

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	TriCore™
Core Size	32-Bit Single-Core
Speed	150MHz
Connectivity	ASC, CANbus, EBI/EMI, MLI, MSC, SSC
Peripherals	DMA, POR, WDT
Number of I/O	123
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256K x 8
Voltage - Supply (Vcc/Vdd)	1.42V ~ 1.58V
Data Converters	A/D 44x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	416-BGA
Supplier Device Package	PG-BGA-416
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/tc1796256f150ebckduma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Summary of Features

Ordering Information

The ordering code for Infineon microcontrollers provides an exact reference to the required product. This ordering code identifies:

- The derivative itself, i.e. its function set, the temperature range, and the supply voltage
- The package and the type of delivery.

For the available ordering codes for the TC1796 please refer to the **"Product Catalog Microcontrollers"**, which summarizes all available microcontroller variants.

This document describes the derivatives of the device. The **Table 1** enumerates these derivatives and summarizes the differences.

Table 1TC1796 Derivative Synopsis

Derivative	Ambient Temperature Range
SAK-TC1796-256F150E	$T_{A} = -40^{\circ}C \text{ to } +125^{\circ}C$

General Device Information

Table 2	able 2 Pin Definitions and Functions (cont d)									
Symbol	Pins	I/O	Pad Class	Power Supply	Functions					
BFCLKO	AF25	0	B2	V _{DDEBU}	Burst Mode Flash Clock Output (non- differential)					
BFCLKI	AF24	I	B1	_	Burst Mode Flash Clock Input (feedback clock)					
RD	AF20	0	B1		Read Control Line					
RD/WR	AF21	0	B1	1	Write Control Line					
ADV	AF22	0	B1		Address Valid Output					
MR/W	AF19	0	B1		Motorola-style Read/Write Control Signal					
BC0 BC1 BC2 BC3	AE17 AD17 AF18 AE18	0 0 0 0	B1		Byte Control Lines Byte control line 0 Byte control line 1 Byte control line 2 Byte control line 3					
WAIT	AE20	I	B1		Wait Input for inserting Wait-States					
BAA	AF23	0	B1		Burst Address Advance Output					
HOLD	AF17	I	B1		Hold Request Input					
HLDA	AD18	0	B1		Hold Acknowledge Output					
BREQ	AD22	0	B1	1	Bus Request Output					

Table 2 Pin Definitions and Functions (cont'd)

General Device Information

Table 2Pin Definitions and Functions (cont'd)										
Symbol	Pins	I/O	Pad Class	Power Supply	Functions					
Р5		I/O	A2	V _{DDP}	purpose I/O p	-bit bi-directional general- ort which can be alternatively 0/1 or MSC0/1 lines.				
P5.0	B13	I/O			RXD0A	ASC0 receiver input / output A				
P5.1	A13	0			TXD0A	ASC0 transmitter output A				
P5.2	A14	I/O			RXD1A	ASC1 receiver input /				
P5.3	B14	0			TXD1A	ASC1 transmitter output A P5.3 is latched with the rising edge of PORST if BYPASS = 1 and stored in inverted state as bit OSC CON.MOSC.				
P5.4	C15	0			EN00	MSC0 device select output 0				
		0			RREADY0B	MLI0 receive channel ready output B				
P5.5	C14	I			SDI0	MSC0 serial data input				
P5.6	B15	0			EN10	MSC1 device select output 0				
		0			TVALID0B	MLI0 transmit channel valid output B				
P5.7	A15	I			SDI1	MSC1 serial data input				

Data Sheet

General Device Information

Table 2	Table 2Pin Definitions and Functions (cont'd)										
Symbol	Pins	I/O	Pad Class	Power Supply	Functions						
P10.0 P10.1 P10.2 P10.3	A21 B21 C21 D21	1	A1	V _{DDP}	Hardware Configuration Inputs / Port 10 These inputs are boot mode (hardware configuration) control inputs. They are latched with the rising edge of HDRST. Port 10 input line 0 / HWCFG0 Port 10 input line 1 / HWCFG1 Port 10 input line 2 / HWCFG2 Port 10 input line 3 / HWCFG3 After reset (HDRST = 1) the state of the Port 10 input pins may be modified from the reset configuration state. There actual state can be read via software (P10_IN register). During normal operation input HWCFG1 serves as emergency shut-off control input for certain I/O lines (e.g. GPTA related outputs).						
Dedicate	d Periph	neral	I/Os								
SLSO0	AE14	0	A2	V_{DDP}	SSC0 Slave Select Output Line 0						
SLSO1	AC15	0	-		SSC0 Slave Select Output Line 1						
MTSR0	AF15	0 I			SSC0 Master Transmit Output / SSC0 Slave Receive Input						
MRST0	AE15	l O			SSC0 Master Receive Input / SSC0 Slave Transmit Output						
SCLK0	AF14	I/O	1		SSC0 Clock Input/Output						
SLSI0	AD15	I	1		SSC0 Slave Select Input						

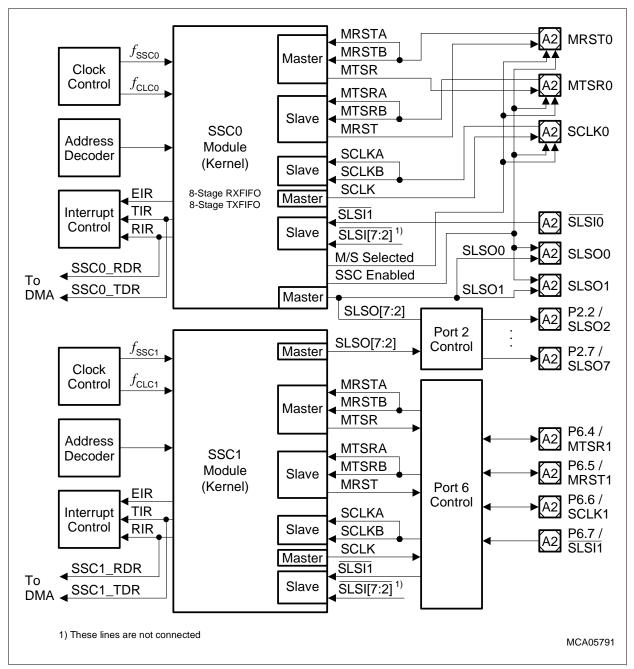

General Device Information

Table 2	le 2 Pin Definitions and Functions (cont'd)								
Symbol	Pins	I/O	Pad Class	Power Supply	Functions				
			D	_	ADC Analog Input Port (cont'd)				
AN32	AC3	1			Analog input 32				
AN33	AE2	1			Analog input 33				
AN34	AD3	1			Analog input 34				
AN35	AD5	1			Analog input 35				
AN36	AE3	1			Analog input 36				
AN37	AF2	1			Analog input 37				
AN38	AC4	1			Analog input 38				
AN39	AF3	1			Analog input 39				
AN40	AD4	1			Analog input 40				
AN41	AE4	1			Analog input 41				
AN42	AC5	1			Analog input 42				
AN43	AF4	I			Analog input 43				
TR[15:0]		0	A3	V _{DDP}	OCDS Level 2 Debug Trace Lines ²⁾				
					(located on center balls)				
TR0	U12	0			Trace output line 0				
TR1	T12	0			Trace output line 1				
TR2	U11	0			Trace output line 2				
TR3	T11	0			Trace output line 3				
TR4	U10	0			Trace output line 4				
TR5	R12	0			Trace output line 5				
TR6	R10	0			Trace output line 4				
TR7	R11	0			Trace output line 7				
TR8	M11	0			Trace output line 8				
TR9	M10	0			Trace output line 9				
TR10	L11	0			Trace output line 10				
TR11	L10	0			Trace output line 11				
TR12	K10	0			Trace output line 12				
TR13	K11	0			Trace output line 13				
TR14	L12	0			Trace output line 14				
TR15	K12	0			Trace output line 15				
TRCLK	T10	0	A4		Trace Clock for OCDS Level 2 Debug Trace Lines ¹⁾ (located on a center ball)				

3.10 High-Speed Synchronous Serial Interfaces (SSC0, SSC1)

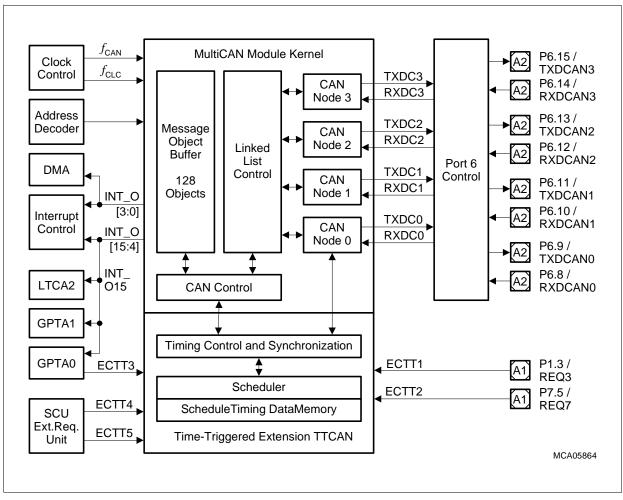
Figure 9 shows a global view of the functional blocks and interfaces of the two High-Speed Synchronous Serial interfaces SSC0 and SSC1.

Figure 9 Block Diagram of the SSC Interfaces

The SSC allows full-duplex and half-duplex serial synchronous communication up to 37.5 Mbit/s (@ 75 MHz module clock) with Receive and Transmit FIFO support. (FIFO only in SSC0). The serial clock signal can be generated by the SSC itself (Master Mode)

The downstream and upstream channels of the MSC module communicate with the external world via nine I/O lines. Eight output lines are required for the serial communication of the downstream channel (clock, data, and enable signals). One out of eight input lines SDI[7:0] is used as serial data input signal for the upstream channel. The source of the serial data to be transmitted by the downstream channel can be MSC register contents or data that is provided at the ALTINL/ALTINH input lines. These input lines are typically connected to other on-chip peripheral units (for example with a timer unit like the GPTA). An emergency stop input signal allows to set bits of the serial data stream to dedicated values in emergency case.

Clock control, address decoding, and interrupt service request control are managed outside the MSC module kernel. Service request outputs are able to trigger an interrupt or a DMA request.


Features

- Fast synchronous serial interface to connect power switches in particular, or other peripheral devices via serial buses
- High-speed synchronous serial transmission on downstream channel
 - Maximum serial output clock frequency: $f_{FCL} = f_{MSC}/2$ (= 37.5 Mbit/s @ 75 MHz module clock)
 - Fractional clock divider for precise frequency control of serial clock $f_{\rm MSC}$
 - Command, data, and passive frame types
 - Start of serial frame: Software-controlled, timer-controlled, or free-running
 - Programmable upstream data frame length (16 or 12 bits)
 - Transmission with or without SEL bit
 - Flexible chip select generation indicates status during serial frame transmission
 - Emergency stop without CPU intervention
- Low-speed asynchronous serial reception on upstream channel
 - Baud rate: f_{MSC} divided by 8, 16, 32, 64, 128, 256, or 512
 - Standard asynchronous serial frames
 - Parity error checker
 - 8-to-1 input multiplexer for SDI lines
 - Built-in spike filter on SDI lines

3.12 MultiCAN Controller (CAN)

Figure 11 shows a global view of the MultiCAN module with its functional blocks and interfaces.

Figure 11 Block Diagram of MultiCAN Module with Time-Triggered Extension

The MultiCAN module contains four independently operating CAN nodes with Full-CAN functionality that are able to exchange Data and Remote Frames via a gateway function. Transmission and reception of CAN frames is handled in accordance with CAN specification V2.0 B (active). Each CAN node can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers.

All four CAN nodes share a common set of message objects. Each message object can be individually allocated to one of the CAN nodes. Besides serving as a storage container for incoming and outgoing frames, message objects can be combined to build gateways between the CAN nodes or to setup a FIFO buffer.

The message objects are organized in double-chained linked lists, where each CAN node has it's own list of message objects. A CAN node stores frames only into message

The A/D converters operate by the method of the successive approximation. A multiplexer selects between up to 32 analog inputs that can be connected with the 16 conversion channels in each ADC module. An automatic self-calibration adjusts the ADC modules to changing temperatures or process variations.

External Clock control, address decoding, and service request (interrupt) control is managed outside the ADC module kernel. A synchronization bridge is used for synchronization of two ADC modules. External trigger conditions are controlled by an External Request Unit. This unit generates the control signals for auto-scan control (ASGT), software trigger control (SW0TR, SW0GT), the event trigger control (ETR, EGT), queue control (QTR, QGT), and timer trigger control (TTR, TGT).

Features

- 8-bit, 10-bit, 12-bit A/D conversion
- Minimum conversion times (without sample time, @ 75 MHz module clock):
 - 1.05 µs @ 8-bit resolution
 - 1.25 μs @ 10-bit resolution
 - 1.45 µs @ 12-bit resolution
- Extended channel status information on request source
- Successive approximation conversion method
- Total Unadjusted Error (TUE) of ±2 LSB @ 10-bit resolution
- Integrated sample & hold functionality
- Direct control of up to 16(32) analog input channels per ADC
- Dedicated control and status registers for each analog channel
- Powerful conversion request sources
- Selectable reference voltages for each channel
- Programmable sample and conversion timing schemes
- Limit checking
- Flexible ADC module service request control unit
- Synchronization of the two on-chip A/D converters
- Automatic control of external analog multiplexers
- · Equidistant samples initiated by timer
- External trigger and gating inputs for conversion requests
- Power reduction and clock control feature
- On-chip die temperature sensor output voltage measurement via ADC1

3.18 Watchdog Timer

The Watchdog Timer (WDT) provides a highly reliable and secure way to detect and recover from software or hardware failure. The WDT helps to abort an accidental malfunction of the TC1796 in a user-specified time period. When enabled, the WDT will cause the TC1796 system to be reset if the WDT is not serviced within a user-programmable time period. The CPU must service the WDT within this time interval to prevent the WDT from causing a TC1796 system reset. Hence, routine service of the WDT confirms that the system is functioning properly.

In addition to this standard "Watchdog" function, the WDT incorporates the EndInit feature and monitors its modifications. A system-wide line is connected to the End-of-Initialization (Endinit) feature and monitors its modifications. A system-wide line is connected to the WDT_CON0.ENDINIT bit, serving as an additional write-protection for critical registers (besides Supervisor Mode protection)

A further enhancement in the TC1796's WDT is its reset pre-warning operation. Instead of immediately resetting the device on the detection of an error (the way that standard Watchdogs do), the WDT first issues an Non-Maskable Interrupt (NMI) to the CPU before finally resetting the device at a specified time period later. This gives the CPU a chance to save system state to memory for later examination of the cause of the malfunction, an important aid in debugging.

Features

- 16-bit Watchdog counter
- Selectable input frequency: $f_{SYS}/256 \text{ or } f_{SYS}/16384$
- 16-bit user-definable reload value for normal Watchdog operation, fixed reload value for Time-Out and Pre-warning Modes
- Incorporation of the ENDINIT bit and monitoring of its modifications
- Sophisticated password access mechanism with fixed and user-definable password fields
- Proper access always requires two write accesses. The time between the two accesses is monitored by the WDT and limited.
- Access Error Detection: Invalid password (during first access) or invalid guard bits (during second access) trigger the Watchdog reset generation.
- Overflow Error Detection: An overflow of the counter triggers the Watchdog reset generation.
- Watchdog function can be disabled; access protection and ENDINIT monitor function remain enabled.
- Double Reset Detection: If a Watchdog induced reset occurs twice, a severe system malfunction is assumed and the TC1796 is held in reset until a power-on reset. This prevents the device from being periodically reset if, for instance, connection to the external memory has been lost such that even system initialization could not be performed

3.21 **Power Management System**

The TC1796 power management system allows software to configure the various processing units so that they automatically adjust to draw the minimum necessary power for the application. There are three power management modes:

- Run Mode
- Idle Mode
- Sleep Mode

The operation of each system component in each of these states can be configured by software. The power-management modes provide flexible reduction of power consumption through a combination of techniques, including stopping the CPU clock, stopping the clocks of other system components individually, and individually clockspeed reduction of some peripheral components.

Besides these explicit software-controlled power-saving modes, in the TC1796 special attention has been paid for automatic power-saving in those operating units which are currently not required or idle. In that case they are shut off automatically until their operation is required again.

Table 8	Power Management Mode Summary
Mode	Description
Run	The system is fully operational. All clocks and peripherals are enabled, as determined by software.
Idle	The CPU clock is disabled, waiting for a condition to return it to Run Mode. Idle Mode can be entered by software when the processor has no active tasks to perform. All peripherals remain powered and clocked. Processor memory is accessible to peripherals. A reset, Watchdog Timer event, a falling edge on the NMI pin, or any enabled interrupt event will return the system to Run Mode.
Sleep	The system clock signal is distributed only to those peripherals programmed to operate in Sleep Mode. The other peripheral module will be shut down by the suspend signal. Interrupts from operating peripherals, the Watchdog Timer, a falling edge on the NMI pin, or a reset event will return the system to Run Mode. Entering this state requires an orderly shut-down controlled by the Power Management State Machine.

In typical operation, Idle Mode and Sleep Mode may be entered and exited frequently during the run time of an application. For example, system software will typically cause the CPU to enter Idle Mode each time it has to wait for an interrupt before continuing its tasks. In Sleep Mode and Idle Mode, wake-up is performed automatically when any enabled interrupt signal is detected, or if the Watchdog Timer signals the CPU with an NMI trap.

are derived from $f_{\rm VCO}$ only by the K-Divider. In this mode, the system clock $f_{\rm SYS}$ can be equal to $f_{\rm CPU}$ or $f_{\rm CPU}/2$.

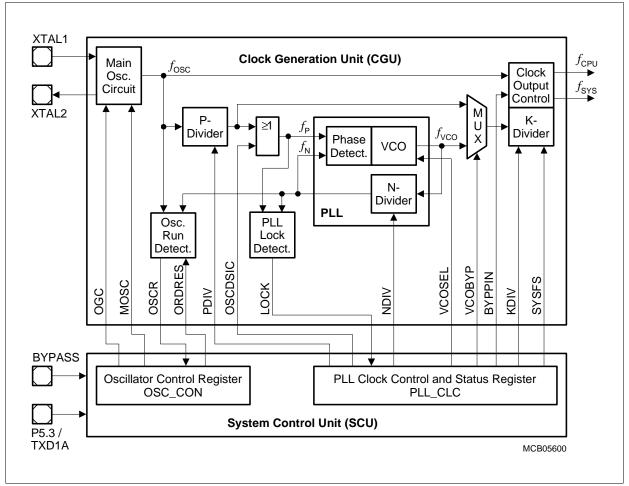


Figure 19 Clock Generation Unit

Recommended Oscillator Circuits

The oscillator circuit, a Pierce oscillator, is designed to work with both, an external crystal oscillator or an external stable clock source. It basically consists of an inverting amplifier and a feedback element with XTAL1 as input, and XTAL2 as output.

When using a crystal, a proper external oscillator circuitry must be connected to both pins, XTAL1 and XTAL2. The crystal frequency can be within the range of 4 MHz to 25 MHz. Additionally are necessary, two load capacitances $C_{\rm X1}$ and $C_{\rm X2}$, and depending on the crystal type a series resistor $R_{\rm X2}$ to limit the current. A test resistor $R_{\rm Q}$ may be temporarily inserted to measure the oscillation allowance (negative resistance) of the oscillator circuitry. $R_{\rm Q}$ values are typically specified by the crystal vendor. The $C_{\rm X1}$ and $C_{\rm X2}$ values shown in Figure 20 can be used as starting points for the negative resistance evaluation and for non-productive systems. The exact values and related operating range are dependent on the crystal frequency and have to be determined and

Functional Description

Table 9TC1796 Identification Registers (cont'd)										
Short Name	Address	Value	Stepping							
ADC0_ID	F010 0408 _H	0030 C002 _H	-							
MLI0_ID	F010 C008 _H	0025 C005 _H	-							
MLI1_ID	F010 C108 _H	0025 C005 _H	-							
MCHK_ID	F010 C208 _H	001B C001 _H	-							
CPS_ID	F7E0 FF08 _H	0015 C006 _H	-							
CPU_ID	F7E1 FE18 _H	000A C005 _H	-							
EBU_ID	F800 0008 _H	0014 C005 _H	-							
PMU_ID	F800 0508 _H	002E C002 _H	-							
FLASH_ID	F800 2008 _H	0031 C002 _H	-							
DMU_ID	F801 0108 _H	002D C002 _H	-							
DBCU_ID	F87F FA08 _H	000F C005 _H	-							
DMI_ID	F87F FC08 _H	0008 C004 _H	-							
PMI_ID	F87F FD08 _H	000B C004 _H	-							
LFI_ID	F87F FF08 _H	000C C005 _H	-							
PBCU_ID	F87F FE08 _H	000F C005 _H	-							

4 Electrical Parameters

4.1 General Parameters

4.1.1 Parameter Interpretation

The parameters listed in this section partly represent the characteristics of the TC1796 and partly its requirements on the system. To aid interpreting the parameters easily when evaluating them for a design, they are marked with an two-letter abbreviation in column "Symbol":

• cc

Such parameters indicate **C**ontroller **C**haracteristics which are a distinctive feature of the TC1796 and must be regarded for a system design.

• SR

Such parameters indicate **S**ystem **R**equirements which must provided by the microcontroller system in which the TC1796 designed in.

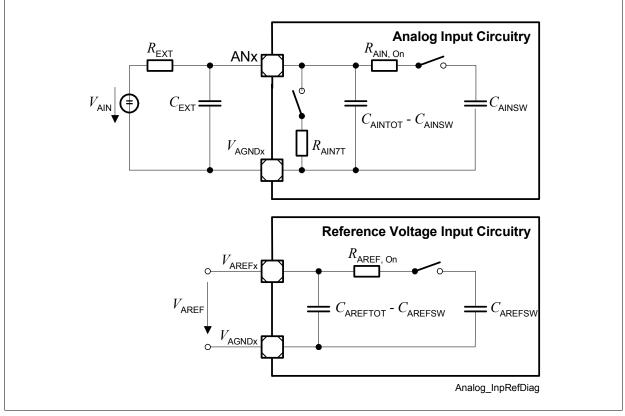


Figure 23 ADC0/ADC1 Input Circuits

4.2.6 Power Supply Current

Table 21 Power Supply Currents (Operating Conditions apply)

Parameter	Symbol			Value	S	Unit	Note /	
				Тур.	Max.		Test Condition	
PORST low current at $V_{\rm DD}$	I _{DD_PORST}	СС	_	-	300	mA	The PLL running at the base frequency	
PORST low current at V_{DDP} , and PORST highcurrent without any portactivity	I _{DDP_PORS}	т СС	_	-	25	mA	The PLL running at the base frequency	
Active mode core supply current ¹⁾²⁾	$I_{\rm DD}$	сс	10	-	700	mA	f _{CPU} =150MHzf _{CPU} /f _{SYS} = 2:1	
Active mode analog supply current	$I_{\rm DDAx;} \\ I_{\rm DDMx}$	сс	_	-	-	mA	See ADC0/1 FADC	
Stand-by RAM supply current in stand-by	$I_{\rm SBSB}$	сс	_	-	9	mA	V_{DDSB} = 1V, T_{j} = 150°C	
Oscillator and PLL core power supply	I _{DDOSC} ³⁾	сс	_	-	5	mA	_	
Oscillator and PLL pads power supply	I _{DDOSC3}	сс	-	_	3.6	mA	_	
LVDS port supply (via V_{DDP}) ⁴⁾	I _{LVDS}	сс	-	_	50	mA	LVDS pads active	
Flash power supply current	I _{DDFL3}	сс	-	_	80	mA	_	
Maximum Allowed Power Dissipation ⁵⁾	P _D	SR	_	_	$P_{\rm D} \times R_{\rm TJA} < 25^{\circ}{\rm C}$	-	worst case $T_A = 125^{\circ}C$	

1) Infineon Power Loop: CPU and PCP running, all peripherals active. The power consumption of each custom application will most probably be lower than this value, but must be evaluated separately.

2) The I_{DD} decreases for typically 120 mA if the f_{CPU} is decreased for 50 MHz, at constant T_{J} = 150C, for the Infineon Max Power Loop.

The dependency in this range is, at constant junction temperature, linear.

- 3) V_{DDOSC} and V_{SSOSC} are not bonded externally in the BC and BD steps of TC1796. An option for bonding them in future steps and products is kept open.
- 4) In case the LVDS pads are disabled, the power consumption pro pair is negligible (less than $1\mu A$).
- 5) For the calculation of junction to ambient thermal resistance R_{TJA} , see Page 130.

4.3.4 Power, Pad and Reset Timing

Table 23Power, Pad and Reset Timing Parameters

Parameter	Symbol		V	alues	Unit	Note /		
	V _{DDPPA} CC		Min.	Тур.	Max.		Test Con dition	
Min. V_{DDP} voltage to ensure defined pad states ¹⁾			0.6	-	-	V	_	
Oscillator start-up time ²⁾	t _{oscs}	CC	_	_	10	ms	_	
Minimum PORST active time after power supplies are stable at operating levels	t _{POA}	SR	10	_	-	ms	_	
HDRST pulse width	t _{HD}	CC	1024 clock cycles ³⁾⁶⁾	_	-	$f_{\rm SYS}$	_	
PORST rise time	t _{POR}	SR	-	_	50	ms	-	
Setup time to PORST rising edge ⁴⁾	t _{POS}	SR	0	-	-	ns	-	
Hold time from PORST rising edge ⁴⁾	t _{POH}	SR	100	-	-	ns	_	
Setup time to HDRST rising edge ⁵⁾	t _{HDS}	SR	0	-	-	ns	-	
Hold time from HDRST rising edge ⁵⁾	t _{HDH}	SR	$100 + (2 \times 1/f_{SYS})^{6)}$	_	-	ns	-	
Ports inactive after PORST reset active ⁷⁾⁸⁾	t _{PIP}	CC	-	-	150	ns	-	
Ports inactive after HDRST reset active	t _{PI}	CC	-	_	150 + 5 × 1/ f _{SYS}	ns	-	
Minimum V_{DDP} PORST activation threshold ⁹⁾	V _{PORST}	^{73.3} SR	-	-	2.9	V	_	
Minimum V_{DD} PORST activation threshold ⁹⁾	V _{PORST}	^{1.5} SR	-	-	1.32	V	-	
Power on Reset Boot Time ⁹⁾	t _{BP}	CC	-	_	2	ms	-	
Hardware/Software Reset Boot Time at f_{CPU} =150MHz ¹⁰⁾	t _B	CC	150	_	350	μS	_	

4.3.8 JTAG Interface Timing

Operating Conditions apply, CL = 50 pF

Table 27 TCK Clock Timing Parameter

Parameter	Symb	ol		Values	Unit	Note / Test Con dition	
				Тур.			Max.
TCK clock period ¹⁾	t _{TCK}	SR	25	—	-	ns	-
TCK high time	<i>t</i> ₁	SR	10	_	_	ns	-
TCK low time	<i>t</i> ₂	SR	10	_	_	ns	-
TCK clock rise time	t ₃	SR	_	_	4	ns	_
TCK clock fall time	<i>t</i> ₄	SR	-	_	4	ns	-

1) f_{TCK} should be lower or equal to $\overline{f_{\text{SYS}}}$.

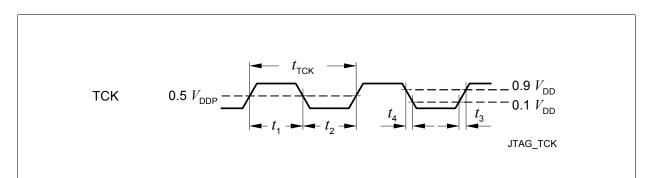


Figure 36 TCK Clock Timing

4.3.12.3 Synchronous Serial Channel (SSC) Master Mode Timing

Parameter	Symbol		Values			Unit	Note /
			Min.	Тур.	Max.		Test Con dition
SCLK clock period ¹⁾²⁾	<i>t</i> ₅₀	CC	$2 \times T_{\rm SSC}^{3)}$	_	_	ns	-
MTSR/SLSOx delay from SCLK rising edge	t ₅₁	CC	0	-	8	ns	-
MRST setup to SCLK falling edge	t ₅₂	SR	10	-	-	ns	-
MRST hold from SCLK falling edge	t ₅₃	SR	5	-	-	ns	-

1) SCLK signal rise/fall times are the same as the A2 Pads rise/fall times.

2) SCLK signal high and low times can be minimum 1 \times $T_{\rm SSC}.$

3) $T_{\text{SSCmin}} = T_{\text{SYS}} = 1/f_{\text{SYS}}$. When $f_{\text{SYS}} = 75$ MHz, $t_{50} = 26,67$ ns

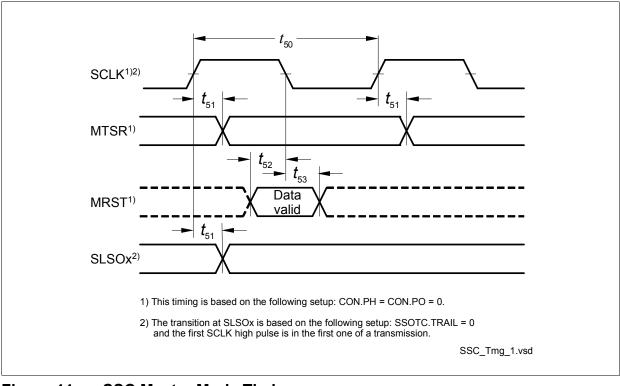


Figure 44 SSC Master Mode Timing

Package and Reliability

5.3 Flash Memory Parameters

The data retention time of the TC1796's Flash memory (i.e. the time after which stored data can still be retrieved) depends on the number of times the Flash memory has been erased and programmed.

Parameter	Symbol		Values		Unit	Note / Test Condition	
		Min.	Тур.	Max.			
Program / Data Flash Retention Time, Physical Sector ¹⁾²⁾	t _{RET} CC	20	-	-	years	Max. 1000 erase/program cycles	
Program / Data Flash Retention Time Logical Sector ¹⁾²⁾	t _{RETL} CC	20	_	-	years	Max. 100 erase/program cycles	
Data Flash Endurance (128 KB)	N _E CC	15 000	-	-	-	Max. data retention time 5 years	
Data Flash Endurance, EEPROM Emulation $(8 \times 16 \text{ KB})$	N _{E8} CC	120 000	_	-	-	Max. data retention time 5 years	
Programming Time per Page ³⁾	t _{PR} CC	-	-	5	ms	-	
Program Flash Erase Time per 256-KB Sector	t _{ERP} CC	-	-	5	S	<i>f</i> _{СРU} = 150 MHz	
Data Flash Erase Time per 64-KB Sector	t _{ERD} CC	-	-	2.5	S	<i>f</i> _{СРU} = 150 MHz	
Wake-up time	t _{WU} CC	4300 × 1/f _{CPU} + 40μs	-	-	-	-	

Table 36Flash Parameters

1) Storage and inactive time included.

2) At average weighted junction temperature $T_j = 100^{\circ}$ C, or the retention time at average weighted temperature of $T_j = 110^{\circ}$ C is minimum 10 years, or the retention time at average weighted temperature of $T_j = 150^{\circ}$ C is minimum 0.7 years.

3) In case the Program Verify feature detects weak bits, these bits will be programmed once more. The reprogramming takes additional 5 ms.