
Microchip Technology - ATF16LV8C-15PI Datasheet

Welcome to E-XFL.COM

Understanding Embedded - PLDs (Programmable Logic Devices)

Embedded - PLDs, or Programmable Logic Devices, are a type of digital electronic component used to build reconfigurable digital circuits. Unlike fixed-function logic devices, PLDs can be programmed to perform specific functions by the user. This flexibility allows designers to customize the logic to meet the exact needs of their applications, making PLDs a crucial component in modern embedded systems.

Applications of Embedded - PLDs (Programmable Logic Devices)

The versatility of PLDs makes them suitable for a wide range of applications. In consumer electronics, PLDs are used to enhance the functionality and performance of

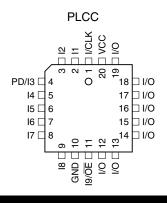
Details	
Product Status	Obsolete
Programmable Type	EE PLD
Number of Macrocells	8
Voltage - Input	3V ~ 5.5V
Speed	15 ns
Mounting Type	Through Hole
Package / Case	20-DIP (0.300", 7.62mm)
Supplier Device Package	20-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atf16lv8c-15pi

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Features

- 3.0V to 5.5V Operation
- Industry-standard Architecture
 - Emulates Many 20-pin PALs®
 - Low-cost Easy-to-use Software Tools
- High-speed
 - 10 ns Maximum Pin-to-pin Delay
- Ultra-low Power
 - 5 µA (Max) Pin-controlled Power-down Mode Option
 - Typical 100 nA Standby
- · CMOS and TTL Compatible Inputs and Outputs
 - I/O Pin-keeper Circuits
- Advanced Flash Technology
 - Reprogrammable
 - 100% Tested
- High-reliability CMOS Process
 - 20 Year Data Retention
 - 100 Erase/Write Cycles
 - 2,000V ESD Protection
 - 200 mA Latchup Immunity
- Commercial and Industrial Temperature Ranges
- **Dual-in-line and Surface Mount Packages in Standard Pinouts**
- Inputs are 5V Tolerant
- Green Package Options (Pb/Halide-free/RoHS Compliant) Available


Description

The ATF16LV8C is a high-performance EECMOS programmable logic device that utilizes Atmel's proven electrically-erasable Flash memory technology. Speeds down to 10 ns and a 5 μ A pin-controlled power-down mode option are offered. All speed (continued)

Pin Configurations

All Pinouts Top View

Pin Name	Function
CLK	Clock
I	Logic Inputs
I/O	Bi-directional Buffers
OE	Output Enable
VCC	(+3V to 5.5V) Supply
PD	Programmable Power- down Option

DIP/SOIC				
	\bigcirc		l	
1				
2		19	þ	
	1	1		

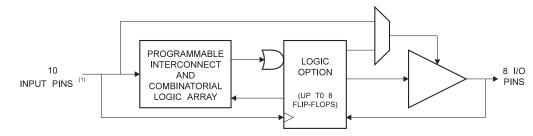
VCC

l1 🗆	2	19	□ I/O
l2 🗆	3	18	□ I/O
PD/I3 🗆	4	17	□ I/O
I4 🗆	5	16	□ I/O
I5 🗆	6	15	□ I/O
I6 🗆	7	14	□ I/O
17 🗆	8	13	□ I/O
18 🗆	9	12	□ I/O
GND 🗆	10	11] 19/OE

Highperformance EE PLD

ATF16LV8C

Rev. 0403H-06/06



ranges are specified over the full 3.0V to 5.25V range for industrial and commercial temperature ranges.

The ATF16LV8C incorporates a superset of the generic architectures, which allows direct replacement of the 16R8 family and most 20-pin combinatorial PLDs. Eight outputs are each allocated eight product terms. Three different modes of operation, configured automatically with software, allow highly complex logic functions to be realized.

Block Diagram

The ATF16LV8C can significantly reduce total system power, thereby enhancing system reliability and reducing power supply costs. When pin 4 is configured as the power-down control pin, supply current drops to less than 5 μ A whenever the pin is high. If the power-down feature isn't required for a particular application, pin 4 may be used as a logic input. Also, the pin keeper circuits eliminate the need for internal pull-up resistors along with their attendant power consumption.

Note: 1. Includes optional PD control pin.

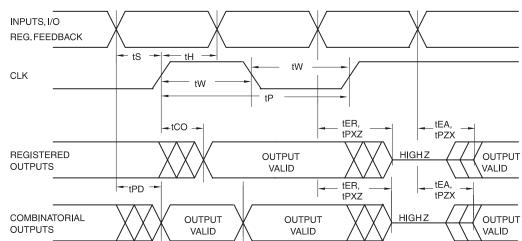
Absolute Maximum Ratings*

Temperature Under Bias40°C to +85°C
Storage Temperature
Voltage on Any Pin with Respect to Ground2.0V to +7.0V ⁽¹⁾
Voltage on Input Pins with Respect to Ground During Programming2.0V to +14.0V ⁽¹⁾
Programming Voltage with Respect to Ground2.0V to +14.0V ⁽¹⁾

- *NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
- Note: 1. Minimum voltage is -0.6V DC, which may undershoot to -2.0V for pulses of less than 20 ns. Maximum output pin voltage is Vcc + 0.75V DC, which may overshoot to 7.0V for pulses of less than 20 ns.

DC and AC Operating Conditions

	Commercial
Operating Temperature (Ambient)	0°C - 70°C
V _{CC} Power Supply	3.0V to 5.5V


Symbol	Parameter	Condition ⁽²⁾	Min	Тур	Max	Units
I _{IL}	Input or I/O Low Leakage Current	$0 \le V_{IN} \le V_{IL}(Max)$			-10	μA
I _{IH}	Input or I/O High Leakage Current	$1.8 \le V_{IN} \le V_{CC}$			10	μA
I _{CC1} ⁽¹⁾	Power Supply Current	15 MHz, V_{CC} = Max, V_{IN} = 0, V_{CC} , Outputs Open		Com. Ind.	55 60	mA
I _{PD} ⁽¹⁾	Power Supply Current, Power-down Mode	$V_{CC} = Max,$ $V_{IN} = 0, V_{CC}$		0.1	5	μA
I _{OS}	Output Short Circuit Current	$V_{OUT} = 0.5V;$ $V_{CC} = 3V; T_A = 25^{\circ}C$			-150	mA
V _{IL}	Input Low Voltage	MIN < V _{CC} < Max	-0.5		0.8	V
V _{IH}	Input High Voltage		2.0		V _{CC} + 1	V
V _{OL}	Output Low Voltage	V_{CC} = Min; All Outputs I_{OL} = 8 mA			0.5	v
V _{OH}	Output High Voltage	$V_{CC} = Min$ $I_{OH} = -4 mA$	2.4			v
I _{OL}	Output Low Current	V _{CC} = Min	8			mA
I _{он}	Output High Current	V _{CC} = Min	-4			mA

DC Characteristics

1. All I_{CC} parameters measured with outputs open.

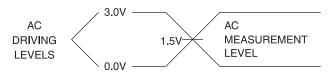
2. For DC characteristics, the test condition of V_{CC} = Max corresponds to 3.6V.

AC Waveforms⁽¹⁾

1. Timing measurement reference is 1.5V. Input AC driving levels are 0.0V and 3.0V, unless otherwise specified. Note:

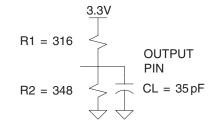
AC Characteristics

		-	10	-15		
Symbol	Parameter	Min	Мах	Min	Мах	Units
t _{PD}	Input or Feedback to Non-Registered Output	1	10	1	15	ns
t _{CF}	Clock to Feedback		5		8	ns
t _{CO}	Clock to Output	2	7	2	10	ns
t _S	Input or Feedback Setup Time	7		12		ns
t _H	Input Hold Time	0		0		ns
t _P	Clock Period	12		16		ns
t _w	Clock Width	6		8		ns
	External Feedback 1/(t _S + t _{CO})		71.4		45.5	MHz
f _{MAX}	Internal Feedback 1/(t _S + t _{CF})		83.3		50	MHz
	No Feedback 1/(t _P)		83.3		62.5	MHz
t _{EA}	Input to Output Enable — Product Term	3	10	3	15	ns
t _{ER}	Input to Output Disable — Product Term	2	10	2	15	ns
t _{PZX}	OE pin to Output Enable	2	8	2	15	ns
t _{PXZ}	OE pin to Output Disable	1.5	8	1.5	15	ns


Power-down AC Characteristics⁽¹⁾⁽²⁾⁽³⁾

		-	10	-15		
Symbol	Parameter	Min	Max	Min	Max	Units
t _{IVDH}	Valid Input before PD High	10		15		ns
t _{GVDH}	Valid OE before PD High	0		0		ns
t _{CVDH}	Valid Clock before PD High	0		0		ns
t _{DHIX}	Input Don't Care after PD High		10		15	ns
t _{DHGX}	OE Don't Care after PD High		10		15	ns
t _{DHCX}	Clock Don't Care after PD High		10		15	ns
t _{DLIV}	PD Low to Valid Input		10		15	ns
t _{DLGV}	PD Low to Valid OE		25		30	ns
t _{DLCV}	PD Low to Valid Clock		25		30	ns
t _{DLOV}	PD Low to Valid Output		30		35	ns

Notes:1. Output data is latched and held.2. High-Z outputs remain High-Z.


3. Clock and input transitions are ignored.

Input Test Waveforms and Measurement Levels:

t_B, t_F < 1.5ns (10% to 90%)

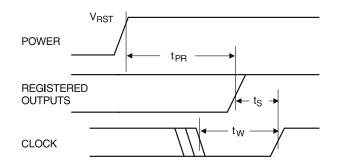
Output Test Loads: Commercial

Note: Similar devices are tested with slightly different loads. These load differences may affect output signals' delay and slew rate. Atmel devices are tested with sufficient margins to meet compatible devices.

Pin Capacitance

 $(f = 1 \text{ MHz}, T = 25^{\circ}\text{C})^{(1)}$

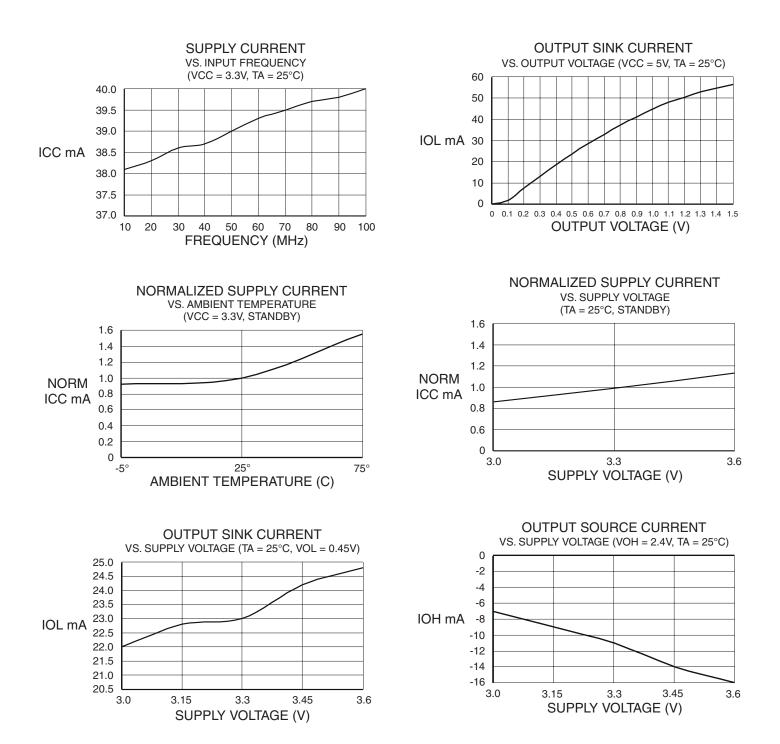
	Тур	Мах	Units	Conditions
C _{IN}	5	8	pF	$V_{IN} = 0V$
C _{OUT}	6	8	pF	$V_{OUT} = 0V$

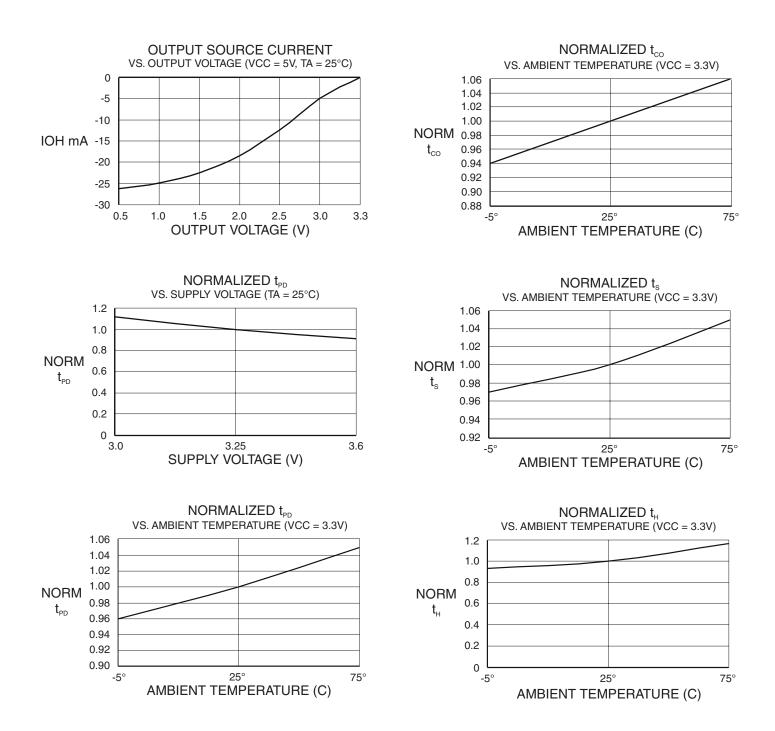

Note: 1. Typical values for nominal supply voltage. This parameter is only sampled and is not 100% tested.

Power-up Reset

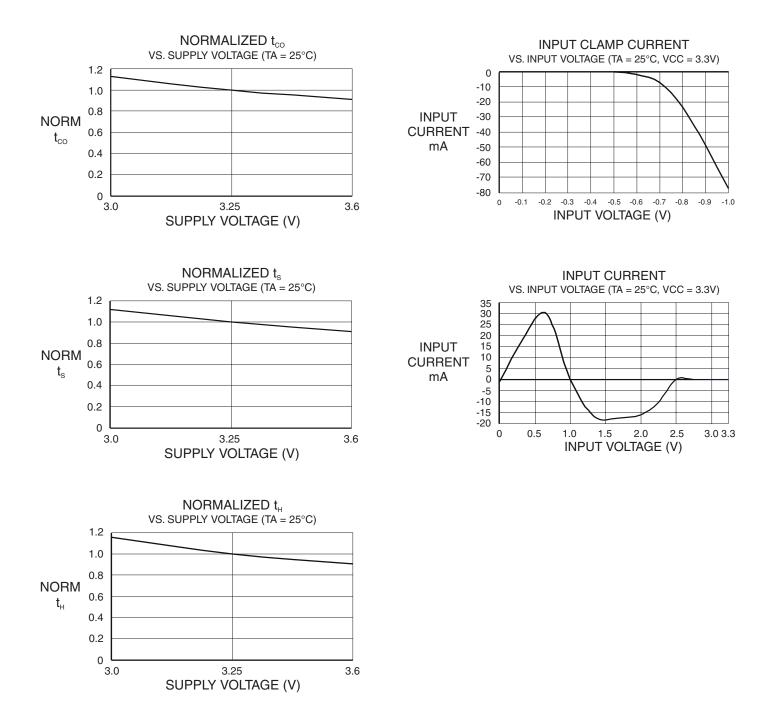
The ATF16LV8C's registers are designed to reset during power-up. At a point delayed slightly from V_{CC} crossing V_{RST} , all registers will be reset to the low state. As a result, the registered output state will always be high on power-up.

This feature is critical for state machine initialization. However, due to the asynchronous nature of reset and the uncertainty of how V_{CC} actually rises in the system, the following conditions are required:


- 1. The V_{CC} rise must be monotonic from below 0.7V.
- 2. The signals from which the clock is derived must remain stable during T_{PR} .
- After T_{PR}, all input and feedback setup times must be met before driving the clock term high.



Parameter	Description	Тур	Max	Units
T _{PR}	Power-up Reset Time	600	1,000	ns
V _{RST}	Power-up Reset Voltage	2.5	3.0	V



t _{PD} (ns)	t _s (ns)	t _{co} (ns)	Ordering Code	Package	Operation Range
10	7	7	ATF16LV8C-10JC	20J	Commercial
			ATF16LV8C-10PC	20P3	(0°C to 70°C)
			ATF16LV8C-10SC	20S	
			ATF16LV8C-10XC	20X	
15	12	10	ATF16LV8C-15JC	20J	Commercial
			ATF16LV8C-15PC	20P3	(0°C to 70°C)
			ATF16LV8C-15SC	20S	
			ATF16LV8C-15XC	20X	
10	7	7	ATF16LV8C-10JI	20J	Industrial
			ATF16LV8C-10PI	20P3	(-40°C to 85°C)
			ATF16LV8C-10SI	20S	
			ATF16LV8C-10XI	20X	
15	12	10	ATF16LV8C-15JI	20J	Industrial
			ATF16LV8C-15PI	20P3	(-40°C to 85°C)
			ATF16LV8C-15SI	20S	
			ATF16LV8C-15XI	20X	

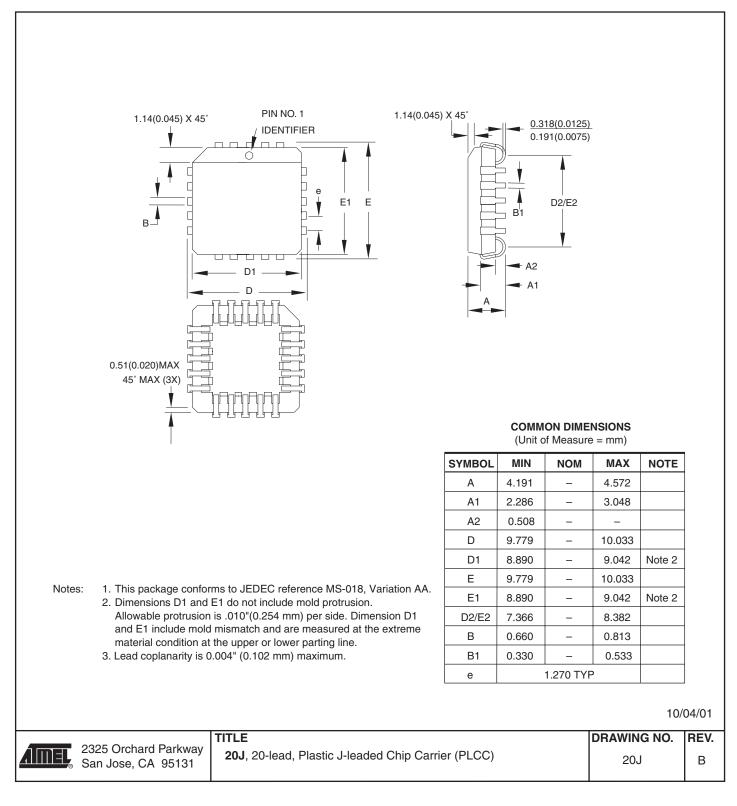
Ordering Information

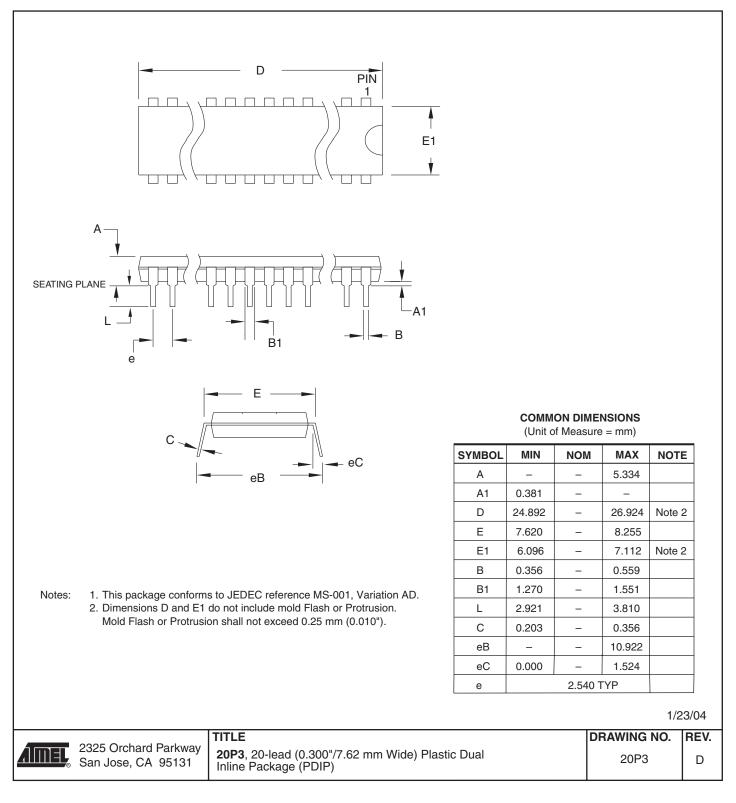
Green Package Options (Pb/Halide-free/RoHS Compliant)

t _{PD} (ns)	t _s (ns)	t _{co} (ns)	Ordering Code	Package	Operation Range
10	7	7	ATF16LV8C-10JU	20J	Industrial
			ATF16LV8C-10SU	20S	(-40°C to 85°C)
			ATF16LV8C-10XU	20X	

Using "C" Product for Industrial

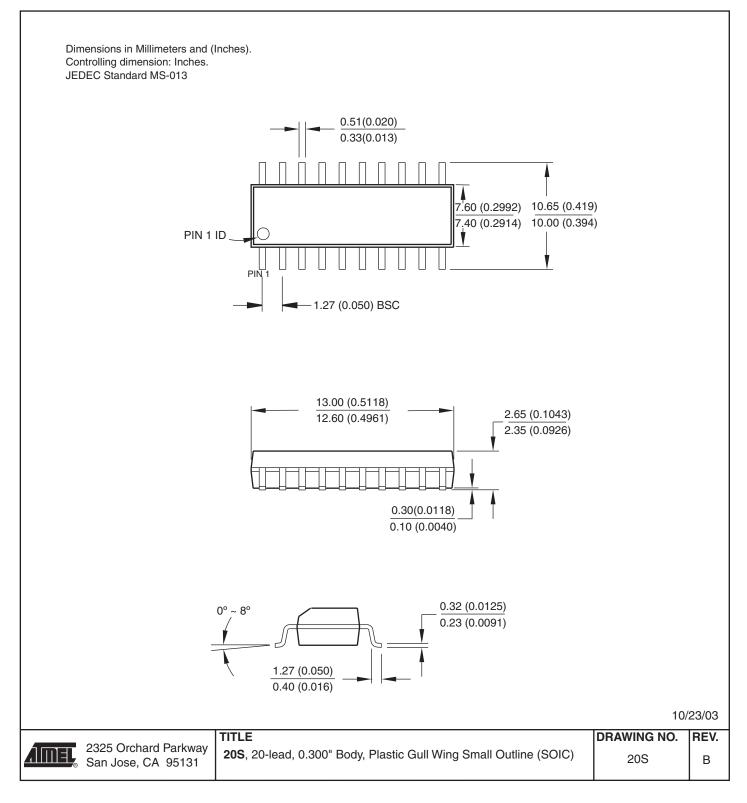
To use commercial product for industrial temperature ranges, simply de-rate I_{CC} by 15% on the "C" device. No speed de-rating is necessary.

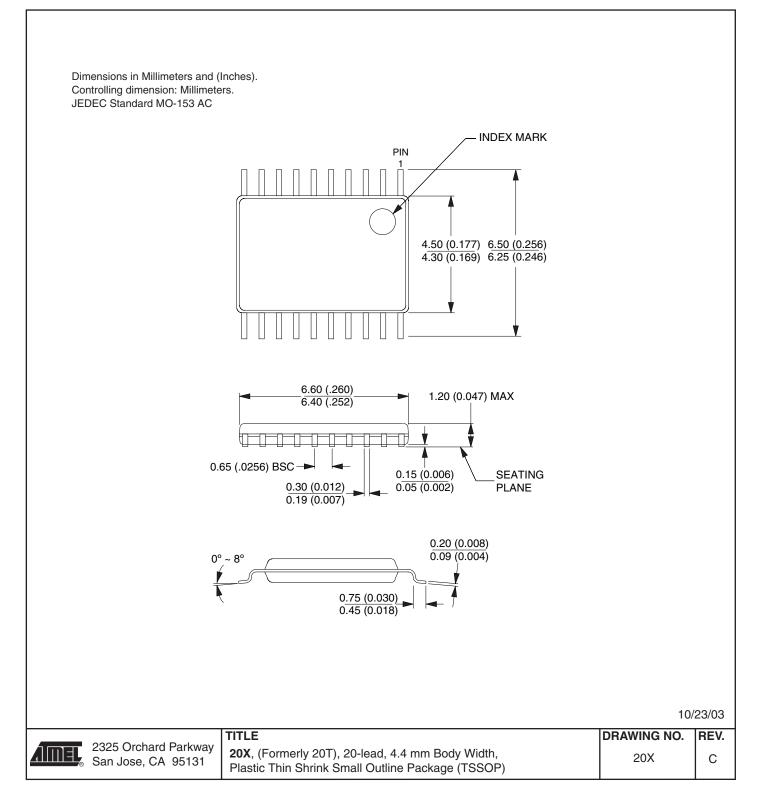

Package Type				
20J	20-lead, Plastic J-leaded Chip Carrier (PLCC)			
20P3	20-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)			
20S	20-lead, 0.300" Wide, Plastic Gull-wing Small Outline (SOIC)			
20X	20-lead, 4.4 mm Wide, Plastic Thin Shrink Small Outline (TSSOP)			



Packaging Information

20J – PLCC


20P3 - PDIP



20S - SOIC

20X – TSSOP

Revision History

Revision Level – Revision Date	History	
H – June 2006	Added Green package options.	

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

Regional Headquarters

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland Tel: (41) 26-426-5555 Fax: (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778 Fax: (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Atmel Operations

Memory 2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France Tel: (33) 2-40-18-18-18 Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00 Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland Tel: (44) 1355-803-000 Fax: (44) 1355-242-743

RF/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0 Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/

High-Speed Converters/RF Datacom Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France Tel: (33) 4-76-58-30-00 Fax: (33) 4-76-58-34-80

Literature Requests www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDI-TIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2006 Atmel Corporation. All rights reserved. Atmel[®], logo and combinations thereof, Everywhere You Are[®] and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.