

Welcome to E-XFL.COM

Microchip Technology - DSPIC33FJ128MC506T-I/PT Datasheet

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Obsolete                                                                          |
|----------------------------|-----------------------------------------------------------------------------------|
| Core Processor             | dsPIC                                                                             |
| Core Size                  | 16-Bit                                                                            |
| Speed                      | 40 MIPs                                                                           |
| Connectivity               | CANbus, I <sup>2</sup> C, IrDA, LINbus, SPI, UART/USART                           |
| Peripherals                | Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT                |
| Number of I/O              | 53                                                                                |
| Program Memory Size        | 128KB (128K x 8)                                                                  |
| Program Memory Type        | FLASH                                                                             |
| EEPROM Size                | -                                                                                 |
| RAM Size                   | 8K x 8                                                                            |
| Voltage - Supply (Vcc/Vdd) | 3V ~ 3.6V                                                                         |
| Data Converters            | A/D 16x10b/12b                                                                    |
| Oscillator Type            | Internal                                                                          |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                                 |
| Mounting Type              | Surface Mount                                                                     |
| Package / Case             | 64-TQFP                                                                           |
| Supplier Device Package    | 64-TQFP (10x10)                                                                   |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj128mc506t-i-pt |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

#### **Pin Diagrams (Continued)**



# Pin Diagrams (Continued)



| Pin Name       | Pin<br>Type | Buffer<br>Type | Description                                                                                                                                                                        |  |  |  |  |
|----------------|-------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| AN0-AN31       | I           | Analog         | Analog input channels.                                                                                                                                                             |  |  |  |  |
| AVDD           | Р           | Р              | Positive supply for analog modules. This pin must be connected at all times.                                                                                                       |  |  |  |  |
| AVss           | Р           | Р              | Ground reference for analog modules.                                                                                                                                               |  |  |  |  |
| CLKI           | I           | ST/CMOS        | External clock source input. Always associated with OSC1 pin function.                                                                                                             |  |  |  |  |
| ССКО           | 0           | _              | Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with OSC2 pin function. |  |  |  |  |
| CN0-CN23       | I           | ST             | Input change notification inputs.<br>Can be software programmed for internal weak pull-ups on all inputs.                                                                          |  |  |  |  |
| C1RX           | Ι           | ST             | ECAN1 bus receive pin.                                                                                                                                                             |  |  |  |  |
| C1TX           | 0           |                | ECAN1 bus transmit pin.                                                                                                                                                            |  |  |  |  |
| C2RX           |             | SI             | ECAN2 bus receive pin.                                                                                                                                                             |  |  |  |  |
|                | 0           | <br>           | Data I/O pin for programming/dobugging communication abonnol 1                                                                                                                     |  |  |  |  |
| PGED1<br>PGEC1 | 1/0         | ST             | Clock input pin for programming/debugging communication channel 1.                                                                                                                 |  |  |  |  |
| PGED2          | 1/0         | ST             | Data I/O pin for programming/debugging communication channel 2.                                                                                                                    |  |  |  |  |
| PGEC2          | I           | ST             | Clock input pin for programming/debugging communication channel 2.                                                                                                                 |  |  |  |  |
| PGED3          | I/O         | ST             | Data I/O pin for programming/debugging communication channel 3.                                                                                                                    |  |  |  |  |
| PGEC3          | I           | ST             | Clock input pin for programming/debugging communication channel 3.                                                                                                                 |  |  |  |  |
| IC1-IC8        | I           | ST             | Capture inputs 1 through 8.                                                                                                                                                        |  |  |  |  |
| INDX           | I           | ST             | Quadrature Encoder Index Pulse input.                                                                                                                                              |  |  |  |  |
| QEA            | I           | ST             | Quadrature Encoder Phase A input in QEI mode. Auxiliary Timer External                                                                                                             |  |  |  |  |
| 055            |             | OT             | Clock/Gate input in Timer mode.                                                                                                                                                    |  |  |  |  |
| QEB            | I           | SI             | Quadrature Encoder Phase A input in QEI mode. Auxiliary Timer External                                                                                                             |  |  |  |  |
| UPDN           | ο           | CMOS           | Position Up/Down Counter Direction State.                                                                                                                                          |  |  |  |  |
| INT0           | 1           | ST             | External interrupt 0.                                                                                                                                                              |  |  |  |  |
| INT1           | I           | ST             | External interrupt 1.                                                                                                                                                              |  |  |  |  |
| INT2           | I           | ST             | External interrupt 2.                                                                                                                                                              |  |  |  |  |
| INT3           | I           | ST             | External interrupt 3.                                                                                                                                                              |  |  |  |  |
| INT4           | I           | ST             | External interrupt 4.                                                                                                                                                              |  |  |  |  |
| FLTA           | I           | ST             | PWM Fault A input.                                                                                                                                                                 |  |  |  |  |
|                |             | SI             | PWM Fault B input.                                                                                                                                                                 |  |  |  |  |
| PWM1H          | 0           |                | PWM 1 high output                                                                                                                                                                  |  |  |  |  |
| PWM2L          | ŏ           | _              | PWM 2 low output.                                                                                                                                                                  |  |  |  |  |
| PWM2H          | 0           | —              | PWM 2 high output.                                                                                                                                                                 |  |  |  |  |
| PWM3L          | 0           | —              | PWM 3 low output.                                                                                                                                                                  |  |  |  |  |
| PWM3H          | 0           | —              | PWM 3 high output.                                                                                                                                                                 |  |  |  |  |
| PWM4L          | 0           | —              | PWM 4 low output.                                                                                                                                                                  |  |  |  |  |
|                | 0           | -              |                                                                                                                                                                                    |  |  |  |  |
| MCLR           | I/P         | SI             | Master Clear (Reset) input. This pin is an active-low Reset to the device.                                                                                                         |  |  |  |  |
| OCFA           |             | ST             | Compare Fault A input (for Compare Channels 1, 2, 3 and 4).                                                                                                                        |  |  |  |  |
|                |             | 51             | Compare entruits 1 through 8                                                                                                                                                       |  |  |  |  |
| 09012000       | 1           | STICMOS        | Oscillator crystal input. ST buffer when configured in PC mode:                                                                                                                    |  |  |  |  |
|                |             | 31/01000       | CMOS otherwise.                                                                                                                                                                    |  |  |  |  |
| OSC2           | I/O         | _              | Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.                                           |  |  |  |  |
| Legend: CMC    | S = CMO     | S compatible   | e input or output Analog = Analog input P = Power                                                                                                                                  |  |  |  |  |
| ST =           | Schmitt T   | rigger input   | with CMOS levels O = Output I = Input                                                                                                                                              |  |  |  |  |

#### TABLE 1-1: PINOUT I/O DESCRIPTIONS

# 4.2 Data Address Space

The dsPIC33FJXXXMCX06/X08/X10 CPU has a separate 16-bit wide data memory space. The data space is accessed using separate Address Generation Units (AGUs) for read and write operations. Data memory maps of devices with different RAM sizes are shown in Figure 4-3 through Figure 4-5.

All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the data space. This arrangement gives a data space address range of 64 Kbytes or 32K words. The lower half of the data memory space (that is, when EA<15> = 0) is used for implemented memory addresses, while the upper half (EA<15> = 1) is reserved for the Program Space Visibility area (see Section 4.6.3 "Reading Data from Program Memory Using Program Space Visibility").

dsPIC33FJXXXMCX06/X08/X10 devices implement a total of up to 30 Kbytes of data memory. Should an EA point to a location outside of this area, an all-zero word or byte will be returned.

#### 4.2.1 DATA SPACE WIDTH

The data memory space is organized in byte addressable, 16-bit wide blocks. Data is aligned in data memory and registers as 16-bit words, but all data space EAs resolve to bytes. The Least Significant Bytes of each word have even addresses, while the Most Significant Bytes have odd addresses.

#### 4.2.2 DATA MEMORY ORGANIZATION AND ALIGNMENT

To maintain backward compatibility with PIC<sup>®</sup> microcontrollers and improve data space memory usage efficiency, the dsPIC33FJXXXMCX06/X08/X10 instruction set supports both word and byte operations. As a consequence of byte accessibility, all effective address calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] will result in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

Data byte reads will read the complete word that contains the byte, using the LSb of any EA to determine which byte to select. The selected byte is placed onto the LSb of the data path. That is, data memory and registers are organized as two parallel byte-wide entities with shared (word) address decode but separate write lines. Data byte writes only write to the corresponding side of the array or register which matches the byte address. All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap is generated. If the error occurred on a read, the instruction underway is completed; if it occurred on a write, the instruction will be executed but the write does not occur. In either case, a trap is then executed, allowing the system and/or user to examine the machine state prior to execution of the address Fault.

All byte loads into any W register are loaded into the Least Significant Byte. The Most Significant Byte is not modified.

A sign-extend instruction (SE) is provided to allow users to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, users can clear the MSb of any W register by executing a zero-extend (ZE) instruction on the appropriate address.

### 4.2.3 SFR SPACE

The first 2 Kbytes of the Near Data Space, from 0x0000 to 0x07FF, is primarily occupied by Special Function Registers (SFRs). These are used by the dsPIC33FJXXXMCX06/X08/X10 core and peripheral modules for controlling the operation of the device.

SFRs are distributed among the modules that they control and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as '0'.

**Note:** The actual set of peripheral features and interrupts varies by the device. Please refer to the corresponding device tables and pinout diagrams for device-specific information.

#### 4.2.4 NEAR DATA SPACE

The 8-Kbyte area between 0x0000 and 0x1FFF is referred to as the Near Data Space. Locations in this space are directly addressable via a 13-bit absolute address field within all memory direct instructions. Additionally, the whole data space is addressable using MOV instructions, which support Memory Direct Addressing mode with a 16-bit address field, or by using Indirect Addressing mode using a working register as an Address Pointer.

| Addressing Mode                        | Description                                                                                            |
|----------------------------------------|--------------------------------------------------------------------------------------------------------|
| File Register Direct                   | The address of the file register is specified explicitly.                                              |
| Register Direct                        | The contents of a register are accessed directly.                                                      |
| Register Indirect                      | The contents of Wn forms the EA.                                                                       |
| Register Indirect Post-Modified        | The contents of Wn forms the EA. Wn is post-modified (incremented or decremented) by a constant value. |
| Register Indirect Pre-Modified         | Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA.             |
| Register Indirect with Register Offset | The sum of Wn and Wb forms the EA.                                                                     |
| Register Indirect with Literal Offset  | The sum of Wn and a literal forms the EA.                                                              |

### TABLE 4-36: FUNDAMENTAL ADDRESSING MODES SUPPORTED

#### 4.3.3 MOVE AND ACCUMULATOR INSTRUCTIONS

Move instructions and the DSP accumulator class of instructions provide a greater degree of addressing flexibility than other instructions. In addition to the Addressing modes supported by most MCU instructions, move and accumulator instructions also support Register Indirect with Register Offset Addressing mode, also referred to as Register Indexed mode.

| Note: | For the MOV instructions, the Addressing mode specified in the instruction can differ |  |  |  |  |  |  |  |  |  |
|-------|---------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
|       | for the source and destination EA.                                                    |  |  |  |  |  |  |  |  |  |
|       | However, the 4-bit Wb (Register Offset)                                               |  |  |  |  |  |  |  |  |  |
|       | field is shared between both source and                                               |  |  |  |  |  |  |  |  |  |
|       | destination (but typically only used by                                               |  |  |  |  |  |  |  |  |  |
|       | one).                                                                                 |  |  |  |  |  |  |  |  |  |

In summary, the following Addressing modes are supported by move and accumulator instructions:

- Register Direct
- · Register Indirect
- Register Indirect Post-modified
- · Register Indirect Pre-modified
- Register Indirect with Register Offset (Indexed)
- Register Indirect with Literal Offset
- 8-bit Literal
- 16-bit Literal

| Note: | Not   | all   | instructions  | support      | all   | the  |
|-------|-------|-------|---------------|--------------|-------|------|
|       | Addr  | essi  | ng modes give | en above. I  | ndivi | dual |
|       | instr | uctio | ns may suppo  | ort differen | t sub | sets |
|       | of th | ese / | Addressing mo | odes.        |       |      |

#### 4.3.4 MAC INSTRUCTIONS

The dual source operand DSP instructions (CLR, ED, EDAC, MAC, MPY, MPY.N, MOVSAC and MSC), also referred to as MAC instructions, utilize a simplified set of addressing modes to allow the user to effectively manipulate the data pointers through register indirect tables.

The 2-source operand prefetch registers must be members of the set {W8, W9, W10, W11}. For data reads, W8 and W9 are always directed to the X RAGU and W10 and W11 will always be directed to the Y AGU. The effective addresses generated (before and after modification) must, therefore, be valid addresses within X data space for W8 and W9 and Y data space for W10 and W11.

| Note: | Register    | Indirect  | with    | Register  | Offset |
|-------|-------------|-----------|---------|-----------|--------|
|       | Addressir   | ng mode i | s only  | available | for W9 |
|       | (in X space | ce) and W | /11 (in | Y space). |        |

In summary, the following addressing modes are supported by the  ${\tt MAC}$  class of instructions:

- Register Indirect
- Register Indirect Post-Modified by 2
- Register Indirect Post-Modified by 4
- Register Indirect Post-Modified by 6
- · Register Indirect with Register Offset (Indexed)

#### 4.3.5 OTHER INSTRUCTIONS

Besides the various addressing modes outlined above, some instructions use literal constants of various sizes. For example, BRA (branch) instructions use 16-bit signed literals to specify the branch destination directly, whereas the DISI instruction uses a 14-bit unsigned literal field. In some instructions, such as ADD Acc, the source of an operand or result is implied by the opcode itself. Certain operations, such as NOP, do not have any operands.

# 4.4 Modulo Addressing

Modulo Addressing mode is a method of providing an automated means to support circular data buffers using hardware. The objective is to remove the need for software to perform data address boundary checks when executing tightly looped code, as is typical in many DSP algorithms.

Modulo Addressing can operate in either data or program space (since the data pointer mechanism is essentially the same for both). One circular buffer can be supported in each of the X (which also provides the pointers into program space) and Y data spaces. Modulo Addressing

#### 5.4.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

The user can program one row of program Flash memory at a time. To do this, it is necessary to erase the 8-row erase page that contains the desired row. The general process is as follows:

- 1. Read eight rows of program memory (512 instructions) and store it in data RAM.
- 2. Update the program data in RAM with the desired new data.
- 3. Erase the block (see Example 5-1):
  - a) Set the NVMOP bits (NVMCON<3:0>) to '0010' to configure for block erase. Set the ERASE (NVMCON<6>) and WREN (NVMCON<14>) bits.
  - b) Write the starting address of the page to be erased into the TBLPAG and W registers.
  - c) Write 0x55 to NVMKEY.
  - d) Write 0xAA to NVMKEY.
  - e) Set the WR bit (NVMCON<15>). The erase cycle begins and the CPU stalls for the duration of the erase cycle. When the erase is done, the WR bit is cleared automatically.

- 4. Write the first 64 instructions from data RAM into the program memory buffers (see Example 5-2).
- 5. Write the program block to Flash memory:
  - a) Set the NVMOP bits to '0001' to configure for row programming. Clear the ERASE bit and set the WREN bit.
  - b) Write 0x55 to NVMKEY.
  - c) Write 0xAA to NVMKEY.
  - d) Set the WR bit. The programming cycle begins and the CPU stalls for the duration of the write cycle. When the write to Flash memory is done, the WR bit is cleared automatically.
- Repeat steps 4 and 5 using the next available 64 instructions from the block in data RAM by incrementing the value in TBLPAG until all 512 instructions are written back to Flash memory.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS, as shown in Example 5-3.

#### EXAMPLE 5-1: ERASING A PROGRAM MEMORY PAGE

| ; Set up NVMCC | N for block erase operation          |                                         |  |
|----------------|--------------------------------------|-----------------------------------------|--|
| MOV            | #0x4042, W0                          | ;                                       |  |
| MOV            | W0, NVMCON                           | ; Initialize NVMCON                     |  |
| ; Init pointer | to row to be ERASED                  |                                         |  |
| MOV            | <pre>#tblpage(PROG_ADDR), W0</pre>   | ;                                       |  |
| MOV            | W0, TBLPAG                           | ; Initialize PM Page Boundary SFR       |  |
| MOV            | <pre>#tbloffset(PROG_ADDR), W0</pre> | ; Initialize in-page EA[15:0] pointer   |  |
| TBLWTL         | WO, [WO]                             | ; Set base address of erase block       |  |
| DISI           | #5                                   | ; Block all interrupts with priority <7 |  |
|                |                                      | ; for next 5 instructions               |  |
| MOV            | #0x55, W0                            |                                         |  |
| MOV            | W0, NVMKEY                           | ; Write the 55 key                      |  |
| MOV            | #0xAA, W1                            | ;                                       |  |
| MOV            | W1, NVMKEY                           | ; Write the AA key                      |  |
| BSET           | NVMCON, #WR                          | ; Start the erase sequence              |  |
| NOP            |                                      | ; Insert two NOPs after the erase       |  |
| NOP            |                                      | ; command is asserted                   |  |
|                |                                      |                                         |  |

| Flag Bit          | Setting Event                                        | Clearing Event               |
|-------------------|------------------------------------------------------|------------------------------|
| TRAPR (RCON<15>)  | Trap conflict event                                  | POR, BOR                     |
| IOPUWR (RCON<14>) | Illegal opcode or uninitialized<br>W register access | POR, BOR                     |
| EXTR (RCON<7>)    | MCLR Reset                                           | POR                          |
| SWR (RCON<6>)     | RESET instruction                                    | POR, BOR                     |
| WDTO (RCON<4>)    | WDT time-out                                         | PWRSAV instruction, POR, BOR |
| SLEEP (RCON<3>)   | PWRSAV #SLEEP instruction                            | POR, BOR                     |
| IDLE (RCON<2>)    | PWRSAV #IDLE instruction                             | POR, BOR                     |
| BOR (RCON<1>)     | BOR, POR                                             | _                            |
| POR (RCON<0>)     | POR                                                  | —                            |

# TABLE 6-1:RESET FLAG BIT OPERATION

Note: All Reset flag bits may be set or cleared by the user software.

### 6.1 Clock Source Selection at Reset

If clock switching is enabled, the system clock source at device Reset is chosen, as shown in Table 6-2. If clock switching is disabled, the system clock source is always selected according to the oscillator Configuration bits. Refer to **Section 9.0 "Oscillator Configuration"** for further details.

# TABLE 6-2:OSCILLATOR SELECTION vs.TYPE OF RESET (CLOCK<br/>SWITCHING ENABLED)

| Reset Type | Clock Source Determinant      |
|------------|-------------------------------|
| POR        | Oscillator Configuration bits |
| BOR        | (FNOSC<2:0>)                  |
| MCLR       | COSC Control bits             |
| WDTR       | (OSCCON<14:12>)               |
| SWR        |                               |

# 6.2 Device Reset Times

The Reset times for various types of device Reset are <u>summarized</u> in Table 6-3. The system Reset signal, SYSRST, is released after the POR and PWRT delay times expire.

The time at which the device actually begins to execute code also depends on the system oscillator delays, which include the Oscillator Start-up Timer (OST) and the PLL lock time. The OST and PLL lock times occur in parallel with the applicable SYSRST delay times.

The FSCM delay determines the time at which the FSCM begins to monitor the system clock source after the SYSRST signal is released.

| U-0           | U-0                 | U-0                | U-0            | U-0              | R/W-1          | R/W-0           | R/W-0 |
|---------------|---------------------|--------------------|----------------|------------------|----------------|-----------------|-------|
| _             | —                   |                    | _              | —                |                | U2EIP<2:0>      |       |
| bit 15        |                     |                    |                |                  |                |                 | bit   |
|               |                     |                    |                |                  |                |                 |       |
| U-0           | R/W-1               | R/W-0              | R/W-0          | U-0              | R/W-1          | R/W-0           | R/W-0 |
| _             |                     | U1EIP<2:0>         |                |                  |                | FLTBIP<2:0>     |       |
| bit 7         |                     |                    |                |                  |                |                 | bit   |
| Legend:       |                     |                    |                |                  |                |                 |       |
| R = Readabl   | le bit              | W = Writable       | bit            | U = Unimple      | mented bit, re | ad as '0'       |       |
| -n = Value at | t POR               | '1' = Bit is set   |                | '0' = Bit is cle | eared          | x = Bit is unkn | iown  |
|               |                     |                    |                |                  |                |                 |       |
| bit 15-11     | Unimplemen          | ted: Read as '     | 0'             |                  |                |                 |       |
| bit 10-8      | U2EIP<2:0>:         | UART2 Error I      | nterrupt Prior | ity bits         |                |                 |       |
|               | 111 = Interrup      | pt is priority 7 ( | highest priori | ty interrupt)    |                |                 |       |
|               | •                   |                    |                |                  |                |                 |       |
|               | •                   |                    |                |                  |                |                 |       |
|               | 001 = Interrup      | pt is priority 1   |                |                  |                |                 |       |
|               | 000 = Interrup      | pt source is dis   | abled          |                  |                |                 |       |
| bit 7         | Unimplemen          | ted: Read as '     | 0'             |                  |                |                 |       |
| bit 6-4       | U1EIP<2:0>:         | UART1 Error I      | nterrupt Prior | rity bits        |                |                 |       |
|               | 111 = Interrup      | pt is priority 7 ( | highest priori | ty interrupt)    |                |                 |       |
|               | •                   |                    |                |                  |                |                 |       |
|               | •                   |                    |                |                  |                |                 |       |
|               | 001 = Interrup      | pt is priority 1   |                |                  |                |                 |       |
|               | 000 = Interru       | pt source is dis   | abled          |                  |                |                 |       |
| bit 3         | Unimplemen          | ted: Read as '     | 0'             |                  |                |                 |       |
| bit 2-0       | FLTBIP<2:0>         | : PWM Fault B      | Interrupt Prie | ority bits       |                |                 |       |
|               | 111 = Interrup      | pt is priority 7 ( | highest priori | ty interrupt)    |                |                 |       |
|               | •                   |                    |                |                  |                |                 |       |
|               | •                   |                    |                |                  |                |                 |       |
|               | -                   |                    |                |                  |                |                 |       |
|               | •<br>001 = Interrur | ot is priority 1   |                |                  |                |                 |       |

# REGISTER 7-31: IPC16: INTERRUPT PRIORITY CONTROL REGISTER 16

# FIGURE 8-1: TOP LEVEL SYSTEM ARCHITECTURE USING A DEDICATED TRANSACTION BUS



# 8.1 DMAC Registers

Each DMAC Channel x (x = 0, 1, 2, 3, 4, 5, 6 or 7) contains the following registers:

- A 16-bit DMA Channel Control register (DMAxCON)
- A 16-bit DMA Channel IRQ Select register (DMAxREQ)
- A 16-bit DMA RAM Primary Start Address Offset register (DMAxSTA)
- A 16-bit DMA RAM Secondary Start Address Offset register (DMAxSTB)
- A 16-bit DMA Peripheral Address register (DMAxPAD)
- A 10-bit DMA Transfer Count register (DMAxCNT)

An additional pair of status registers, DMACS0 and DMACS1, are common to all DMAC channels.

#### REGISTER 8-3: DMAXSTA: DMA CHANNEL x RAM START ADDRESS OFFSET REGISTER A

| R/W-0           | R/W-0                                                                | R/W-0            | R/W-0 | R/W-0                                   | R/W-0 | R/W-0 | R/W-0 |
|-----------------|----------------------------------------------------------------------|------------------|-------|-----------------------------------------|-------|-------|-------|
|                 |                                                                      |                  | STA   | <15:8>                                  |       |       |       |
| bit 15          |                                                                      |                  |       |                                         |       |       | bit 8 |
|                 |                                                                      |                  |       |                                         |       |       |       |
| R/W-0           | R/W-0                                                                | R/W-0            | R/W-0 | R/W-0                                   | R/W-0 | R/W-0 | R/W-0 |
|                 |                                                                      |                  | STA   | <7:0>                                   |       |       |       |
| bit 7           |                                                                      |                  |       |                                         |       |       | bit 0 |
|                 |                                                                      |                  |       |                                         |       |       |       |
| Legend:         |                                                                      |                  |       |                                         |       |       |       |
| R = Readable    | R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' |                  |       |                                         |       |       |       |
| -n = Value at P | OR                                                                   | '1' = Bit is set |       | '0' = Bit is cleared x = Bit is unknown |       |       |       |

bit 15-0 STA<15:0>: Primary DMA RAM Start Address bits (source or destination)

#### REGISTER 8-4: DMAxSTB: DMA CHANNEL x RAM START ADDRESS OFFSET REGISTER B

| R/W-0           | R/W-0 | R/W-0                                                 | R/W-0 | R/W-0                                   | R/W-0 | R/W-0 | R/W-0 |
|-----------------|-------|-------------------------------------------------------|-------|-----------------------------------------|-------|-------|-------|
|                 |       |                                                       | STB   | <15:8>                                  |       |       |       |
| bit 15          |       |                                                       |       |                                         |       |       | bit 8 |
|                 |       |                                                       |       |                                         |       |       |       |
| R/W-0           | R/W-0 | R/W-0                                                 | R/W-0 | R/W-0                                   | R/W-0 | R/W-0 | R/W-0 |
|                 |       |                                                       | STE   | 3<7:0>                                  |       |       |       |
| bit 7           |       |                                                       |       |                                         |       |       | bit 0 |
|                 |       |                                                       |       |                                         |       |       |       |
| Legend:         |       |                                                       |       |                                         |       |       |       |
| R = Readable b  | oit   | t W = Writable bit U = Unimplemented bit, read as '0' |       |                                         |       |       |       |
| -n = Value at P | OR    | '1' = Bit is set                                      |       | '0' = Bit is cleared x = Bit is unknown |       |       |       |

bit 15-0 STB<15:0>: Secondary DMA RAM Start Address bits (source or destination)

# REGISTER 8-7: DMACS0: DMA CONTROLLER STATUS REGISTER 0 (CONTINUED)

| bit 3 | <b>XWCOL3:</b> Channel 3 DMA RAM Write Collision Flag bit |
|-------|-----------------------------------------------------------|
|       | 0 = No write collision detected                           |
| bit 2 | XWCOL2: Channel 2 DMA RAM Write Collision Flag bit        |
|       | 1 = Write collision detected                              |
|       | 0 = No write collision detected                           |
| bit 1 | XWCOL1: Channel 1 DMA RAM Write Collision Flag bit        |
|       | 1 = Write collision detected                              |
|       | 0 = No write collision detected                           |
| bit 0 | XWCOL0: Channel 0 DMA RAM Write Collision Flag bit        |
|       | 1 = Write collision detected                              |
|       | 0 = No write collision detected                           |

| R/W-0         | R/W-0                          | R/W-1                        | R/W-1                | R/W-0                        | R/W-0         | R/W-0               | R/W-0      |
|---------------|--------------------------------|------------------------------|----------------------|------------------------------|---------------|---------------------|------------|
| ROI           |                                | DOZE<2:0>                    |                      | DOZEN'''                     |               | FRCDIV<2:0>         |            |
| DIT 15        |                                |                              |                      |                              |               |                     | 8 JIC      |
| R/W/-0        | R/M-1                          | 11-0                         | R/W/-0               | R/W/-0                       | R/W-0         | R/W-0               | R/W-0      |
| PLLPC         | )ST<1:0>                       |                              | 1010 0               | F                            | 211 PRF<4:    | 0>                  | 1000 0     |
| bit 7         |                                |                              |                      |                              |               | -                   | bit 0      |
|               |                                |                              |                      |                              |               |                     |            |
| Legend:       |                                | y = Value set                | from Configu         | ration bits on POF           | २             |                     |            |
| R = Readable  | e bit                          | W = Writable                 | oit                  | U = Unimpleme                | nted bit, rea | ad as '0'           |            |
| -n = Value at | POR                            | '1' = Bit is set             |                      | '0' = Bit is clear           | ed            | x = Bit is unkno    | own        |
|               |                                |                              |                      |                              |               |                     |            |
| bit 15        | ROI: Recover                   | on Interrupt bi              | t                    |                              |               |                     |            |
|               | 1 = Interrupts                 | will clear the [             | DOZEN bit ar         | nd the processor o<br>EN bit | clock/periph  | eral clock ratio is | set to 1:1 |
| hit 14-12     | 0 - interrupts                 | Processor Clor               | k Reduction          | Select hits                  |               |                     |            |
| 51(11)2       | 000 = Fcy/1                    |                              |                      |                              |               |                     |            |
|               | 001 = FCY/2                    |                              |                      |                              |               |                     |            |
|               | 010 = FCY/4                    | (default)                    |                      |                              |               |                     |            |
|               | 100 = Fcy/16                   |                              |                      |                              |               |                     |            |
|               | 101 = Fcy/32                   |                              |                      |                              |               |                     |            |
|               | 110 = FCY/64<br>111 = FCY/12   | 8                            |                      |                              |               |                     |            |
| bit 11        | DOZEN: DOZ                     | CE Mode Enabl                | e bit <sup>(1)</sup> |                              |               |                     |            |
|               | 1 = DOZE<2:                    | :0> field specifi            | es the ratio b       | between the peripl           | neral clocks  | and the processo    | or clocks  |
|               | 0 = Processo                   | or clock/periphe             | ral clock ration     | o forced to 1:1              |               |                     |            |
| bit 10-8      | FRCDIV<2:0>                    | Internal Fast                | RC Oscillato         | or Postscaler bits           |               |                     |            |
|               | 000 = FRC di                   | vide by 1 (defa<br>vide by 2 | ult)                 |                              |               |                     |            |
|               | 010 = FRC di                   | vide by 2<br>vide by 4       |                      |                              |               |                     |            |
|               | 011 <b>= FRC di</b>            | vide by 8                    |                      |                              |               |                     |            |
|               | 100 = FRC di<br>101 = FRC di   | vide by 16<br>vide by 32     |                      |                              |               |                     |            |
|               | 110 <b>= FRC di</b>            | vide by 64                   |                      |                              |               |                     |            |
|               | 111 <b>= FRC di</b>            | vide by 256                  |                      |                              |               |                     |            |
| bit 7-6       | PLLPOST<1:                     | 0>: PLL VCO (                | Dutput Divide        | er Select bits (also         | denoted a     | s 'N2', PLL postsc  | aler)      |
|               | 00 = Output/2<br>01 = Output/4 | (default)                    |                      |                              |               |                     |            |
|               | 10 = Reserve                   | d                            |                      |                              |               |                     |            |
|               | 11 = Output/8                  | 3                            |                      |                              |               |                     |            |
| bit 5         | Unimplemen                     | ted: Read as '               | )'                   |                              |               |                     |            |
| bit 4-0       | PLLPRE<4:0                     | >: PLL Phase I               | Detector Inpu        | it Divider bits (also        | o denoted a   | is 'N1', PLL presca | aler)      |
|               | 00000 = Inpu                   | t/2 (default)<br>t/3         |                      |                              |               |                     |            |
|               | •                              |                              |                      |                              |               |                     |            |
|               | •                              |                              |                      |                              |               |                     |            |
|               | •<br>11111 = Ippu              | t/33                         |                      |                              |               |                     |            |
|               | TTTTT – mpu                    |                              |                      |                              |               |                     |            |

# REGISTER 9-2: CLKDIV: CLOCK DIVISOR REGISTER

Note 1: This bit is cleared when the ROI bit is set and an interrupt occurs.

# 10.2.2 IDLE MODE

Idle mode has the following features:

- The CPU stops executing instructions.
- The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 10.4 "Peripheral Module Disable").
- If the WDT or FSCM is enabled, the LPRC also remains active.

The device will wake from Idle mode on any of the following events:

- Any interrupt that is individually enabled
- · Any device Reset
- A WDT time-out

On wake-up from Idle, the clock is reapplied to the CPU and instruction execution begins immediately, starting with the instruction following the PWRSAV instruction or the first instruction in the ISR.

#### 10.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction is held off until entry into Sleep or Idle mode has completed. The device then wakes up from Sleep or Idle mode.

# 10.3 Doze Mode

Generally, changing clock speed and invoking one of the power-saving modes are the preferred strategies for reducing power consumption. There may be circumstances, however, where this is not practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed may introduce communication errors, while using a power-saving mode may stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate. Doze mode is enabled by setting the DOZEN bit (CLK-DIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLK-DIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default setting.

It is also possible to use Doze mode to selectively reduce power consumption in event-driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU idles, waiting for something to invoke an interrupt routine. Enabling the automatic return to full-speed CPU operation on interrupts is enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation.

For example, suppose the device is operating at 20 MIPS and the CAN module has been configured for 500 kbps based on this device operating speed. If the device is now placed in Doze mode with a clock frequency ratio of 1:4, the CAN module continues to communicate at the required bit rate of 500 kbps, but the CPU now starts executing instructions at a frequency of 5 MIPS.

# 10.4 Peripheral Module Disable

The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled via the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers will have no effect and read values will be invalid.

A peripheral module is only enabled if both the associated bit in the PMD register is cleared and the peripheral is supported by the specific dsPIC<sup>®</sup> DSC variant. If the peripheral is present in the device, it is enabled in the PMD register by default.

**Note:** If a PMD bit is set, the corresponding module is disabled after a delay of 1 instruction cycle. Similarly, if a PMD bit is cleared, the corresponding module is enabled after a delay of 1 instruction cycle (assuming the module control registers are already configured to enable module operation).

# FIGURE 16-1: PWM MODULE BLOCK DIAGRAM



| R/W-0           | U-0                                                                                  | R/W-0                              | U-0              | U-0              | U-0               | U-0             | U-0      |
|-----------------|--------------------------------------------------------------------------------------|------------------------------------|------------------|------------------|-------------------|-----------------|----------|
| SPIEN           |                                                                                      | SPISIDL                            | —                | —                |                   |                 |          |
| bit 15          |                                                                                      |                                    |                  |                  |                   |                 | bit 8    |
|                 |                                                                                      |                                    |                  |                  |                   |                 |          |
| U-0             | R/C-0                                                                                | U-0                                | U-0              | U-0              | U-0               | R-0             | R-0      |
| _               | SPIROV                                                                               | —                                  |                  | —                |                   | SPITBF          | SPIRBF   |
| bit 7           |                                                                                      |                                    |                  |                  |                   |                 | bit 0    |
|                 |                                                                                      |                                    |                  |                  |                   |                 |          |
| Legend:         |                                                                                      | C = Clearable                      | bit              |                  |                   |                 |          |
| R = Readable    | bit                                                                                  | W = Writable                       | bit              | U = Unimpler     | mented bit, read  | as '0'          |          |
| -n = Value at F | POR                                                                                  | '1' = Bit is set                   |                  | '0' = Bit is cle | eared             | x = Bit is unkr | IOWN     |
|                 |                                                                                      |                                    |                  |                  |                   |                 |          |
| bit 15          | SPIEN: SPIX                                                                          | Enable bit                         |                  |                  |                   |                 |          |
|                 | 1 = Enables r<br>0 = Disables i                                                      | nodule and cor<br>module           | ifigures SCKx    | , SDOx, SDIx     | and SSx as seri   | al port pins    |          |
| bit 14          | Unimplemen                                                                           | ted: Read as '                     | )'               |                  |                   |                 |          |
| bit 13          | SPISIDL: Sto                                                                         | p in Idle Mode                     | bit              |                  |                   |                 |          |
|                 | 1 = Discontin                                                                        | ue module ope                      | ration when de   | evice enters lo  | lle mode          |                 |          |
|                 | 0 = Continue                                                                         | module operati                     | on in Idle mod   | de               |                   |                 |          |
| bit 12-7        | Unimplemen                                                                           | ted: Read as '                     | )'               |                  |                   |                 |          |
| bit 6           | SPIROV: Rec                                                                          | eive Overflow                      | Flag bit         |                  |                   | <i>c</i> i i i  |          |
|                 | 1 = A new by                                                                         | /te/word is com<br>data in the SPI | vBLIF register   | ed and discard   | led. The user so  | oftware has not | read the |
|                 | 0 = No overfl                                                                        | ow has occurre                     | ed               |                  |                   |                 |          |
| bit 5-2         | Unimplemen                                                                           | ted: Read as '                     | )'               |                  |                   |                 |          |
| bit 1           | SPITBF: SPD                                                                          | x Transmit Buff                    | er Full Status   | bit              |                   |                 |          |
|                 | 1 = Transmit                                                                         | not yet started;                   | SPIxTXB is fu    | III              |                   |                 |          |
|                 | 0 = Transmit                                                                         | started; SPIxT>                    | (B is empty      | uritaa SDIvDU    | E location loadi  |                 |          |
|                 | Automatically                                                                        | cleared in hard                    | when CPO when S  | Plx module tra   | ansfers data fror | n SPIxTXB to S  | SPIxSR.  |
| bit 0           | SPIRBF: SPI                                                                          | x Receive Buffe                    | er Full Status I | bit              |                   |                 |          |
|                 | 1 = Receive o                                                                        | complete; SPIxI                    | RXB is full      |                  |                   |                 |          |
|                 | 0 = Receive is                                                                       | s not complete;                    | SPIxRXB is e     | empty            |                   |                 |          |
|                 | Automatically                                                                        | set in hardwar                     | e when SPIx t    | transfers data   | from SPIxSR to    | SPIXRXB.        | 'n       |
|                 | Automatically cleared in hardware when core reads SPIxBUF location, reading SPIxRXB. |                                    |                  |                  |                   |                 |          |

### REGISTER 18-1: SPIxSTAT: SPIx STATUS AND CONTROL REGISTER

### REGISTER 19-3: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER

| U-0    | U-0   | U-0   | U-0   | U-0   | U-0   | R/W-0 | R/W-0 |
|--------|-------|-------|-------|-------|-------|-------|-------|
| —      | —     | —     | _     | —     | —     | AMSK9 | AMSK8 |
| bit 15 |       |       |       |       |       |       | bit 8 |
|        |       |       |       |       |       |       |       |
| R/W-0  | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 |
| AMSK7  | AMSK6 | AMSK5 | AMSK4 | AMSK3 | AMSK2 | AMSK1 | AMSK0 |
| bit 7  |       |       |       |       | ·     | •     | bit 0 |
|        |       |       |       |       |       |       |       |
|        |       |       |       |       |       |       |       |

| Legend:           |                  |                             |                    |
|-------------------|------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | as '0'             |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

bit 15-10 Unimplemented: Read as '0'

bit 9-0

AMSKx: Mask for Address bit x Select bit

1 = Enable masking for bit x of incoming message address; bit match not required in this position

0 = Disable masking for bit x; bit match required in this position

| R/W-0                 | U-0                                     | R/W-0                | R/W-0                                   | R/W-0                       | U-0                                   | R/W-0                  | R/W-0           |
|-----------------------|-----------------------------------------|----------------------|-----------------------------------------|-----------------------------|---------------------------------------|------------------------|-----------------|
| UARTEN <sup>(1)</sup> | _                                       | USIDL                | IREN <sup>(2)</sup>                     | RTSMD                       | _                                     | UEN                    | <1:0>           |
| bit 15                |                                         |                      |                                         |                             |                                       |                        | bit 8           |
|                       |                                         |                      |                                         |                             |                                       |                        |                 |
| R/W-0 HC              | R/W-0                                   | R/W-0 HC             | R/W-0                                   | R/W-0                       | R/W-0                                 | R/W-0                  | R/W-0           |
| WAKE                  | LPBACK                                  | ABAUD                | URXINV                                  | BRGH                        | PDSEL                                 | _<1:0>                 | STSEL           |
| bit 7                 | ·                                       |                      |                                         | ·                           |                                       |                        | bit 0           |
|                       |                                         |                      |                                         |                             |                                       |                        |                 |
| Legend:               |                                         | HC = Hardwa          | re cleared                              |                             |                                       |                        |                 |
| R = Readable          | bit                                     | W = Writable         | bit                                     | U = Unimple                 | mented bit, read                      | as '0'                 |                 |
| -n = Value at F       | POR                                     | '1' = Bit is set     |                                         | '0' = Bit is cle            | eared                                 | x = Bit is unkn        | own             |
|                       |                                         |                      |                                         |                             |                                       |                        |                 |
| bit 15                | UARTEN: UA                              | RTx Enable bit       | (1)                                     |                             |                                       |                        |                 |
|                       | 1 = UARTx is                            | enabled; all U       | ARTx pins ar                            | e controlled by             | UARTx as defi                         | ned by UEN<1:          | 0>              |
|                       | 0 = UARTx is                            | s disabled; all L    | IARTx pins ar                           | re controlled by            | / port latches; U                     | ARTx power co          | onsumption      |
| L:1 4 4               | minimai                                 | ted: Deed as "       | ,                                       |                             |                                       |                        |                 |
| DIL 14                |                                         | in Idle Mede bit     | )                                       |                             |                                       |                        |                 |
| DIL 13                |                                         |                      | Viration when (                         | dovico ontore l             | dlo modo                              |                        |                 |
|                       | 1 = Discontinue<br>0 = Continue         | module operat        | ion in Idle mo                          | device enters in<br>ode     |                                       |                        |                 |
| bit 12                | IREN: IrDA <sup>®</sup> I               | Encoder and D        | ecoder Enabl                            | e bit <sup>(2)</sup>        |                                       |                        |                 |
| 2                     | $1 = IrDA^{\ensuremath{\mathbb{R}}}$ en | coder and deco       | oder enabled                            | 0.210                       |                                       |                        |                 |
|                       | 0 = IrDA <sup>®</sup> en                | coder and deco       | oder disabled                           |                             |                                       |                        |                 |
| bit 11                | RTSMD: Mod                              | le Selection for     | UxRTS Pin b                             | oit                         |                                       |                        |                 |
|                       | 1 = UxRTS p                             | in in Simplex m      | node                                    |                             |                                       |                        |                 |
|                       | 0 = UxRTS p                             | in in Flow Cont      | rol mode                                |                             |                                       |                        |                 |
| bit 10                | Unimplemen                              | ted: Read as 'o      | )'                                      |                             |                                       |                        |                 |
| bit 9-8               | UEN<1:0>: U                             | ARTx Enable b        | oits                                    |                             |                                       |                        |                 |
|                       | 11 = UXIX, U                            | XRX and BCLF         | C pi <u>ns are ena</u><br>nd LIVPTS nii | abled and used              | l; UxCTS pin coi                      | ntrolled by port       | latches         |
|                       | 01 = UxTX, U                            | xRX and UxRT         | S pins are er                           | habled and use              | ed; UxCTS pin c                       | ontrolled by po        | t latches       |
|                       | 00 = UxTX an                            | nd UxRX pins a       | re enabled ar                           | nd used; and $\overline{L}$ | IxRTS/BCLK pir                        | is controlled by       |                 |
|                       | port latch                              | nes                  |                                         |                             |                                       |                        |                 |
| bit 7                 | WAKE: Wake                              | -up on Start bit     | Detect Durin                            | g Sleep Mode                | Enable bit                            |                        |                 |
|                       | 1 = UARTx w                             | vill continue to s   | sample the U                            | kRX pin; interru            | upt generated or                      | n falling edge; b      | oit cleared     |
|                       | 0 = No wake-                            | up enabled           | nsing eage                              |                             |                                       |                        |                 |
| bit 6                 | LPBACK: UA                              | RTx I oopback        | Mode Select                             | bit                         |                                       |                        |                 |
|                       | 1 = Enable L                            | oopback mode         |                                         |                             |                                       |                        |                 |
|                       | 0 = Loopback                            | k mode is disab      | led                                     |                             |                                       |                        |                 |
| bit 5                 | ABAUD: Auto                             | -Baud Enable         | bit                                     |                             |                                       |                        |                 |
|                       | 1 = Enable ba                           | aud rate measu       | urement on th                           | e next charact              | er – requires red                     | ception of a Syr       | nc field (0x55) |
|                       | before ot                               | her data; cleare     | ed in hardwar                           | e upon comple               | etion                                 |                        |                 |
|                       |                                         | e measurement        |                                         | completed                   |                                       |                        |                 |
| Note 1: Re            | efer to Section                         | <b>17. "UART"</b> (D | S70188) in th                           | ne "dsPIC33F                | Family Reference                      | e <i>Manual"</i> for i | nformation on   |
| en                    | abling the UAR                          | T module for re      | eceive or tran                          | smit operation.             | · · · · · · · · · · · · · · · · · · · |                        |                 |

# REGISTER 20-1: UxMODE: UARTx MODE REGISTER

2: This feature is only available for the 16x BRG mode (BRGH = 0).

# REGISTER 21-13: CIBUFPNT2: ECAN™ FILTER 4-7 BUFFER POINTER REGISTER

| R/W-0  | R/W-0 | R/W-0   | R/W-0   | R/W-0   | R/W-0 | R/W-0   | R/W-0 |
|--------|-------|---------|---------|---------|-------|---------|-------|
|        | F7BP< | <3:0>   |         |         | F6BP  | <3:0>   |       |
| bit 15 |       |         |         |         |       |         | bit 8 |
|        |       |         |         |         |       |         |       |
| R/W-0  | R/W-0 | R/\\/_0 | R/\\/_0 | R/\\/_0 | R/W-0 | R/\\/_0 | R/W-0 |

| 1411 0 | 1411 0 | 1411 0 | 1411 9 | 1411 9 | 1411 9 | 1411 0 | 1411 6 |
|--------|--------|--------|--------|--------|--------|--------|--------|
|        | F5BP<  | <3:0>  |        |        | F4BP   | ><3:0> |        |
| bit 7  |        |        |        |        |        |        | bit 0  |

| Legend:           |                  |                        |                    |
|-------------------|------------------|------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, | , read as '0'      |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared   | x = Bit is unknown |
|                   |                  |                        |                    |

| bit 15-12 | F7BP<3:0>: RX Buffer Written when Filter 7 Hits bits |
|-----------|------------------------------------------------------|
| bit 11-8  | F6BP<3:0>: RX Buffer Written when Filter 6 Hits bits |
| bit 7-4   | F5BP<3:0>: RX Buffer Written when Filter 5 Hits bits |
| bit 3-0   | F4BP<3:0>: RX Buffer Written when Filter 4 Hits bits |

### REGISTER 21-14: CIBUFPNT3: ECAN™ FILTER 8-11 BUFFER POINTER REGISTER

| R/W-0  | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0  | R/W-0 |
|--------|-------|-------|-------|-------|-------|--------|-------|
|        | F11BP | <3:0> |       |       | F10BF | P<3:0> |       |
| bit 15 |       |       |       |       |       |        | bit 8 |
|        |       |       |       |       |       |        |       |
| R/W-0  | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0  | R/W-0 |
|        | F9BP< | <3:0> |       |       | F8BP  | <3:0>  |       |
| bit 7  |       |       |       |       |       |        | bit 0 |
|        |       |       |       |       |       |        |       |
| Laward |       |       |       |       |       |        |       |

| Legend:           |                  |                             |                    |
|-------------------|------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | as '0'             |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

| bit 15-12 | F11BP<3:0>: RX Buffer Written when Filter 11 Hits bits |
|-----------|--------------------------------------------------------|
| bit 11-8  | F10BP<3:0>: RX Buffer Written when Filter 10 Hits bits |
| bit 7-4   | F9BP<3:0>: RX Buffer Written when Filter 9 Hits bits   |
| bit 3-0   | F8BP<3:0>: RX Buffer Written when Filter 8 Hits bits   |

#### REGISTER 22-4: ADxCON4: ADCx CONTROL REGISTER 4

| U-0                               | U-0 | U-0              | U-0 | U-0                                | U-0        | U-0                | U-0   |  |
|-----------------------------------|-----|------------------|-----|------------------------------------|------------|--------------------|-------|--|
|                                   | —   |                  | _   | _                                  | _          | _                  | —     |  |
| bit 15                            |     |                  |     |                                    |            |                    | bit 8 |  |
|                                   |     |                  |     |                                    |            |                    |       |  |
| U-0                               | U-0 | U-0              | U-0 | U-0                                | R/W-0      | R/W-0              | R/W-0 |  |
| —                                 | —   | —                | —   | —                                  | DMABL<2:0> |                    |       |  |
| bit 7                             |     |                  |     |                                    |            |                    | bit 0 |  |
|                                   |     |                  |     |                                    |            |                    |       |  |
| Legend:                           |     |                  |     |                                    |            |                    |       |  |
| R = Readable bit W = Writable bit |     |                  | bit | U = Unimplemented bit, read as '0' |            |                    |       |  |
| -n = Value at POR                 |     | '1' = Bit is set |     | '0' = Bit is cleared               |            | x = Bit is unknown |       |  |

#### bit 15-3 Unimplemented: Read as '0'

bit 2-0

DMABL<2:0>: Selects Number of DMA Buffer Locations per Analog Input bits

111 = Allocates 128 words of buffer to each analog input

110 = Allocates 64 words of buffer to each analog input

101 = Allocates 32 words of buffer to each analog input

100 = Allocates 16 words of buffer to each analog input

011 = Allocates 8 words of buffer to each analog input

010 = Allocates 4 words of buffer to each analog input

001 = Allocates 2 words of buffer to each analog input

000 = Allocates 1 word of buffer to each analog input

# 25.7 MPLAB ICE 2000 High-Performance In-Circuit Emulator

The MPLAB ICE 2000 In-Circuit Emulator is intended to provide the product development engineer with a complete microcontroller design tool set for PIC microcontrollers. Software control of the MPLAB ICE 2000 In-Circuit Emulator is advanced by the MPLAB Integrated Development Environment, which allows editing, building, downloading and source debugging from a single environment.

The MPLAB ICE 2000 is a full-featured emulator system with enhanced trace, trigger and data monitoring features. Interchangeable processor modules allow the system to be easily reconfigured for emulation of different processors. The architecture of the MPLAB ICE 2000 In-Circuit Emulator allows expansion to support new PIC microcontrollers.

The MPLAB ICE 2000 In-Circuit Emulator system has been designed as a real-time emulation system with advanced features that are typically found on more expensive development tools. The PC platform and Microsoft<sup>®</sup> Windows<sup>®</sup> 32-bit operating system were chosen to best make these features available in a simple, unified application.

# 25.8 MPLAB REAL ICE In-Circuit Emulator System

MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs PIC<sup>®</sup> Flash MCUs and dsPIC<sup>®</sup> Flash DSCs with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit.

The MPLAB REAL ICE probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with the popular MPLAB ICD 2 system (RJ11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

MPLAB REAL ICE is field upgradeable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added, such as software breakpoints and assembly code trace. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, real-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables.

# 25.9 MPLAB ICD 2 In-Circuit Debugger

Microchip's In-Circuit Debugger, MPLAB ICD 2, is a powerful, low-cost, run-time development tool, connecting to the host PC via an RS-232 or high-speed USB interface. This tool is based on the Flash PIC MCUs and can be used to develop for these and other PIC MCUs and dsPIC DSCs. The MPLAB ICD 2 utilizes the in-circuit debugging capability built into the Flash devices. This feature, along with Microchip's In-Circuit Serial Programming<sup>™</sup> (ICSP<sup>™</sup>) protocol, offers costeffective, in-circuit Flash debugging from the graphical user interface of the MPLAB Integrated Development Environment. This enables a designer to develop and debug source code by setting breakpoints, single stepping and watching variables, and CPU status and peripheral registers. Running at full speed enables testing hardware and applications in real time. MPLAB ICD 2 also serves as a development programmer for selected PIC devices.

# 25.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an SD/MMC card for file storage and secure data applications.