

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	96MHz
Connectivity	EBI/EMI, I ² C, Memory Card, SPI, SSC, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	96
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	52K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.6V
Data Converters	A/D 8x10b, 8x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LFBGA
Supplier Device Package	144-LFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsam3u4ea-cu

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

12.8 Instruction set summary

The processor implements a version of the Thumb instruction set. Table 12-13 lists the supported instructions.

In Table 12-13:

- angle brackets, <>, enclose alternative forms of the operand
- braces, {}, enclose optional operands
- the Operands column is not exhaustive
- Op2 is a flexible second operand that can be either a register or a constant
- most instructions can use an optional condition code suffix.

For more information on the instructions and operands, see the instruction descriptions.

Mnemonic	Operands	Brief description	Flags	Page
ADC, ADCS	{Rd,} Rn, Op2	Add with Carry	N,Z,C,V	page 106
ADD, ADDS	{Rd,} Rn, Op2	Add	N,Z,C,V	page 106
ADD, ADDW	{Rd,} Rn, #imm12	Add	N,Z,C,V	page 106
ADR	Rd, label	Load PC-relative address	-	page 91
AND, ANDS	{Rd,} Rn, Op2	Logical AND	N,Z,C	page 108
ASR, ASRS	Rd, Rm, <rs #n></rs #n>	Arithmetic Shift Right	N,Z,C	page 109
В	label	Branch	-	page 129
BFC	Rd, #lsb, #width	Bit Field Clear	-	page 125
BFI	Rd, Rn, #lsb, #width	Bit Field Insert	-	page 125
BIC, BICS	{Rd,} Rn, Op2	Bit Clear	N,Z,C	page 108
ВКРТ	#imm	Breakpoint	-	page 136
BL	label	Branch with Link	-	page 129
BLX	Rm	Branch indirect with Link	-	page 129
BX	Rm	Branch indirect	-	page 129
CBNZ	Rn, label	Compare and Branch if Non Zero	-	page 131
CBZ	Rn, label	Compare and Branch if Zero	-	page 131
CLREX	-	Clear Exclusive	-	page 104
CLZ	Rd, Rm	Count leading zeros	-	page 111
CMN, CMNS	Rn, Op2	Compare Negative	N,Z,C,V	page 112
CMP, CMPS	Rn, Op2	Compare	N,Z,C,V	page 112
CPSID	iflags	Change Processor State, Disable Interrupts	-	page 137
CPSIE	iflags	Change Processor State, Enable Interrupts	-	page 137
DMB	-	Data Memory Barrier	-	page 138
DSB	-	Data Synchronization Barrier	-	page 139
EOR, EORS	{Rd,} Rn, Op2	Exclusive OR	N,Z,C	page 108
ISB	-	Instruction Synchronization Barrier	-	page 140
ІТ	-	If-Then condition block	-	page 132
LDM	Rn{!}, reglist	Load Multiple registers, increment after	-	page 99

Table 12-13. Cortex-M3 instructions

12.11.5.5 Examples

LDR	R0, LookUpTable	; Load R0 with a word of data from an address
		; labelled as LookUpTable
LDRSB	R7, localdata	; Load a byte value from an address labelled
		; as localdata, sign extend it to a word
		; value, and put it in R7

12.17.9 SEV

Send Event.

12.17.9.1 Syntax

 $SEV{cond}$

where:

cond is an optional condition code, see "Conditional execution" on page 87.

12.17.9.2 Operation

SEV is a hint instruction that causes an event to be signaled to all processors within a multiprocessor system. It also sets the local event register to 1, see "Power management" on page 76.

12.17.9.3 Condition flags

This instruction does not change the flags.

12.17.9.4 Examples

SEV ; Send Event

12.20.9.2 System Handler Priority Register 2

The bit assignments are:

31	30	29	28	27	26	25	24	
			PR	_11				
23	22	21	20	19	18	17	16	
			Rese	erved				
15	14	13	12	11	10	9	8	
Reserved								
7	6	5	4	3	2	1	0	
	Reserved							

• PRI_11

Priority of system handler 11, SVCall

Atmel

13. Debug and Test Features

13.1 Overview

The SAM3U Series microcontrollers feature a number of complementary debug and test capabilities. The Serial Wire/JTAG Debug Port (SWJ-DP) combining a Serial Wire Debug Port (SW-DP) and JTAG Debug (JTAG-DP) port is used for standard debugging functions, such as downloading code and single-stepping through programs. It also embeds a serial wire trace.

13.2 Embedded Characteristics

- Debug access to all memory and registers in the system, including Cortex-M3 register bank when the core is running, halted, or held in reset
- Serial Wire Debug Port (SW-DP) and Serial Wire JTAG Debug Port (SWJ-DP) debug access
- Flash Patch and Breakpoint (FPB) unit for implementing break points and code patches
- Data Watchpoint and Trace (DWT) unit for implementing watch points, data tracing, and system profiling
- Instrumentation Trace Macrocell (ITM) for support of printf style debugging
- IEEE[®] 1149.1 JTAG Boundary-scan on all digital pins

Atmel

24.16.3 NFC Initialization

Prior to any Command and Data Transfer, the SMC User Interface must be configured to meet the device timing requirements.

• Write enable Configuration

Use NWE_SETUP, NWE_PULSE and NWE_CYCLE to define the write enable waveform according to the device datasheet.

Use TADL field in the SMC_TIMINGS register to configure the timing between the last address latch cycle and the first rising edge of WEN for data input.

Figure 24-32. Write Enable Timing Configuration

Figure 24-33. Write Enable Timing for NAND Flash Device Data Input Mode.

Read Enable Configuration

Use NRD_SETUP, NRD_PULSE and NRD_CYCLE to define the read enable waveform according to the device datasheet.

Use TAR field in the SMC_TIMINGS register to configure the timings between address latch enable falling edge to read enable falling edge.

Use TCLR field in the SMC_TIMINGS register to configure the timings between the command latch enable falling edge to the read enable falling edge.

24.16.3.1 NAND Flash Controller Timing Engine

When the NFC Command register is written, the NFC issues a NAND Flash Command and optionally performs a data transfer between the NFC SRAM and the NAND Flash device. The NAND Flash Controller Timing Engine guarantees valid NAND Flash timings, depending on the set of parameters decoded from the address bus. These timings are defined in the SMC_TIMINGS register.

For information on the timing used depending on the command, see Figure 24-36:

See "NFC Address Command" register description and "SMC Timings Register".

24.16.4 NFC SRAM

24.18.8 SMC NFC Bank Register

Name:	SMC_BANK						
Address:	0x400E001C						
Access:	Read-write						
Reset:	0x0000000						
31	30	29	28	27	26	25	24
-	—	_	—	_	-	—	—
23	22	21	20	19	18	17	16
-	-	-	-	-	-	-	-
15	14	13	12	11	10	9	8
—	-	—	-	-	—	-	-
7	6	5	4	3	2	1	0
-	-	_	_	_		BANK	

• BANK: Bank Identifier

Number of the bank used

27.14.14 PMC Interrupt Disable Register

Name:	PMC_IDR						
Address:	0x400E0464						
Access:	Write-only						
31	30	29	28	27	26	25	24
_	-	_	_	—	-	-	—
		-	-				
23	22	21	20	19	18	17	16
_	-	_	_	-	CFDEV	MOSCRCS	MOSCSELS
		-	-				
15	14	13	12	11	10	9	8
_	—	_	_	—	PCKRDY2	PCKRDY1	PCKRDY0
7	6	5	4	3	2	1	0
_	LOCKU	_	_	MCKRDY	_	LOCKA	MOSCXTS

0: No effect.

1: Disables the corresponding interrupt.

• MOSCXTS: Main Crystal Oscillator Status Interrupt Disable

- LOCKA: PLL A Lock Interrupt Disable
- MCKRDY: Master Clock Ready Interrupt Disable
- LOCKU: UTMI PLL Lock Interrupt Disable
- PCKRDYx: Programmable Clock Ready x Interrupt Disable
- MOSCSELS: Main Oscillator Selection Status Interrupt Disable
- MOSCRCS: Main On-Chip RC Status Interrupt Disable
- CFDEV: Clock Failure Detector Event Interrupt Disable

30.7.5.2 Frame Sync Edge Detection

The Frame Sync Edge detection is programmed by the FSEDGE field in SSC_RFMR/SSC_TFMR. This sets the corresponding flags RXSYN/TXSYN in the SSC Status Register (SSC_SR) on frame synchro edge detection (signals RF/TF).

30.7.6 Receive Compare Modes

Figure 30-12. Receive Compare Modes

30.7.6.1 Compare Functions

Length of the comparison patterns (Compare 0, Compare 1) and thus the number of bits they are compared to is defined by FSLEN, but with a maximum value of 16 bits. Comparison is always done by comparing the last bits received with the comparison pattern. Compare 0 can be one start event of the Receiver. In this case, the receiver compares at each new sample the last bits received at the Compare 0 pattern contained in the Compare 0 Register (SSC_RCOR). When this start event is selected, the user can program the Receiver to start a new data transfer either by writing a new Compare 0, or by receiving continuously until Compare 1 occurs. This selection is done with the bit (STOP) in SSC_RCMR.

30.7.7 Data Format

The data framing format of both the transmitter and the receiver are programmable through the Transmitter Frame Mode Register (SSC_TFMR) and the Receiver Frame Mode Register (SSC_RFMR). In either case, the user can independently select:

- the event that starts the data transfer (START)
- the delay in number of bit periods between the start event and the first data bit (STTDLY)
- the length of the data (DATLEN)
- the number of data to be transferred for each start event (DATNB).
- the length of synchronization transferred for each start event (FSLEN)
- the bit sense: most or lowest significant bit first (MSBF)

Additionally, the transmitter can be used to transfer synchronization and select the level driven on the TD pin while not in data transfer operation. This is done respectively by the Frame Sync Data Enable (FSDEN) and by the Data Default Value (DATDEF) bits in SSC_TFMR.

30.9.1 SSC Control Register

Name:	SSC_CR						
Address:	0x40004000						
Access:	Write-only						
31	30	29	28	27	26	25	24
_	_	_	_	_	_	_	-
	-				-	-	-
23	22	21	20	19	18	17	16
_	-	_	_	_	_	_	-
15	14	13	12	11	10	9	8
SWRST	_	_	_	_	—	TXDIS	TXEN
7	6	5	4	3	2	1	0
_	_	_	_	_	_	RXDIS	RXEN

• RXEN: Receive Enable

0 = No effect.

1 = Enables Receive if RXDIS is not set.

• RXDIS: Receive Disable

0 = No effect.

1 = Disables Receive. If a character is currently being received, disables at end of current character reception.

• TXEN: Transmit Enable

0 = No effect.

1 = Enables Transmit if TXDIS is not set.

• TXDIS: Transmit Disable

0 = No effect.

1 = Disables Transmit. If a character is currently being transmitted, disables at end of current character transmission.

• SWRST: Software Reset

0 = No effect.

1 = Performs a software reset. Has priority on any other bit in SSC_CR.

31.7.3.1 Master Mode Block Diagram

Figure 31-5. Master Mode Block Diagram

Atmel

34.7.5.2 IrDA Baud Rate

Table 34-12 gives some examples of CD values, baud rate error and pulse duration. Note that the requirement on the maximum acceptable error of $\pm 1.87\%$ must be met.

Peripheral Clock	Baud Rate	CD	Baud Rate Error	Pulse Time
3 686 400	115 200	2	0.00%	1.63
20 000 000	115 200	11	1.38%	1.63
32 768 000	115 200	18	1.25%	1.63
40 000 000	115 200	22	1.38%	1.63
3 686 400	57 600	4	0.00%	3.26
20 000 000	57 600	22	1.38%	3.26
32 768 000	57 600	36	1.25%	3.26
40 000 000	57 600	43	0.93%	3.26
3 686 400	38 400	6	0.00%	4.88
20 000 000	38 400	33	1.38%	4.88
32 768 000	38 400	53	0.63%	4.88
40 000 000	38 400	65	0.16%	4.88
3 686 400	19 200	12	0.00%	9.77
20 000 000	19 200	65	0.16%	9.77
32 768 000	19 200	107	0.31%	9.77
40 000 000	19 200	130	0.16%	9.77
3 686 400	9 600	24	0.00%	19.53
20 000 000	9 600	130	0.16%	19.53
32 768 000	9 600	213	0.16%	19.53
40 000 000	9 600	260	0.16%	19.53
3 686 400	2 400	96	0.00%	78.13
20 000 000	2 400	521	0.03%	78.13
32 768 000	2 400	853	0.04%	78.13

Table 34-12. IrDA Baud Rate Error

- Note: 1. It is assumed that this command has been correctly sent (see Figure 36-7).
 - 2. This field is also accessible in the HSMCI Block Register (HSMCI_BLKR).

The following flowchart (Figure 36-10) shows how to manage read multiple block and write multiple block transfers with the DMA Controller. Polling or interrupt method can be used to wait for the end of write according to the contents of the Interrupt Mask Register (HSMCI_IMR).

OPDCMD: Open Drain Command

0 (PUSHPULL) = Push pull command.

1 (OPENDRAIN) = Open drain command.

• MAXLAT: Max Latency for Command to Response

0(5) = 5-cycle max latency.

1 (64) = 64-cycle max latency.

• TRCMD: Transfer Command

Value	Name	Description
0	NO_DATA	No data transfer
1	START_DATA	Start data transfer
2	STOP_DATA	Stop data transfer
3	_	Reserved

• TRDIR: Transfer Direction

0 (WRITE) = Write.

1 (READ) = Read.

• TRTYP: Transfer Type

Value	Name	Description
0	SINGLE	MMC/SDCard Single Block
1	MULTIPLE	MMC/SDCard Multiple Block
2	STREAM	MMC Stream
4	BYTE	SDIO Byte
5	BLOCK	SDIO Block

IOSPCMD: SDIO Special Command

Value	Name	Description
0	STD	Not an SDIO Special Command
1	SUSPEND	SDIO Suspend Command
2	RESUME	SDIO Resume Command

ATACS: ATA with Command Completion Signal

0 (NORMAL) = Normal operation mode.

1 (COMPLETION) = This bit indicates that a completion signal is expected within a programmed amount of time (HSMCI_CSTOR).

• BOOT_ACK: Boot Operation Acknowledge.

The master can choose to receive the boot acknowledge from the slave when a Boot Request command is issued. When set to one this field indicates that a Boot acknowledge is expected within a programmable amount of time defined with DTOMUL and DTOCYC fields located in the HSMCI_DTOR register. If the acknowledge pattern is not received then an acknowledge timeout error is raised. If the acknowledge pattern is corrupted then an acknowledge pattern error is set.

36.14.14 HSMCI Interrupt Disable Register

Name:	HSMCI_IDR						
Address:	0x40000048						
Access:	Write-only						
31	30	29	28	27	26	25	24
UNRE	OVRE	ACKRCVE	ACKRCV	XFRDONE	FIFOEMPTY	DMADONE	BLKOVRE
23	22	21	20	19	18	17	16
CSTOE	DTOE	DCRCE	RTOE	RENDE	RCRCE	RDIRE	RINDE
15	14	13	12	11	10	9	8
_	-	CSRCV	SDIOWAIT	_	_	_	MCI_SDIOIR QA
7	6	5	4	3	2	1	0
_	-	NOTBUSY	DTIP	BLKE	TXRDY	RXRDY	CMDRDY

- CMDRDY: Command Ready Interrupt Disable
- RXRDY: Receiver Ready Interrupt Disable
- TXRDY: Transmit Ready Interrupt Disable
- BLKE: Data Block Ended Interrupt Disable
- DTIP: Data Transfer in Progress Interrupt Disable
- NOTBUSY: Data Not Busy Interrupt Disable
- SDIOIRQA: SDIO Interrupt for Slot A Interrupt Disable
- SDIOWAIT: SDIO Read Wait Operation Status Interrupt Disable
- CSRCV: Completion Signal received interrupt Disable
- RINDE: Response Index Error Interrupt Disable
- RDIRE: Response Direction Error Interrupt Disable
- RCRCE: Response CRC Error Interrupt Disable
- RENDE: Response End Bit Error Interrupt Disable
- RTOE: Response Time-out Error Interrupt Disable
- DCRCE: Data CRC Error Interrupt Disable
- DTOE: Data Time-out Error Interrupt Disable
- CSTOE: Completion Signal Time out Error Interrupt Disable
- BLKOVRE: DMA Block Overrun Error Interrupt Disable
- DMADONE: DMA Transfer completed Interrupt Disable

38.6.9.7 Isochronous IN

Isochronous-IN is used to transmit a stream of data whose timing is implied by the delivery rate. Isochronous transfer provides periodic, continuous communication between host and device.

It guarantees bandwidth and low latencies appropriate for telephony, audio, video, etc.

If the endpoint is not available (TX_PK_RDY = 0), then the device does not answer to the host. An ERR_FL_ISO interrupt is generated in the UDPHS_EPTSTAx register and once enabled, then sent to the CPU.

The STALL_SNT command bit is not used for an ISO-IN endpoint.

38.6.9.8 High Bandwidth Isochronous Endpoint Handling: IN Example

For high bandwidth isochronous endpoints, the DMA can be programmed with the number of transactions (BUFF_LENGTH field in UDPHS_DMACONTROLx) and the system should provide the required number of packets per microframe, otherwise, the host will notice a sequencing problem.

A response should be made to the first token IN recognized inside a microframe under the following conditions:

- If at least one bank has been validated, the correct DATAx corresponding to the programmed Number Of Transactions per Microframe (NB_TRANS) should be answered. In case of a subsequent missed or corrupted token IN inside the microframe, the USB 2.0 Core available data bank(s) that should normally have been transmitted during that microframe shall be flushed at its end. If this flush occurs, an error condition is flagged (ERR_FLUSH is set in UDPHS_EPTSTAx).
- If no bank is validated yet, the default DATA0 ZLP is answered and underflow is flagged (ERR_FL_ISO is set in UDPHS_EPTSTAx). Then, no data bank is flushed at microframe end.
- If no data bank has been validated at the time when a response should be made for the second transaction of NB_TRANS = 3 transactions microframe, a DATA1 ZLP is answered and underflow is flagged (ERR_FL_ISO is set in UDPHS_EPTSTAx). If and only if remaining untransmitted banks for that microframe are available at its end, they are flushed and an error condition is flagged (ERR_FLUSH is set in UDPHS_EPTSTAx).
- If no data bank has been validated at the time when a response should be made for the last programmed transaction of a microframe, a DATA0 ZLP is answered and underflow is flagged (ERR_FL_ISO is set in UDPHS_EPTSTAx). If and only if the remaining untransmitted data bank for that microframe is available at its end, it is flushed and an error condition is flagged (ERR_FLUSH is set in UDPHS_EPTSTAx).
- If at the end of a microframe no valid token IN has been recognized, no data bank is flushed and no error condition is reported.

At the end of a microframe in which at least one data bank has been transmitted, if less than NB_TRANS banks have been validated for that microframe, an error condition is flagged (ERR_TRANS is set in UDPHS_EPTSTAx).

Cases of Error (in UDPHS_EPTSTAx)

- ERR_FL_ISO: There was no data to transmit inside a microframe, so a ZLP is answered by default.
- ERR_FLUSH: At least one packet has been sent inside the microframe, but the number of token IN received is lesser than the number of transactions actually validated (TX_BK_RDY) and likewise with the NB_TRANS programmed.
- ERR_TRANS: At least one packet has been sent inside the microframe, but the number of token IN received is lesser than the number of programmed NB_TRANS transactions and the packets not requested were not validated.
- ERR_FL_ISO + ERR_FLUSH: At least one packet has been sent inside the microframe, but the data has not been validated in time to answer one of the following token IN.
- ERR_FL_ISO + ERR_TRANS: At least one packet has been sent inside the microframe, but the data has not been validated in time to answer one of the following token IN and the data can be discarded at the microframe end.

38.7.12 UDPHS Endpoint Control Enable Register

Name: UDPHS_EPTCTLENBx [x=0..6]

. . . .

Address: 0x400A4104 [0], 0x400A4124 [1], 0x400A4144 [2], 0x400A4164 [3], 0x400A4184 [4], 0x400A41A4 [5], 0x400A41C4 [6]

Access:	Write-only						
31	30	29	28	27	26	25	24
SHRT_PCKT	—	—	-	—	-	—	—
23	22	21	20	19	18	17	16
_	-	—	-	—	BUSY_BANK	—	—
15	14	13	12	11	10	9	8
NAK_OUT	NAK_IN/ ERR_FLUSH	STALL_SNT/ ERR_CRISO/ ERR_NBTRA	RX_SETUP/ ERR_FL_ISO	TX_PK_RDY/ ERR_TRANS	TX_COMPLT	RX_BK_RDY	ERR_OVFLW
7	6	5	4	3	2	1	0
MDATA_RX	DATAX_RX	_	NYET_DIS	INTDIS_DMA	_	AUTO_VALID	EPT_ENABL

For additional Information, see "UDPHS Endpoint Control Register" on page 987.

• EPT_ENABL: Endpoint Enable

0 = no effect.

1 = enable endpoint according to the device configuration.

• AUTO_VALID: Packet Auto-Valid Enable

0 = no effect.

1 = enable this bit to automatically validate the current packet and switch to the next bank for both IN and OUT transfers.

• INTDIS_DMA: Interrupts Disable DMA

0 = no effect.

1 = If set, when an enabled endpoint-originated interrupt is triggered, the DMA request is disabled.

• NYET_DIS: NYET Disable (Only for High Speed Bulk OUT endpoints)

0 = no effect.

1 = forces an ACK response to the next High Speed Bulk OUT transfer instead of a NYET response.

• DATAX_RX: DATAx Interrupt Enable (Only for high bandwidth Isochronous OUT endpoints)

0 = no effect.

1 = enable DATAx Interrupt.

• MDATA_RX: MDATA Interrupt Enable (Only for high bandwidth Isochronous OUT endpoints)

0 = no effect.

1 = enable MDATA Interrupt.

CURRENT_BANK/CONTROL_DIR: Current Bank/Control Direction

- Current Bank: (all endpoints except Control endpoint)

These bits are set by hardware to indicate the number of the current bank.

Value	Name	Description
0	BANK0	Bank 0 (or single bank)
1	BANK1	Bank 1
2	BANK2	Bank 2

Note: The current bank is updated each time the user:

- Sets the TX Packet Ready bit to prepare the next IN transfer and to switch to the next bank.

- Clears the received OUT data bit to access the next bank.

This bit is reset by UDPHS_EPTRST register EPT_x (reset endpoint) and by UDPHS_EPTCTLDISx (disable endpoint).

- **Control Direction**: (for Control endpoint only)

0 = a Control Write is requested by the Host.

1 = a Control Read is requested by the Host.

Notes: 1. This bit corresponds with the 7th bit of the bmRequestType (Byte 0 of the Setup Data).

2. This bit is updated after receiving new setup data.

• BUSY_BANK_STA: Busy Bank Number

These bits are set by hardware to indicate the number of busy banks.

IN endpoint: it indicates the number of busy banks filled by the user, ready for IN transfer.

OUT endpoint: it indicates the number of busy banks filled by OUT transaction from the Host.

Value	Name	Description
0	1BUSYBANK	1 busy bank
1	2BUSYBANKS	2 busy banks
2	3BUSYBANKS	3 busy banks

• BYTE_COUNT: UDPHS Byte Count

Byte count of a received data packet.

This field is incremented after each write into the endpoint (to prepare an IN transfer).

This field is decremented after each reading into the endpoint (OUT transfer).

This field is also updated at RX_BK_RDY flag clear with the next bank.

This field is also updated at TX_PK_RDY flag set with the next bank.

This field is reset by EPT_x of UDPHS_EPTRST register.

• SHRT_PCKT: Short Packet

An OUT Short Packet is detected when the receive byte count is less than the configured UDPHS_EPTCFGx register EPT_Size.

This bit is updated at the same time as the BYTE_COUNT field.

This bit is reset by UDPHS_EPTRST register EPT_x (reset endpoint) and by UDPHS_EPTCTLDISx (disable endpoint).

39.5.12 DMAC Channel Handler Status Register

Name:	DMAC_CHSR						
Address:	0x400B0030						
Access:	Read-only						
Reset:	0x00FF0000						
31	30	29	28	27	26	25	24
_	_	_	_	STAL3	STAL2	STAL1	STAL0
23	22	21	20	19	18	17	16
-	—	_	—	EMPT3	EMPT2	EMPT1	EMPT0
15	14	13	12	11	10	9	8
_	_	_	—	SUSP3	SUSP2	SUSP1	SUSP0
7	6	5	4	3	2	1	0
_	_		_	ENA3	ENA2	ENA1	ENA0

• ENA[3:0]

A one in any position of this field indicates that the relevant channel is enabled.

• SUSP[3:0]

A one in any position of this field indicates that the channel transfer is suspended.

• EMPT[3:0]

A one in any position of this field indicates that the relevant channel is empty.

• STAL[3:0]

A one in any position of this field indicates that the relevant channel is stalling.