

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Discontinued at Digi-Key
Core Processor	ARM® Cortex®-M4F
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, IrDA, SmartCard, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	52
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.98V ~ 3.8V
Data Converters	A/D 8x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32wg330f128-qfn64t

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.1.3 Memory System Controller (MSC)

The Memory System Controller (MSC) is the program memory unit of the EFM32WG microcontroller. The flash memory is readable and writable from both the Cortex-M4 and DMA. The flash memory is divided into two blocks; the main block and the information block. Program code is normally written to the main block. Additionally, the information block is available for special user data and flash lock bits. There is also a read-only page in the information block containing system and device calibration data. Read and write operations are supported in the energy modes EM0 and EM1.

2.1.4 Direct Memory Access Controller (DMA)

The Direct Memory Access (DMA) controller performs memory operations independently of the CPU. This has the benefit of reducing the energy consumption and the workload of the CPU, and enables the system to stay in low energy modes when moving for instance data from the USART to RAM or from the External Bus Interface to a PWM-generating timer. The DMA controller uses the PL230 μ DMA controller licensed from ARM.

2.1.5 Reset Management Unit (RMU)

The RMU is responsible for handling the reset functionality of the EFM32WG.

2.1.6 Energy Management Unit (EMU)

The Energy Management Unit (EMU) manage all the low energy modes (EM) in EFM32WG microcontrollers. Each energy mode manages if the CPU and the various peripherals are available. The EMU can also be used to turn off the power to unused SRAM blocks.

2.1.7 Clock Management Unit (CMU)

The Clock Management Unit (CMU) is responsible for controlling the oscillators and clocks on-board the EFM32WG. The CMU provides the capability to turn on and off the clock on an individual basis to all peripheral modules in addition to enable/disable and configure the available oscillators. The high degree of flexibility enables software to minimize energy consumption in any specific application by not wasting power on peripherals and oscillators that are inactive.

2.1.8 Watchdog (WDOG)

The purpose of the watchdog timer is to generate a reset in case of a system failure, to increase application reliability. The failure may e.g. be caused by an external event, such as an ESD pulse, or by a software failure.

2.1.9 Peripheral Reflex System (PRS)

The Peripheral Reflex System (PRS) system is a network which lets the different peripheral module communicate directly with each other without involving the CPU. Peripheral modules which send out Reflex signals are called producers. The PRS routes these reflex signals to consumer peripherals which apply actions depending on the data received. The format for the Reflex signals is not given, but edge triggers and other functionality can be applied by the PRS.

2.1.10 Universal Serial Bus Controller (USB)

The USB is a full-speed USB 2.0 compliant OTG host/device controller. The USB can be used in Device, On-the-go (OTG) Dual Role Device or Host-only configuration. In OTG mode the USB supports both Host Negotiation Protocol (HNP) and Session Request Protocol (SRP). The device supports both full-speed (12MBit/s) and low speed (1.5MBit/s) operation. The USB device includes an internal dedicated

available in energy mode EM2, in addition to EM0 and EM1, making it ideal for sensor monitoring in applications with a strict energy budget.

2.1.26 Backup Power Domain

The backup power domain is a separate power domain containing a Backup Real Time Counter, BURTC, and a set of retention registers, available in all energy modes. This power domain can be configured to automatically change power source to a backup battery when the main power drains out. The backup power domain enables the EFM32WG330 to keep track of time and retain data, even if the main power source should drain out.

2.1.27 Advanced Encryption Standard Accelerator (AES)

The AES accelerator performs AES encryption and decryption with 128-bit or 256-bit keys. Encrypting or decrypting one 128-bit data block takes 52 HFCORECLK cycles with 128-bit keys and 75 HFCORECLK cycles with 256-bit keys. The AES module is an AHB slave which enables efficient access to the data and key registers. All write accesses to the AES module must be 32-bit operations, i.e. 8- or 16-bit operations are not supported.

2.1.28 General Purpose Input/Output (GPIO)

In the EFM32WG330, there are 52 General Purpose Input/Output (GPIO) pins, which are divided into ports with up to 16 pins each. These pins can individually be configured as either an output or input. More advanced configurations like open-drain, filtering and drive strength can also be configured individually for the pins. The GPIO pins can also be overridden by peripheral pin connections, like Timer PWM outputs or USART communication, which can be routed to several locations on the device. The GPIO supports up to 16 asynchronous external pin interrupts, which enables interrupts from any pin on the device. Also, the input value of a pin can be routed through the Peripheral Reflex System to other peripherals.

2.2 Configuration Summary

The features of the EFM32WG330 is a subset of the feature set described in the EFM32WG Reference Manual. Table 2.1 (p. 7) describes device specific implementation of the features.

Module	Configuration	Pin Connections
Cortex-M4	Full configuration	NA
DBG	Full configuration	DBG_SWCLK, DBG_SWDIO, DBG_SWO
MSC	Full configuration	NA
DMA	Full configuration	NA
RMU	Full configuration	NA
EMU	Full configuration	NA
СМU	Full configuration	CMU_OUT0, CMU_OUT1
WDOG	Full configuration	NA
PRS	Full configuration	NA
USB	Full configuration	USB_VBUS, USB_VBUSEN, USB_VREGI, USB_VREGO, USB_DM, USB_DMPU, USB_DP, USB_ID

Table 2.1. Configuration Summary

3 Electrical Characteristics

3.1 Test Conditions

3.1.1 Typical Values

The typical data are based on $T_{AMB}=25^{\circ}C$ and $V_{DD}=3.0$ V, as defined in Table 3.2 (p. 10), by simulation and/or technology characterisation unless otherwise specified.

3.1.2 Minimum and Maximum Values

The minimum and maximum values represent the worst conditions of ambient temperature, supply voltage and frequencies, as defined in Table 3.2 (p. 10), by simulation and/or technology characterisation unless otherwise specified.

3.2 Absolute Maximum Ratings

The absolute maximum ratings are stress ratings, and functional operation under such conditions are not guaranteed. Stress beyond the limits specified in Table 3.1 (p. 10) may affect the device reliability or cause permanent damage to the device. Functional operating conditions are given in Table 3.2 (p. 10).

Symbol	Parameter	Condition	Min	Тур	Max	Unit
T _{STG}	Storage tempera- ture range		-40		150 ¹	°C
T _S	Maximum soldering temperature Latest IPC/JEDEC J-STD-020 Standard				260	°C
V _{DDMAX}	External main sup- ply voltage		0		3.8	V
V _{IOPIN}	Voltage on any I/O pin		-0.3		V _{DD} +0.3	V

Table 3.1. Absolute Maximum Ratings

¹Based on programmed devices tested for 10000 hours at 150°C. Storage temperature affects retention of preprogrammed calibration values stored in flash. Please refer to the Flash section in the Electrical Characteristics for information on flash data retention for different temperatures.

3.3 General Operating Conditions

3.3.1 General Operating Conditions

Table 3.2. General Operating Conditions

Symbol	Parameter	Min	Тур	Мах	Unit
T _{AMB}	Ambient temperature range	-40		85	°C
V _{DDOP}	Operating supply voltage	1.98		3.8	V
f _{APB}	Internal APB clock frequency			48	MHz
f _{AHB}	Internal AHB clock frequency			48	MHz

3.7 Flash

Table 3.7. Flash

Symbol	Parameter	Condition	Min	Тур	Max	Unit
EC _{FLASH}	Flash erase cycles before failure		20000			cycles
		T _{AMB} <150°C	10000			h
RET _{FLASH}	Flash data retention	T _{AMB} <85°C	10			years
		T _{AMB} <70°C	20			years
t _{W_PROG}	Word (32-bit) pro- gramming time		20			μs
t _{PERASE}	Page erase time		20	20.4	20.8	ms
t _{DERASE}	Device erase time		40	40.8	41.6	ms
I _{ERASE}	Erase current				7 ¹	mA
I _{WRITE}	Write current				7 ¹	mA
V _{FLASH}	Supply voltage dur- ing flash erase and write		1.98		3.8	V

¹Measured at 25°C

3.8 General Purpose Input Output

Table 3.8. GPIO

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V _{IOIL}	Input low voltage				0.30V _{DD}	V
V _{IOIH}	Input high voltage		0.70V _{DD}			V
		Sourcing 0.1 mA, V _{DD} =1.98 V, GPIO_Px_CTRL DRIVEMODE = LOWEST		0.80V _{DD}		V
		Sourcing 0.1 mA, V _{DD} =3.0 V, GPIO_Px_CTRL DRIVEMODE = LOWEST		0.90V _{DD}		V
	Output high volt- age (Production test condition = 3.0V, DRIVEMODE = STANDARD)	Sourcing 1 mA, V _{DD} =1.98 V, GPIO_Px_CTRL DRIVEMODE = LOW		0.85V _{DD}		V
V _{IOOH}		Sourcing 1 mA, V _{DD} =3.0 V, GPIO_Px_CTRL DRIVEMODE = LOW		0.90V _{DD}		V
		Sourcing 6 mA, V _{DD} =1.98 V, GPIO_Px_CTRL DRIVEMODE = STANDARD	0.75V _{DD}			V
		Sourcing 6 mA, V _{DD} =3.0 V, GPIO_Px_CTRL DRIVEMODE = STANDARD	0.85V _{DD}			V
		Sourcing 20 mA, V _{DD} =1.98 V, GPIO_Px_CTRL DRIVEMODE = HIGH	0.60V _{DD}			V

Figure 3.11. Typical Low-Level Output Current, 2V Supply Voltage

GPIO_Px_CTRL DRIVEMODE = LOWEST

GPIO_Px_CTRL DRIVEMODE = STANDARD

GPIO_Px_CTRL DRIVEMODE = LOW

GPIO_Px_CTRL DRIVEMODE = HIGH

Figure 3.14. Typical High-Level Output Current, 3V Supply Voltage

GPIO_Px_CTRL DRIVEMODE = STANDARD

Figure 3.15. Typical Low-Level Output Current, 3.8V Supply Voltage

GPIO_Px_CTRL DRIVEMODE = LOWEST

GPIO_Px_CTRL DRIVEMODE = STANDARD

GPIO_Px_CTRL DRIVEMODE = LOW

GPIO_Px_CTRL DRIVEMODE = HIGH

Symbol	Parameter	Condition	Min	Тур	Max	Unit
		200 kSamples/s, 12 bit, differ- ential, internal 1.25V reference		79		dBc
		200 kSamples/s, 12 bit, differ- ential, internal 2.5V reference		79		dBc
		200 kSamples/s, 12 bit, differ- ential, 5V reference		78		dBc
		200 kSamples/s, 12 bit, differential, V_{DD} reference	68	79		dBc
		200 kSamples/s, 12 bit, differ- ential, 2xV _{DD} reference		79		dBc
	Offset voltage	After calibration, single ended	-3.5	0.3	3	mV
ADCOFFSET		After calibration, differential		0.3		mV
	Thermometer out- put gradient			-1.92		mV/°C
TGRAD _{ADCTH}				-6.3		ADC Codes/ °C
DNL _{ADC}	Differential non-lin- earity (DNL)		-1	±0.7	4	LSB
INL _{ADC}	Integral non-linear- ity (INL), End point method			±1.2	±3	LSB
MC _{ADC}	No missing codes		11.999 ¹	12		bits
CAIN	Coip orror drift	1.25V reference		0.01 ²	0.033 ³	%/°C
GAINED		2.5V reference		0.01 ²	0.03 ³	%/°C
OFFRET	Offect error drift	1.25V reference		0.2 ²	0.7 ³	LSB/°C
OFFSET _{ED}	Offset error drift	2.5V reference		0.2 ²	0.62 ³	LSB/°C

¹On the average every ADC will have one missing code, most likely to appear around 2048 +/- n*512 where n can be a value in the set {-3, -2, -1, 1, 2, 3}. There will be no missing code around 2048, and in spite of the missing code the ADC will be monotonic at all times so that a response to a slowly increasing input will always be a slowly increasing output. Around the one code that is missing, the neighbour codes will look wider in the DNL plot. The spectra will show spurs on the level of -78dBc for a full scale input for chips that have the missing code issue.

²Typical numbers given by abs(Mean) / (85 - 25).

³Max number given by (abs(Mean) + 3x stddev) / (85 - 25).

The integral non-linearity (INL) and differential non-linearity parameters are explained in Figure 3.24 (p. 37) and Figure 3.25 (p. 37), respectively.

Figure 3.24. Integral Non-Linearity (INL)

Figure 3.25. Differential Non-Linearity (DNL)

3.10.1 Typical performance

Figure 3.26. ADC Frequency Spectrum, Vdd = 3V, Temp = 25°C

Figure 3.28. ADC Differential Linearity Error vs Code, Vdd = 3V, Temp = 25°C

Figure 3.29. ADC Absolute Offset, Common Mode = Vdd /2

Figure 3.30. ADC Dynamic Performance vs Temperature for all ADC References, Vdd = 3V

Figure 3.31. ADC Temperature sensor readout

3.11 Digital Analog Converter (DAC)

Table 3.16. DAC

Symbol	Parameter	Condition Min Typ		Max	Unit	
M	Output voltage	VDD voltage reference, single ended	0		V _{DD}	V
VDACOUT	range	VDD voltage reference, differ- ential	-V _{DD}		V _{DD}	V
V _{DACCM}	Output common mode voltage range		0		V _{DD}	V
	Active current in-	500 kSamples/s, 12 bit		400 ¹		μA
I _{DAC}	cluding references	100 kSamples/s, 12 bit		200 ¹		μA
	for 2 channels	1 kSamples/s 12 bit NORMAL		17 ¹		μA
SR _{DAC}	Sample rate					ksam- ples/s
	DAC clock frequen- cy	Continuous Mode			1000	kHz
f _{DAC}		Sample/Hold Mode			250	kHz
		Sample/Off Mode			250	kHz
CYC _{DACCONV}	Clock cyckles per conversion			2		
t _{DACCONV}	Conversion time		2			μs
t _{DACSETTLE}	Settling time			5		μs
		500 kSamples/s, 12 bit, sin- gle ended, internal 1.25V refer- ence		58		dB
SNR _{DAC}	Signal to Noise Ra- tio (SNR)	500 kSamples/s, 12 bit, single ended, internal 2.5V reference		59		dB
		500 kSamples/s, 12 bit, differ- ential, internal 1.25V reference		58		dB

3.13 Analog Comparator (ACMP)

Table 3.18. ACMP

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V _{ACMPIN}	Input voltage range		0	0		V
V _{ACMPCM}	ACMP Common Mode voltage range		0		V _{DD}	V
		BIASPROG=0b0000, FULL- BIAS=0 and HALFBIAS=1 in ACMPn_CTRL register		0.1	0.4	μA
I _{ACMP}	Active current	BIASPROG=0b1111, FULL- BIAS=0 and HALFBIAS=0 in ACMPn_CTRL register		2.87	15	μA
		BIASPROG=0b1111, FULL- BIAS=1 and HALFBIAS=0 in ACMPn_CTRL register		195	520	μA
IACMPREF	Current consump- tion of internal volt- age reference	Internal voltage reference off. Using external voltage refer- ence		0		μA
		Internal voltage reference		5		μA
VACMPOFFSET	Offset voltage	BIASPROG= 0b1010, FULL- BIAS=0 and HALFBIAS=0 in ACMPn_CTRL register	-12	0	12	mV
V _{ACMPHYST}	ACMP hysteresis	Programmable		17		mV
		CSRESSEL=0b00 in ACMPn_INPUTSEL		39		kOhm
Deces	Capacitive Sense	CSRESSEL=0b01 in ACMPn_INPUTSEL		71		kOhm
I INCSRES	Internal Resistance	CSRESSEL=0b10 in ACMPn_INPUTSEL		104		kOhm
		CSRESSEL=0b11 in ACMPn_INPUTSEL		136		kOhm
t _{ACMPSTART}	Startup time				10	μs

The total ACMP current is the sum of the contributions from the ACMP and its internal voltage reference as given in Equation 3.1 (p. 47). $I_{ACMPREF}$ is zero if an external voltage reference is used.

Total ACMP Active Current

 $I_{ACMPTOTAL} = I_{ACMP} + I_{ACMPREF}$

(3.1)

...the world's most energy friendly microcontrollers

Symbol	Parameter	Min	Тур	Мах	Unit
t _{SCLK_MI} ¹²	SCLK to MISO	-264 + t _{HF-} PERCLK		-234 + 2 * t _{HFPERCLK}	ns

¹Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0)

 $^2\text{Measurement}$ done at 10% and 90% of V_{DD} (figure shows 50% of $_{\text{VDD}})$

3.17 Digital Peripherals

Table 3.27. Digital Peripherals

Symbol	Parameter	Condition	Min	Тур	Max	Unit
I _{USART}	USART current	USART idle current, clock en- abled	4.0			µA/ MHz
I _{UART}	UART current	UART idle current, clock en- abled		3.8		μΑ/ MHz
I _{LEUART}	LEUART current	LEUART idle current, clock en- abled		194.0		nA
I _{I2C}	I2C current	I2C idle current, clock enabled	nabled 7.6			μΑ/ MHz
I _{TIMER}	TIMER current	TIMER_0 idle current, clock enabled	6.5			μΑ/ MHz
I _{LETIMER}	LETIMER current	LETIMER idle current, clock enabled	LETIMER idle current, clock enabled			nA
I _{PCNT}	PCNT current	PCNT idle current, clock en- abled		91.4		nA
I _{RTC}	RTC current	RTC idle current, clock enabled		54.6		nA
I _{AES}	AES current	AES idle current, clock enabled		1.8		μΑ/ MHz
I _{GPIO}	GPIO current	GPIO idle current, clock en- abled	t, clock en- 3.4			μΑ/ MHz
I _{PRS}	PRS current	PRS idle current 3.9			μΑ/ MHz	
I _{DMA}	DMA current	Clock enable		10.9		μΑ/ MHz

	QFN64 Pin# and Name		Pin Alternate Functionality / Description				
Pin #	Pin Name	Analog	Timers	Communication	Other		
3	PA2		TIM0_CC2 #0/1		CMU_CLK0 #0 ETM_TD0 #3		
4	PA3		TIM0_CDTI0 #0		LES_ALTEX2 #0 ETM_TD1 #3		
5	PA4		TIM0_CDTI1 #0		LES_ALTEX3 #0 ETM_TD2 #3		
6	PA5		TIM0_CDTI2 #0	LEU1_TX #1	LES_ALTEX4 #0 ETM_TD3 #3		
7	PA6			LEU1_RX #1	ETM_TCLK #3 GPIO_EM4WU1		
8	IOVDD_0	Digital IO power supply 0.					
9	PC0	ACMP0_CH0 DAC0_OUT0ALT #0/ OPAMP_OUT0ALT	TIM0_CC1 #4 PCNT0_S0IN #2	US0_TX #5 US1_TX #0 I2C0_SDA #4	LES_CH0 #0 PRS_CH2 #0		
10	PC1	ACMP0_CH1 DAC0_OUT0ALT #1/ OPAMP_OUT0ALT	TIM0_CC2 #4 PCNT0_S1IN #2	US0_RX #5 US1_RX #0 I2C0_SCL #4	LES_CH1 #0 PRS_CH3 #0		
11	PC2	ACMP0_CH2 DAC0_OUT0ALT #2/ OPAMP_OUT0ALT	TIM0_CDTI0 #4	US2_TX #0	LES_CH2 #0		
12	PC3	ACMP0_CH3 DAC0_OUT0ALT #3/ OPAMP_OUT0ALT	TIM0_CDTI1 #4	US2_RX #0	LES_CH3 #0		
13	PC4	ACMP0_CH4 DAC0_P0 / OPAMP_P0	TIM0_CDTI2 #4 LETIM0_OUT0 #3 PCNT1_S0IN #0	US2_CLK #0 I2C1_SDA #0	LES_CH4 #0		
14	PC5	ACMP0_CH5 DAC0_N0 / OPAMP_N0	LETIM0_OUT1 #3 PCNT1_S1IN #0	US2_CS #0 I2C1_SCL #0	LES_CH5 #0		
15	PB7	LFXTAL_P	TIM1_CC0 #3	US0_TX #4 US1_CLK #0			
16	PB8	LFXTAL_N	TIM1_CC1 #3	US0_RX #4 US1_CS #0			
17	PA8		TIM2_CC0 #0				
18	PA9		TIM2_CC1 #0				
19	PA10		TIM2_CC2 #0				
20	RESETn	Reset input, active low. To apply an external reset sou sure that reset is released.	rce to this pin, it is required to on	Ily drive this pin low during reset,	and let the internal pull-up en-		
21	PB11	DAC0_OUT0 / OPAMP_OUT0	TIM1_CC2 #3 LETIM0_OUT0 #1	I2C1_SDA #1			
22	PB12	DAC0_OUT1 / OPAMP_OUT1	LETIM0_OUT1 #1	I2C1_SCL #1			
23	AVDD_1	Analog power supply 1.					
24	PB13	HFXTAL_P		US0_CLK #4/5 LEU0_TX #1			
25	PB14	HFXTAL_N		US0_CS #4/5 LEU0_RX #1			
26	IOVDD_3	Digital IO power supply 3.					
27	AVDD_0	Analog power supply 0.					
28	PD0	ADC0_CH0 DAC0_OUT0ALT #4/ OPAMP_OUT0ALT	PCNT2_S0IN #0	US1_TX #1			

EFM°32

...the world's most energy friendly microcontrollers

Alternate	LOCATION											
Functionality	0	1	2	3	4	5	6	Description				
ADC0_CH2	PD2							Analog to digital converter ADC0, input channel number 2.				
ADC0_CH3	PD3							Analog to digital converter ADC0, input channel number 3.				
ADC0_CH4	PD4							Analog to digital converter ADC0, input channel number 4.				
ADC0_CH5	PD5							Analog to digital converter ADC0, input channel number 5.				
ADC0_CH6	PD6							Analog to digital converter ADC0, input channel numbe				
ADC0_CH7	PD7							Analog to digital converter ADC0, input channel number 7.				
BOOT_RX	PE11							Bootloader RX				
BOOT_TX	PE10							Bootloader TX				
BU_VIN	PD8							Battery input for Backup Power Domain				
CMU_CLK0	PA2		PD7					Clock Management Unit, clock output number 0.				
CMU_CLK1	PA1	PD8	PE12					Clock Management Unit, clock output number 1.				
DAC0_N0 / OPAMP_N0	PC5							Operational Amplifier 0 external negative input.				
DAC0_N1 / OPAMP_N1	PD7							Operational Amplifier 1 external negative input.				
OPAMP_N2	PD3							Operational Amplifier 2 external negative input.				
DAC0_OUT0 / OPAMP_OUT0	PB11							Digital to Analog Converter DAC0_OUT0 / OPAMP output channel number 0.				
DAC0_OUT0ALT / OPAMP_OUT0ALT	PC0	PC1	PC2	PC3	PD0			Digital to Analog Converter DAC0_OUT0ALT / OPAMP alternative output for channel 0.				
DAC0_OUT1 / OPAMP_OUT1	PB12							Digital to Analog Converter DAC0_OUT1 / OPAMP output channel number 1.				
DAC0_OUT1ALT / OPAMP_OUT1ALT					PD1			Digital to Analog Converter DAC0_OUT1ALT / OPAMP alternative output for channel 1.				
OPAMP_OUT2	PD5	PD0						Operational Amplifier 2 output.				
DAC0_P0 / OPAMP_P0	PC4							Operational Amplifier 0 external positive input.				
DAC0_P1 / OPAMP_P1	PD6							Operational Amplifier 1 external positive input.				
OPAMP_P2	PD4							Operational Amplifier 2 external positive input.				
								Debug-interface Serial Wire clock input.				
DBG_SWCLK	PF0	PF0	PF0	PF0				Note that this function is enabled to pin out of reset, and has a built-in pull down.				
								Debug-interface Serial Wire data input / output.				
DBG_SWDIO	PF1	PF1	PF1	PF1				Note that this function is enabled to pin out of reset, and has a built-in pull up.				
								Debug-interface Serial Wire viewer Output.				
DBG_SWO	PF2		PD1	PD2				Note that this function is not enabled after reset, and must be enabled by software to be used.				
ETM_TCLK	PD7		PC6	PA6				Embedded Trace Module ETM clock .				
ETM_TD0	PD6		PC7	PA2				Embedded Trace Module ETM data 0.				
ETM_TD1	PD3		PD3	PA3				Embedded Trace Module ETM data 1.				
ETM_TD2	PD4		PD4	PA4				Embedded Trace Module ETM data 2.				
ETM_TD3	PD5		PD5	PA5				Embedded Trace Module ETM data 3.				
GPIO_EM4WU0	PA0							Pin can be used to wake the system up from EM4				
GPIO_EM4WU1	PA6							Pin can be used to wake the system up from EM4				
GPIO_EM4WU2	PC9							Pin can be used to wake the system up from EM4				

EFM°32

...the world's most energy friendly microcontrollers

Alternate			LOC	ATION								
Functionality	0	1	2	3	4	5	6	Description				
PCNT1_S0IN	PC4							Pulse Counter PCNT1 input number 0.				
PCNT1_S1IN	PC5							Pulse Counter PCNT1 input number 1.				
PCNT2_S0IN	PD0	PE8						Pulse Counter PCNT2 input number 0.				
PCNT2_S1IN	PD1	PE9						Pulse Counter PCNT2 input number 1.				
PRS_CH0	PA0							Peripheral Reflex System PRS, channel 0.				
PRS_CH1	PA1							Peripheral Reflex System PRS, channel 1.				
PRS_CH2	PC0	PF5						Peripheral Reflex System PRS, channel 2.				
PRS_CH3	PC1	PE8						Peripheral Reflex System PRS, channel 3.				
TIM0_CC0	PA0	PA0		PD1	PA0	PF0		Timer 0 Capture Compare input / output channel 0.				
TIM0_CC1	PA1	PA1		PD2	PC0	PF1		Timer 0 Capture Compare input / output channel 1.				
TIM0_CC2	PA2	PA2		PD3	PC1	PF2		Timer 0 Capture Compare input / output channel 2.				
TIM0_CDTI0	PA3				PC2			Timer 0 Complimentary Deat Time Insertion channel 0.				
TIM0_CDTI1	PA4				PC3			Timer 0 Complimentary Deat Time Insertion channel 1.				
TIM0_CDTI2	PA5		PF5		PC4	PF5		Timer 0 Complimentary Deat Time Insertion channel 2.				
TIM1_CC0		PE10		PB7	PD6			Timer 1 Capture Compare input / output channel 0.				
TIM1_CC1		PE11		PB8	PD7			Timer 1 Capture Compare input / output channel 1.				
TIM1_CC2		PE12		PB11				Timer 1 Capture Compare input / output channel 2.				
TIM2_CC0	PA8		PC8					Timer 2 Capture Compare input / output channel 0.				
TIM2_CC1	PA9		PC9					Timer 2 Capture Compare input / output channel 1.				
TIM2_CC2	PA10		PC10					Timer 2 Capture Compare input / output channel 2.				
TIM3_CC0	PE14							Timer 3 Capture Compare input / output channel 0.				
TIM3_CC1	PE15							Timer 3 Capture Compare input / output channel 1.				
TIM3_CC2	PA15							Timer 3 Capture Compare input / output channel 2.				
US0_CLK	PE12		PC9		PB13	PB13		USART0 clock input / output.				
US0_CS	PE13		PC8		PB14	PB14		USART0 chip select input / output.				
								USART0 Asynchronous Receive.				
US0_RX	PE11		PC10	PE12	PB8	PC1		USART0 Synchronous mode Master Input / Slave Output (MISO).				
	PE10		PC11	DE13	PB7	PC0		USART0 Asynchronous Transmit.Also used as receive in- put in half duplex communication.				
								USART0 Synchronous mode Master Output / Slave Input (MOSI).				
US1_CLK	PB7	PD2	PF0					USART1 clock input / output.				
US1_CS	PB8	PD3	PF1					USART1 chip select input / output.				
								USART1 Asynchronous Receive.				
US1_RX	PC1	PD1	PD6					USART1 Synchronous mode Master Input / Slave Output (MISO).				
US1 TX	PC0	PD0	PD7					USART1 Asynchronous Transmit.Also used as receive in- put in half duplex communication.				
								USART1 Synchronous mode Master Output / Slave Input (MOSI).				
US2_CLK	PC4							USART2 clock input / output.				
US2_CS	PC5							USART2 chip select input / output.				
US2_RX	PC3							USART2 Asynchronous Receive.				

Figure 4.2. Opamp Pinout

4.5 QFN64 Package

Figure 4.3. QFN64

Note:

- 1. Dimensioning & tolerancing confirm to ASME Y14.5M-1994.
- 2. All dimensions are in millimeters. Angles are in degrees.

- 3. Dimension 'b' applies to metallized terminal and is measured between 0.25 mm and 0.30 mm from the terminal tip. Dimension L1 represents terminal full back from package edge up to 0.1 mm is acceptable.
- 4. Coplanarity applies to the exposed heat slug as well as the terminal.
- 5. Radius on terminal is optional

Table 4.4. QFN64 (Dimensions in mm)

Symbol	А	A1	A 3	b	D	E	D2	E2	е	L	L1	aaa	bbb	ссс	ddd	eee
Min	0.80	0.00		0.20			7.10	7.10		0.40	0.00					
Nom	0.85	-	0.203 REF	0.25	9.00 BSC	9.00 BSC	7.20	7.20	0.50 BSC	0.45		0.10	0.10	0.10	0.05	0.08
Max	0.90	0.05		0.30			7.30	7.30		0.50	0.10		1			

The QFN64 Package uses Nickel-Palladium-Gold preplated leadframe.

All EFM32 packages are RoHS compliant and free of Bromine (Br) and Antimony (Sb).

For additional Quality and Environmental information, please see: http://www.silabs.com/support/quality/pages/default.aspx