the corresponding bit at level 1 indicates that peripheral B is selected.

Note that multiplexing of peripheral lines A and B only affects the output line. The peripheral input lines are always
connected to the pin input.

After reset, PIO_ABSR is 0, thus indicating that all the PIO lines are configured on peripheral A. However,
peripheral A generally does not drive the pin as the PIO Controller resets in I/O line mode.

Writing in PIO_ABSR manages the multiplexing regardless of the configuration of the pin. However, assignment of
a pin to a peripheral function requires a write in the peripheral selection register (PIO_ABSR) in addition to a write
in PIO_PDR.

29.5.4 Output Control

When the I/0 line is assigned to a peripheral function, i.e. the corresponding bit in PIO_PSR is at 0, the drive of the
I/O line is controlled by the peripheral. Peripheral A or B depending on the value in PIO_ABSR (AB Select
Register) determines whether the pin is driven or not.

When the I/O line is controlled by the PIO controller, the pin can be configured to be driven. This is done by writing
PIO_OER (Output Enable Register) and PIO_ODR (Output Disable Register). The results of these write
operations are detected in PIO_OSR (Output Status Register). When a bit in this register is at 0, the corresponding
I/O line is used as an input only. When the bit is at 1, the corresponding I/O line is driven by the PIO controller.

The level driven on an I/O line can be determined by writing in PIO_SODR (Set Output Data Register) and
PIO_CODR (Clear Output Data Register). These write operations respectively set and clear PIO_ODSR (Output
Data Status Register), which represents the data driven on the I/O lines. Writing in PIO_OER and PIO_ODR
manages PIO_OSR whether the pin is configured to be controlled by the PIO controller or assigned to a peripheral
function. This enables configuration of the I/O line prior to setting it to be managed by the PIO Controller.

Similarly, writing in PIO_SODR and PIO_CODR effects PIO_ODSR. This is important as it defines the first level
driven on the I/O line.
SAM3U Series [DATASHEET]
Atmel-6430G-ATARM-SAM3U-Series-Datasheet_31-Mar-15

498

29.7.13 PIO Controller Pin Data Status Register

Name: PIO_PDSR

Address: 0x400E0C3C (PIOA), 0x400E0E3C (PIOB), 0x400E103C (PIOC)

Access: Read-only

• P0-P31: Output Data Status

0 = The I/O line is at level 0.

1 = The I/O line is at level 1.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0
SAM3U Series [DATASHEET]
Atmel-6430G-ATARM-SAM3U-Series-Datasheet_31-Mar-15

520

29.7.21 PIO Pull Up Disable Register

Name: PIO_PUDR

Address: 0x400E0C60 (PIOA), 0x400E0E60 (PIOB), 0x400E1060 (PIOC)

Access: Write-only

This register can only be written if the WPEN bit is cleared in “PIO Write Protect Mode Register”.

• P0-P31: Pull Up Disable.

0 = No effect.

1 = Disables the pull up resistor on the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0
SAM3U Series [DATASHEET]
Atmel-6430G-ATARM-SAM3U-Series-Datasheet_31-Mar-15

528

Figure 32-17. TWI Write Operation with Multiple Data Bytes with or without Internal Address

Set the Control register:
- Master enable

TWI_CR = MSEN + SVDIS

Set the Master Mode register:
- Device slave address

- Internal address size (if IADR used)
- Transfer direction bit

Write ==> bit MREAD = 0

Internal address size = 0?

Load Transmit register
TWI_THR = Data to send

Read Status register

TXRDY = 1?

Data to send?

Read Status register

TXCOMP = 1?

END

BEGIN

Set the internal address
TWI_IADR = address

Yes

TWI_THR = data to send

Yes

Yes

Yes

No

No

No

Write STOP Command
TWI_CR = STOP

Set TWI clock
(CLDIV, CHDIV, CKDIV) in TWI_CWGR

(Needed only once)
639SAM3U Series [DATASHEET]
Atmel-6430G-ATARM-SAM3U-Series-Datasheet_31-Mar-15

32.11.3 TWI Slave Mode Register

Name: TWI_SMR

Address: 0x40084008 (0), 0x40088008 (1)

Access: Read-write

Reset: 0x00000000

• SADR: Slave Address

The slave device address is used in Slave mode in order to be accessed by master devices in read or write mode.

SADR must be programmed before enabling the Slave mode or after a general call. Writes at other times have no effect.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– SADR

15 14 13 12 11 10 9 8

– – – – – –

7 6 5 4 3 2 1 0

– – – – – – – –
657SAM3U Series [DATASHEET]
Atmel-6430G-ATARM-SAM3U-Series-Datasheet_31-Mar-15

33.3 Block Diagram

Figure 33-1. UART Functional Block Diagram

33.4 Product Dependencies

33.4.1 I/O Lines

The UART pins are multiplexed with PIO lines. The programmer must first configure the corresponding PIO
Controller to enable I/O line operations of the UART.

33.4.2 Power Management

The UART clock is controllable through the Power Management Controller. In this case, the programmer must first
configure the PMC to enable the UART clock. Usually, the peripheral identifier used for this purpose is 1.

33.4.3 Interrupt Source

The UART interrupt line is connected to one of the interrupt sources of the Nested Vectored Interrupt Controller
(NVIC). Interrupt handling requires programming of the NVIC before configuring the UART.

Peripheral DMA Controller

Baud Rate
Generator

Transmit

Receive

Interrupt
Control

Peripheral
Bridge

Parallel
Input/
Output

UTXD

URXD

Power
Management

Controller

MCK

uart_irq

APB UART

Table 33-1. UART Pin Description

Pin Name Description Type

URXD UART Receive Data Input

UTXD UART Transmit Data Output

Table 33-2. I/O Lines

Instance Signal I/O Line Peripheral

UART URXD PA11 A

UART UTXD PA12 A
669SAM3U Series [DATASHEET]
Atmel-6430G-ATARM-SAM3U-Series-Datasheet_31-Mar-15

34.7.1 Baud Rate Generator

The Baud Rate Generator provides the bit period clock named the Baud Rate Clock to both the receiver and the
transmitter.

The Baud Rate Generator clock source can be selected by setting the USCLKS field in the Mode Register
(US_MR) between:

 the Master Clock MCK

 a division of the Master Clock, the divider being product dependent, but generally set to 8

 the external clock, available on the SCK pin

The Baud Rate Generator is based upon a 16-bit divider, which is programmed with the CD field of the Baud Rate
Generator Register (US_BRGR). If CD is programmed to 0, the Baud Rate Generator does not generate any
clock. If CD is programmed to 1, the divider is bypassed and becomes inactive.

If the external SCK clock is selected, the duration of the low and high levels of the signal provided on the SCK pin
must be longer than a Master Clock (MCK) period. The frequency of the signal provided on SCK must be at least
3 times lower than MCK in USART mode, or 6 in SPI mode.

Figure 34-3. Baud Rate Generator

34.7.1.1 Baud Rate in Asynchronous Mode

If the USART is programmed to operate in asynchronous mode, the selected clock is first divided by CD, which is
field programmed in the Baud Rate Generator Register (US_BRGR). The resulting clock is provided to the receiver
as a sampling clock and then divided by 16 or 8, depending on the programming of the OVER bit in US_MR.

If OVER is set to 1, the receiver sampling is 8 times higher than the baud rate clock. If OVER is cleared, the
sampling is performed at 16 times the baud rate clock.

The following formula performs the calculation of the Baud Rate.

This gives a maximum baud rate of MCK divided by 8, assuming that MCK is the highest possible clock and that
OVER is programmed to 1.

MCK/DIV
16-bit Counter

0

Baud Rate
Clock

CD

CD

Sampling
Divider

0

1

>1

Sampling
Clock

Reserved

MCK

SCK

USCLKS

OVER

SCK

SYNC

SYNC

USCLKS = 3

1

0

2

3
0

1

0

1

FIDI

Baudrate
SelectedClock
8 2 Over–()CD()

--=
SAM3U Series [DATASHEET]
Atmel-6430G-ATARM-SAM3U-Series-Datasheet_31-Mar-15

692

34.8.1 USART Control Register

Name: US_CR

Address: 0x40090000 (0), 0x40094000 (1), 0x40098000 (2), 0x4009C000 (3)

Access: Write-only

• RSTRX: Reset Receiver

0: No effect.

1: Resets the receiver.

• RSTTX: Reset Transmitter

0: No effect.

1: Resets the transmitter.

• RXEN: Receiver Enable

0: No effect.

1: Enables the receiver, if RXDIS is 0.

• RXDIS: Receiver Disable

0: No effect.

1: Disables the receiver.

• TXEN: Transmitter Enable

0: No effect.

1: Enables the transmitter if TXDIS is 0.

• TXDIS: Transmitter Disable

0: No effect.

1: Disables the transmitter.

• RSTSTA: Reset Status Bits

0: No effect.

1: Resets the status bits PARE, FRAME, OVRE, MANERR, UNRE and RXBRK in US_CSR.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – RTSDIS/RCS RTSEN/FCS DTRDIS DTREN

15 14 13 12 11 10 9 8

RETTO RSTNACK RSTIT SENDA STTTO STPBRK STTBRK RSTSTA

7 6 5 4 3 2 1 0

TXDIS TXEN RXDIS RXEN RSTTX RSTRX – –
727SAM3U Series [DATASHEET]
Atmel-6430G-ATARM-SAM3U-Series-Datasheet_31-Mar-15

35.3 Block Diagram

Note: 1. When SLCK is selected for Peripheral Clock (CSS = 0 in PMC Master Clock Register), SLCK input is equivalent
to Peripheral Clock.

Figure 35-1. Timer Counter Block Diagram

Table 35-1. Timer Counter Clock Assignment

Name Definition

TIMER_CLOCK1 MCK/2

TIMER_CLOCK2 MCK/8

TIMER_CLOCK3 MCK/32

TIMER_CLOCK4 MCK/128

TIMER_CLOCK5 SLCK

Timer/Counter
Channel 0

Timer/Counter
Channel 1

Timer/Counter
Channel 2

SYNC

Parallel I/O
Controller

TC1XC1S

TC0XC0S

TC2XC2S

INT0

INT1

INT2

TIOA0

TIOA1

TIOA2

TIOB0

TIOB1

TIOB2

XC0

XC1

XC2

XC0

XC1

XC2

XC0

XC1

XC2

TCLK0

TCLK1

TCLK2

TCLK0

TCLK1

TCLK2

TCLK0

TCLK1

TCLK2

TIOA1
TIOA2

TIOA0

TIOA2

TIOA0

TIOA1

Interrupt
Controller

TCLK0
TCLK1
TCLK2

TIOA0
TIOB0

TIOA1
TIOB1

TIOA2
TIOB2

Timer Counter

TIOA

TIOB

TIOA

TIOB

TIOA

TIOB

SYNC

SYNC

TIMER_CLOCK2

TIMER_CLOCK3

TIMER_CLOCK4

TIMER_CLOCK5

TIMER_CLOCK1
SAM3U Series [DATASHEET]
Atmel-6430G-ATARM-SAM3U-Series-Datasheet_31-Mar-15

756

41.6.5 ADC Channel Status Register

Name: ADC_CHSR

Address: 0x400AC018

Access: Read-only

• CHx: Channel x Status

0 = Corresponding channel is disabled.

1 = Corresponding channel is enabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

CH7 CH6 CH5 CH4 CH3 CH2 CH1 CH0
1079SAM3U Series [DATASHEET]
Atmel-6430G-ATARM-SAM3U-Series-Datasheet_31-Mar-15

