

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	85
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 24x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj128mc510-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 2-1: RECOMMENDED MINIMUM CONNECTION

2.2.1 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits including DSCs to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μ F to 47 μ F.

2.3 Capacitor on Internal Voltage Regulator (VCAP/VDDCORE)

A low-ESR (< 5 Ohms) capacitor is required on the VCAP/VDDCORE pin, which is used to stabilize the voltage regulator output voltage. The VCAP/VDDCORE pin must not be connected to VDD, and must have a capacitor between 4.7 μ F and 10 μ F, 16V connected to ground. The type can be ceramic or tantalum. Refer to **Section 26.0** "Electrical Characteristics" for additional information.

The placement of this capacitor should be close to the VCAP/VDDCORE. It is recommended that the trace length not exceed one-quarter inch (6 mm). Refer to **Section 23.2** "**On-Chip Voltage Regulator**" for details.

2.4 Master Clear (MCLR) Pin

The $\overline{\text{MCLR}}$ pin provides for two specific device functions:

- Device Reset
- Device programming and debugging

During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the $\overline{\text{MCLR}}$ pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as shown in Figure 2-2, it is recommended that the capacitor C, be isolated from the $\overline{\text{MCLR}}$ pin during programming and debugging operations.

Place the components shown in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.

ote 1: $R \le 10 \text{ k}\Omega$ is recommended. A suggested starting value is $10 \text{ k}\Omega$. Ensure that the MCLR pin VIH and VIL specifications are met.

FIGURE 4-3: DATA MEMORY MAP FOR dsPIC33FJXXXMCX06/X08/X10 DEVICES WITH 8 KBS RAM

TABLE 4-5: INTERRUPT CONTROLLER REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	0800	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	—	0000
INTCON2	0082	ALTIVT	DISI	—	—	_				—	—	—	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	0000
IFS0	0084	—	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INTOIF	0000
IFS1	0086	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	IC8IF	IC7IF	AD2IF	INT1IF	CNIF	_	MI2C1IF	SI2C1IF	0000
IFS2	0088	T6IF	DMA4IF	—	OC8IF	OC7IF	OC6IF	OC5IF	IC6IF	IC5IF	IC4IF	IC3IF	DMA3IF	C1IF	C1RXIF	SPI2IF	SPI2EIF	0000
IFS3	008A	FLTAIF	—	DMA5IF	—	_	QEIIF	PWMIF	C2IF	C2RXIF	INT4IF	INT3IF	T9IF	T8IF	MI2C2IF	SI2C2IF	T7IF	0000
IFS4	008C	—	—	—	—	_	_	_	_	C2TXIF	C1TXIF	DMA7IF	DMA6IF	—	U2EIF	U1EIF	FLTBIF	0000
IEC0	0094	—	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0096	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	IC8IE	IC7IE	AD2IE	INT1IE	CNIE	—	MI2C1IE	SI2C1IE	0000
IEC2	0098	T6IE	DMA4IE	—	OC8IE	OC7IE	OC6IE	OC5IE	IC6IE	IC5IE	IC4IE	IC3IE	DMA3IE	C1IE	C1RXIE	SPI2IE	SPI2EIE	0000
IEC3	009A	FLTAIE	—	DMA5IE	—	—	QEIIE	PWMIE	C2IE	C2RXIE	INT4IE	INT3IE	T9IE	T8IE	MI2C2IE	SI2C2IE	T7IE	0000
IEC4	009C	—	—	—	—	_	_	—	—	C2TXIE	C1TXIE	DMA7IE	DMA6IE	—	U2EIE	U1EIE	FLTBIE	0000
IPC0	00A4	—		T1IP<2:0>	•	—	(C11P<2:0)>	—		IC1IP<2:0>		—	II	NT0IP<2:0>		4444
IPC1	00A6	—		T2IP<2:0>	•	—	(C2IP<2:0)>	—		IC2IP<2:0>		—	D	MA0IP<2:0	>	4444
IPC2	00A8	—	ι	J1RXIP<2:0)>	_	ę	SPI1IP<2:()>	—		SPI1EIP<2:0	>	—		T3IP<2:0>		4444
IPC3	00AA	—	—	—	—	—	D	MA1IP<2:	0>	—		AD1IP<2:0>	•	—	U	1TXIP<2:0	>	0444
IPC4	00AC	—		CNIP<2:0	>	—	—	—	_	—		MI2C1IP<2:0	>	—	S	2C1IP<2:0	>	4044
IPC5	00AE	—		IC8IP<2:02	>	—		IC7IP<2:0	>	—		AD2IP<2:0>	•	—	II	VT1IP<2:0>		4444
IPC6	00B0	—		T4IP<2:0>	•	—	(C4IP<2:0)>	—		OC3IP<2:0	>	—	D	MA2IP<2:0	>	4444
IPC7	00B2	—	ι	J2TXIP<2:()>	—	L	I2RXIP<2:	0>	—		INT2IP<2:0	>	—		T5IP<2:0>		4444
IPC8	00B4	—		C1IP<2:0>	>	—	C	1RXIP<2:	0>	—		SPI2IP<2:0	>	—	SI	PI2EIP<2:0	>	4444
IPC9	00B6	—		IC5IP<2:02	>	—		IC4IP<2:0	>	—		IC3IP<2:0>		—	D	MA3IP<2:0	>	4444
IPC10	00B8	—		OC7IP<2:0	>	—	(C6IP<2:0)>	—		OC5IP<2:0	>	—	I	C6IP<2:0>		4444
IPC11	00BA	—		T6IP<2:0>	•	—	D	MA4IP<2:	0>	—	—	—	—	—	C)C8IP<2:0>		4404
IPC12	00BC	—		T8IP<2:0>	•	—	N	II2C2IP<2:	0>	—		SI2C2IP<2:0	>	—		T7IP<2:0>		4444
IPC13	00BE	_	(C2RXIP<2:)>	_	I	NT4IP<2:()>	_		INT3IP<2:0	>	_		T9IP<2:0>		4444
IPC14	00C0	—	_	_	—	_		QEIIP<2:0	>	_		PWMIP<2:0	>	_		C2IP<2:0>		0444
IPC15	00C2			FLTAIP<2:0)>	_		_	—	_		DMA5IP<2:0	>	_		—		4040
IPC16	00C4		—	—	_	_		J2EIP<2:0)>	_		U1EIP<2:0>	•	_	F	LTBIP<2:0>	>	0444
IPC17	00C6		(C2TXIP<2:()>	_	C	1TXIP<2:	0>	_		DMA7IP<2:0	>		D	MA6IP<2:0	>	4444
INTTREG	00E0		—	—	_		ILR<	3:0>		_			VE	CNUM<6:0>				0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Reset Type	Clock Source	SYSRST Delay	System Clock Delay	FSCM Delay	Notes
POR	EC, FRC, LPRC	TPOR + TSTARTUP + TRST	—		1, 2, 3
	ECPLL, FRCPLL	Tpor + Tstartup + Trst	TLOCK	TFSCM	1, 2, 3, 5, 6
	XT, HS, SOSC	TPOR + TSTARTUP + TRST	Tost	TFSCM	1, 2, 3, 4, 6
	XTPLL, HSPLL	TPOR + TSTARTUP + TRST	Tost + Tlock	TFSCM	1, 2, 3, 4, 5, 6
BOR	EC, FRC, LPRC	TSTARTUP + TRST	—	_	3
	ECPLL, FRCPLL	Tstartup + Trst	TLOCK	TFSCM	3, 5, 6
	XT, HS, SOSC	TSTARTUP + TRST	Tost	TFSCM	3, 4, 6
	XTPLL, HSPLL	Tstartup + Trst	Tost + Tlock	TFSCM	3, 4, 5, 6
MCLR	Any Clock	Trst	—	_	3
WDT	Any Clock	Trst	—	_	3
Software	Any Clock	Trst	—	_	3
Illegal Opcode	Any Clock	Trst	—	_	3
Uninitialized W	Any Clock	Trst	—	_	3
Trap Conflict	Any Clock	Trst			3

TABLE 6-3: RESET DELAY TIMES FOR VARIOUS DEVICE RESETS

Note 1: TPOR = Power-on Reset delay (10 μ s nominal).

- **2:** TSTARTUP = Conditional POR delay of 20 μs nominal (if on-chip regulator is enabled) or 64 ms nominal Power-up Timer delay (if regulator is disabled). TSTARTUP is also applied to all returns from powered-down states, including waking from Sleep mode, if the regulator is enabled.
- 3: TRST = Internal state Reset time (20 µs nominal).
- **4:** Tos⊤ = Oscillator Start-up Timer. A 10-bit counter counts 1024 oscillator periods before releasing the oscillator clock to the system.
- **5**: TLOCK = PLL lock time (20 μs nominal).
- **6**: TFSCM = Fail-Safe Clock Monitor delay (100 μs nominal).

6.2.1 POR AND LONG OSCILLATOR START-UP TIMES

The oscillator start-up circuitry and its associated delay timers are not linked to the device Reset delays that occur at power-up. Some crystal circuits (especially low-frequency crystals) have a relatively long start-up time. Therefore, <u>one or more of the following conditions</u> is possible after SYSRST is released:

- · The oscillator circuit has not begun to oscillate.
- The Oscillator Start-up Timer has not expired (if a crystal oscillator is used).
- The PLL has not achieved a lock (if PLL is used).

The device will not begin to execute code until a valid clock source has been released to the system. Therefore, the oscillator and PLL start-up delays must be considered when the Reset delay time must be known.

6.2.2 FAIL-SAFE CLOCK MONITOR (FSCM) AND DEVICE RESETS

If the FSCM is enabled, it begins to monitor the system clock source when SYSRST is released. If a valid clock source is not available at this time, the device automatically switches to the FRC oscillator and the user can switch to the desired crystal oscillator in the Trap Service Routine.

6.2.2.1 FSCM Delay for Crystal and PLL Clock Sources

When the system clock source is provided by a crystal oscillator and/or the PLL, a small delay, TFSCM, is automatically inserted after the POR and PWRT delay times. The FSCM does not begin to monitor the system clock source until this delay expires. The FSCM delay time is nominally 500 μ s and provides additional time for the oscillator and/or PLL to stabilize. In most cases, the FSCM delay prevents an oscillator failure trap at a device Reset when the PWRT is disabled.

R/W-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0						
ALTIVT	DISI	_		_	—	—							
bit 15	-	·				•	bit 8						
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
	_	—	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP						
bit 7							bit 0						
Legend:													
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'							
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown						
bit 15 ALTIVT: Enable Alternate Interrupt Vector Table bit													
	1 = Use alter	1 = Use alternate vector table											
L:1 4 4	0 = Use standard (default) vector table												
DIT 14		1 = DIST instruction is active											
	0 = DISI instruction is not active												
bit 13-5	Unimplemen	ted: Read as '	0'										
bit 4	INT4EP: Exte	ernal Interrupt 4	Edge Detect	Polarity Selec	t bit								
	1 = Interrupt on negative edge												
	0 = Interrupt of	on positive edg	е										
bit 3	INT3EP: Exte	ernal Interrupt 3	B Edge Detect	Polarity Selec	t bit								
	1 = Interrupt on negative edge												
hit 0		on positive edg	e Edao Dotoot	Delarity Selee	t hit								
DIL Z	INIZEP: External Interrupt 2 Edge Detect Polarity Select bit												
	0 = Interrupt of	on positive edg	e										
bit 1	INT1EP: Exte	ernal Interrupt 1	Edge Detect	Polarity Selec	t bit								
	1 = Interrupt of	on negative ed	ge	-									
	0 = Interrupt of) = Interrupt on positive edge											
bit 0	INT0EP: Exte	ernal Interrupt (Edge Detect	Polarity Selec	t bit								
	1 = Interrupt of	on negative ed	ge										
		on positive edg	e										

REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2

10.0 POWER-SAVING FEATURES

Note: This data sheet summarizes the features of the dsPIC33FJXXXMCX06/X08/X10 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 9.
 "Watchdog Timer and Power-Saving Modes" (DS70196) in the "dsPIC33F Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The dsPIC33FJXXXMCX06/X08/X10 devices provide the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of circuits being clocked constitutes lower consumed power. dsPIC33FJXXXMCX06/X08/X10 devices can manage power consumption in four different ways:

- Clock frequency
- Instruction-based Sleep and Idle modes
- Software-controlled Doze mode
- · Selective peripheral control in software

Combinations of these methods can be used to selectively tailor an application's power consumption while still maintaining critical application features, such as timing-sensitive communications.

10.1 Clock Frequency and Clock Switching

dsPIC33FJXXXMCX06/X08/X10 devices allow a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or high-precision oscillators by simply changing the NOSC bits (OSC-CON<10:8>). The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in **Section 9.0 "Oscillator Configuration"**.

10.2 Instruction-Based Power-Saving Modes

dsPIC33FJXXXMCX06/X08/X10 devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution. Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembly syntax of the PWRSAV instruction is shown in Example 10-1.

Note: SLEEP_MODE and IDLE_MODE are constants defined in the assembler include file for the selected device.

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to "wake-up".

10.2.1 SLEEP MODE

Sleep mode has the following features:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption is reduced to a minimum, provided that no I/O pin is sourcing current.
- The Fail-Safe Clock Monitor does not operate during Sleep mode since the system clock source is disabled.
- The LPRC clock continues to run in Sleep mode if the WDT is enabled.
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode.
- Some device features or peripherals may continue to operate in Sleep mode. This includes items such as the input change notification on the I/O ports and peripherals that use an external clock input. Any peripheral that requires the system clock source for its operation is disabled in Sleep mode.

The device will wake-up from Sleep mode on any of the following events:

- Any interrupt source that is individually enabled
- · Any form of device Reset
- A WDT time-out

On wake-up from Sleep, the processor restarts with the same clock source that was active when Sleep mode was entered.

EXAMPLE 10-1: PWRSAV INSTRUCTION SYNTAX

PWRSAV #SLEEP_MODE PWRSAV #IDLE MODE ; Put the device into SLEEP mode ; Put the device into IDLE mode

REGISTER 16-4: PxSECMP: SPECIAL EVENT COMPARE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
SEVTDIR ⁽¹⁾			ç	SEVTCMP<14:8	_{}>} (2)						
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
			SEVTC	MP<7:0> ⁽²⁾							
bit 7							bit 0				
Legend:											
R = Readable	bit	W = Writable b	oit	U = Unimplemented bit, read as '0'							
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown				
bit 15	SEVTDIR: S	Special Event Trig	ger Time Ba	ase Direction bit	(1)						
	1 = A Specia	al Event Trigger w	/ill occur wh	en the PWM tim	ne base is cou	nting downwards	5				
	0 = A Specia	0 = A Special Event Trigger will occur when the PWM time base is counting upwards									

bit 14-0 SEVTCMP<14:0>: Special Event Compare Value bits⁽²⁾

Note 1: SEVTDIR is compared with PTDIR (PTMR<15>) to generate the Special Event Trigger.

2: SEVTCMP<14:0> is compared with PTMR<14:0> to generate the Special Event Trigger.

18.0 SERIAL PERIPHERAL **INTERFACE (SPI)**

This data sheet summarizes the features Note: of the dsPIC33FJXXXMCX06/X08/X10 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 18. "Serial Peripheral Interface (SPI)" (DS70206) in the "dsPIC33F Family Reference Manual", which is available the from Microchip web site (www.microchip.com)

The Serial Peripheral Interface (SPI) module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, ADC, etc. The SPI module is compatible with SPI and SIOP from Motorola®.

Note: In this section, the SPI modules are referred to together as SPIx, or separately as SPI1 and SPI2. Special Function Registers will follow a similar notation. For example, SPIxCON refers to the control register for the SPI1 or SPI2 module.

Each SPI module consists of a 16-bit shift register, SPIxSR (where x = 1 or 2), used for shifting data in and out, and a buffer register, SPIxBUF. A control register, SPIxCON, configures the module. Additionally, a status register, SPIxSTAT, indicates various status conditions.

The serial interface consists of 4 pins: SDIx (serial data input), SDOx (serial data output), SCKx (shift clock input or output) and SSx (active-low slave select).

In Master mode operation, SCK is a clock output, but in Slave mode, it is a clock input.

SPI MODULE BLOCK DIAGRAM **FIGURE 18-1:**

19.0 INTER-INTEGRATED CIRCUIT™ (I²C™)

Note: This data sheet summarizes the features of the dsPIC33FJXXXMCX06/X08/X10 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 19. Circuit™ "Inter-Integrated (l²C[™])" (DS70195) in the "dsPIC33F Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The Inter-Integrated Circuit (I²C) module, with its 16-bit interface, provides complete hardware support for both Slave and Multi-Master modes of the I²C serial communication standard.

The dsPIC33FJXXXMCX06/X08/X10 devices have up to two I²C interface modules, denoted as I2C1 and I2C2. Each I²C module has a 2-pin interface: the SCLx pin is clock and the SDAx pin is data.

Each I^2C module 'x' (x = 1 or 2) offers the following key features:

- I²C interface supports both master and slave operation.
- I²C Slave mode supports 7- and 10-bit addresses.
- I²C Master mode supports 7- and 10-bit addresses.
- I²C Port allows bidirectional transfers between master and slaves.
- Serial clock synchronization for the I²C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control).
- I²C supports multi-master operation; it detects bus collision and will arbitrate accordingly.

19.1 Operating Modes

The hardware fully implements all the master and slave functions of the I^2C Standard and Fast mode specifications, as well as 7 and 10-bit addressing.

The I²C module can operate either as a slave or a master on an I²C bus.

The following types of I^2C operation are supported:

- I²C slave operation with 7-bit address
- I²C slave operation with 10-bit address
- I²C master operation with 7 or 10-bit address

For details about the communication sequence in each of these modes, please refer to the "*dsPIC30F Family Reference Manual*".

19.2 I²C Registers

I2CxCON and I2CxSTAT are control and status registers, respectively. The I2CxCON register is readable and writable. The lower six bits of I2CxSTAT are read-only. The remaining bits of the I2CSTAT are read/write.

I2CxRSR is the shift register used for shifting data, whereas I2CxRCV is the buffer register to which data bytes are written, or from which data bytes are read. I2CxRCV is the receive buffer. I2CxTRN is the transmit register to which bytes are written during a transmit operation.

The I2CxADD register holds the slave address. A status bit, ADD10, indicates 10-bit Address mode. The I2CxBRG acts as the Baud Rate Generator (BRG) reload value.

In receive operations, I2CxRSR and I2CxRCV together form a double-buffered receiver. When I2CxRSR receives a complete byte, it is transferred to I2CxRCV and an interrupt pulse is generated.

NOTES:

REGISTER 21-10: CiCFG2: ECAN™ BAUD RATE CONFIGURATION REGISTER 2

U-0	R/W-x	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
—	WAKFIL	—	_	—	:	SEG2PH<2:0>	
bit 15							bit 8

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
SEG2PHTS	SAM	SEG1PH<2:0>				PRSEG<2:0>	
bit 7							bit 0

Lawards									
Legena:									
R = Readable	bit	W = Writable bit	U = Unimplemented bit,	read as '0'					
-n = Value at P	OR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown					
bit 15	Unimplement	ted: Read as '0'							
bit 14	WAKFIL: Sele	ect CAN bus Line Filter for	Nake-up bit						
0 = CAN bus line filter is not used for wake-up									
bit 13-11	Unimplemented: Read as '0'								
bit 10-8	bit 10-8 SEG2PH<2:0>: Phase Buffer Segment 2 bits								
	111 = Length is 8 x Tq								
	000 = Length	is 1 x Tq							
bit 7	SEG2PHTS:	Phase Segment 2 Time Sel	ect bit						
	1 = Freely programmable								
	0 = Maximum	of SEG1PH bits or Informa	tion Processing Time (IPT)), whichever is greater					
bit 6	SAM: Sample	of the CAN bus Line bit							
	1 = Bus line is sampled three times at the sample point								
	0 = Bus line is	s sampled once at the samp	le point						
bit 5-3	SEG1PH<2:0	>: Phase Buffer Segment 1	bits						
	111 = Length	is 8 x TQ							
	000 = Length	is 1 x TQ							
bit 2-0	PRSEG<2:0>	: Propagation Time Segme	nt bits						
	111 = Length	is 8 x TQ							
000 = Length is 1 x TQ									

REGISTER 21-15: CiBUFPNT4: ECAN™ FILTER 12-15 BUFFER POINTER REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	F15BI	><3:0>			F14E	3P<3:0>		
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	F13BI	><3:0>			F12E	3P<3:0>		
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown				
bit 15-12	F15BP<3:0>	RX Buffer Wri	tten when Fil	ter 15 Hits bits				
bit 11-8	F14BP<3:0>	RX Buffer Wri	tten when Fil	ter 14 Hits bits				
bit 7-4	F13BP<3:0>	RX Buffer Wri	tten when Fil	ter 13 Hits bits				
bit 3-0	F12BP<3:0>	RX Buffer Wri	tten when Fil	ter 12 Hits bits				

REGISTER 21-20: CIRXMnSID: ECAN™ ACCEPTANCE FILTER MASK n STANDARD IDENTIFIER R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x SID10 SID9 SID8 SID7 SID6 SID5 SID4 SID3 bit 15 bit 8

R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x
SID2	SID1	SID0	—	MIDE	—	EID17	EID16
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-5	SID<10:0>: Standard Identifier bits
	1 = Include bit SIDx in filter comparison
	0 = Bit SIDx is don't care in filter comparison
bit 4	Unimplemented: Read as '0'
bit 3	MIDE: Identifier Receive Mode bit
	 1 = Match only message types (standard or extended address) that correspond to EXIDE bit in filter 0 = Match either standard or extended address message if filters match
	(i.e., if (Filter SID) = (Message SID) or if (Filter SID/EID) = (Message SID/EID))
bit 2	Unimplemented: Read as '0'
bit 1-0	EID<17:16>: Extended Identifier bits
	1 = Include bit EIDx in filter comparison
	 Bit EIDx is don't care in filter comparison

REGISTER 21-21: CIRXMnEID: ECAN™ ACCEPTANCE FILTER MASK n EXTENDED IDENTIFIER

R/W-x	R/W-x	R/M-x	R/W-x	R/W-x	R/W-x	R/M-x	R/W-x
EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8
bit 15							bit 8

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	
bit 7 bit 0								

Legend:					
R = Readable bit W	V = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1	l' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-0 EID<15:0>: Extended Identifier bits

1 = Include bit EIDx in filter comparison

0 = Bit EIDx is don't care in filter comparison

TABLE 24-2: INSTRUCTION SET OVERVIEW

Base Instr #	Assembly Mnemonic	Assembly Syntax		Description	# of Words	# of Cycles	Status Flags Affected
1	ADD	ADD	Acc	Add Accumulators	1	1	OA,OB,SA,SB
		ADD	f	f = f + WREG	1	1	C,DC,N,OV,Z
		ADD	f,WREG	WREG = f + WREG	1	1	C,DC,N,OV,Z
		ADD	#lit10,Wn	Wd = lit10 + Wd	1	1	C,DC,N,OV,Z
		ADD	Wb,Ws,Wd	Wd = Wb + Ws	1	1	C,DC,N,OV,Z
		ADD	Wb,#lit5,Wd	Wd = Wb + lit5	1	1	C,DC,N,OV,Z
		ADD	Wso,#Slit4,Acc	16-bit Signed Add to Accumulator	1	1	OA,OB,SA,SB
2	ADDC	ADDC	f	f = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	f,WREG	WREG = $f + WREG + (C)$	1	1	C,DC,N,OV,Z
		ADDC	#lit10,Wn	Wd = lit10 + Wd + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,Ws,Wd	Wd = Wb + Ws + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,#lit5,Wd	Wd = Wb + lit5 + (C)	1	1	C,DC,N,OV,Z
3	AND	AND	f	f = f .AND. WREG	1	1	N,Z
		AND	f,WREG	WREG = f .AND. WREG	1	1	N,Z
		AND	#lit10,Wn	Wd = lit10 .AND. Wd	1	1	N,Z
		AND	Wb,Ws,Wd	Wd = Wb .AND. Ws	1	1	N,Z
		AND	Wb,#lit5,Wd	Wd = Wb .AND. lit5	1	1	N,Z
4	ASR	ASR	f	f = Arithmetic Right Shift f	1	1	C.N.OV.Z
		ASR	f,WREG	WREG = Arithmetic Right Shift f	1	1	C.N.OV.Z
		ASR	Ws,Wd	Wd = Arithmetic Right Shift Ws	1	1	C.N.OV.Z
		ASR	Wb,Wns,Wnd	Wnd = Arithmetic Right Shift Wb by Wns	1	1	N.Z
		ASR	Wb.#lit5.Wnd	Wnd = Arithmetic Right Shift Wb by lit5	1	1	N.Z
5	BCLR	BCLR	f.#bit4	Bit Clear f	1	1	None
Ũ	DODIN	BCLR	Ws.#bit4	Bit Clear Ws	1	1	None
6	BRA	BRA	C.Expr	Branch if Carry	1	1(2)	None
-		BRA	GE.Expr	Branch if greater than or equal	1	1 (2)	None
		BRA	GEU. Expr	Branch if unsigned greater than or equal	1	1 (2)	None
		BRA	GT. Expr	Branch if greater than	1	1 (2)	None
		BRA	GTU Expr	Branch if unsigned greater than	1	1 (2)	None
		BRA	LE Expr	Branch if less than or equal	1	1 (2)	None
		BRA	LEU Expr	Branch if unsigned less than or equal	1	1 (2)	None
		BRA	LT Expr	Branch if less than	1	1 (2)	None
		BRA	LTIL Expr	Branch if unsigned less than	1	1 (2)	None
		BRA	N Expr	Branch if Negative	1	1 (2)	None
		BRA	NC Expr	Branch if Not Carry	1	1 (2)	None
		BRA	NN Expr	Branch if Not Negative	1	1 (2)	None
		BRA	NOV Expr	Branch if Not Overflow	1	1 (2)	None
		BRA	NZ Expr	Branch if Not Zero	1	1 (2)	None
		BRA	OA Expr	Branch if Accumulator A overflow	1	1 (2)	None
		DDA	OP Ever	Branch if Accumulator B overflow	1	1 (2)	None
		DDA	OV Ever	Branch if Overflow	1	1 (2)	None
		DDA	CA Evor	Branch if Accumulator A saturated	1	1 (2)	None
		DDA	CP Evor	Branch if Accumulator B saturated	1	1 (2)	None
		DDA	SB, EXPI	Branch I Inconditionally	1	2	None
		DDA	Z Ever	Branch if Zero	1	1 (2)	None
		BRA	Wn	Computed Branch	1	· (4)	None
7	BCFT	BCDT	f #bit4	Bit Set f	1	1	None
1	DOLL	DODU	L, HULLY	Dit Sot We	1	1	None
Q	DCW	DOLT DOW C	WS, #DIL4		1	1	None
0	Mea	DOW.C	Wa Wh	Write Z bit to Wes/Wh	1	1	None
٥	DTC	DDW.4	f #bit4		1	1	None
5	D10	DIG	L, HULLA		1	1	None
		DIG.	ws,#D1L4	Dir iuggie wa	I	1	NULLE

25.7 MPLAB ICE 2000 High-Performance In-Circuit Emulator

The MPLAB ICE 2000 In-Circuit Emulator is intended to provide the product development engineer with a complete microcontroller design tool set for PIC microcontrollers. Software control of the MPLAB ICE 2000 In-Circuit Emulator is advanced by the MPLAB Integrated Development Environment, which allows editing, building, downloading and source debugging from a single environment.

The MPLAB ICE 2000 is a full-featured emulator system with enhanced trace, trigger and data monitoring features. Interchangeable processor modules allow the system to be easily reconfigured for emulation of different processors. The architecture of the MPLAB ICE 2000 In-Circuit Emulator allows expansion to support new PIC microcontrollers.

The MPLAB ICE 2000 In-Circuit Emulator system has been designed as a real-time emulation system with advanced features that are typically found on more expensive development tools. The PC platform and Microsoft[®] Windows[®] 32-bit operating system were chosen to best make these features available in a simple, unified application.

25.8 MPLAB REAL ICE In-Circuit Emulator System

MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs PIC[®] Flash MCUs and dsPIC[®] Flash DSCs with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit.

The MPLAB REAL ICE probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with the popular MPLAB ICD 2 system (RJ11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

MPLAB REAL ICE is field upgradeable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added, such as software breakpoints and assembly code trace. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, real-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables.

25.9 MPLAB ICD 2 In-Circuit Debugger

Microchip's In-Circuit Debugger, MPLAB ICD 2, is a powerful, low-cost, run-time development tool, connecting to the host PC via an RS-232 or high-speed USB interface. This tool is based on the Flash PIC MCUs and can be used to develop for these and other PIC MCUs and dsPIC DSCs. The MPLAB ICD 2 utilizes the in-circuit debugging capability built into the Flash devices. This feature, along with Microchip's In-Circuit Serial Programming[™] (ICSP[™]) protocol, offers costeffective, in-circuit Flash debugging from the graphical user interface of the MPLAB Integrated Development Environment. This enables a designer to develop and debug source code by setting breakpoints, single stepping and watching variables, and CPU status and peripheral registers. Running at full speed enables testing hardware and applications in real time. MPLAB ICD 2 also serves as a development programmer for selected PIC devices.

25.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an SD/MMC card for file storage and secure data applications.

FIGURE 26-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING CHARACTERISTICS

FIGURE 26-24: ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS<1:0> = 01, SIMSAM = 0, ASAM = 0, SSRC<2:0> = 000)

FIGURE 26-25: ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS<1:0> = 01, SIMSAM = 0, ASAM = 1, SSRC<2:0> = 111, SAMC<4:0> = 00001)

100-Lead Plastic Thin Quad Flatpack (PF) – 14x14x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-110B

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com