

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	85
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 24x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj128mc510t-i-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

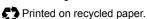
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, rfPIC, SmartShunt and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.


FilterLab, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, nanoWatt XLP, PICkit, PICDEM, PICDEM.net, PICtail, PIC³² logo, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

 $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2009, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
WREG0	0000							•	Working Re	gister 0		•			•	•	•	0000
WREG1	0002								Working Re	gister 1								0000
WREG2	0004								Working Re	gister 2								0000
WREG3	0006								Working Re	gister 3								0000
WREG4	8000								Working Re	gister 4								0000
WREG5	000A								Working Re	gister 5								0000
WREG6	000C								Working Re	gister 6								0000
WREG7	000E								Working Re	gister 7								0000
WREG8	0010								Working Re	gister 8								0000
WREG9	0012								Working Re	gister 9								0000
WREG10	0014								Working Re	gister 10								0000
WREG11	0016								Working Re	gister 11								0000
WREG12	0018								Working Reg	gister 12								0000
WREG13	001A								Working Reg	gister 13								0000
WREG14	001C								Working Reg	gister 14								0000
WREG15	001E							1	Working Reg	gister 15								0800
SPLIM	0020							Stac	k Pointer Li	mit Register								xxxx
ACCAL	0022							Accum	ulator A Low	Word Regi	ster							0000
ACCAH	0024							Accumu	ulator A High	word Regi	ster							0000
ACCAU	0026							Accumu	lator A Uppe	er Word Reg	ister							0000
ACCBL	0028							Accum	ulator B Low	Word Regi	ster							0000
ACCBH	002A							Accumu	ulator B High	word Regi	ster							0000
ACCBU	002C							Accumu	lator B Uppe	er Word Reg	ister							0000
PCL	002E							Program	Counter Lo	w Word Reg	gister							0000
PCH	0030	_	_	_	_	_	_	_	_			Progra	m Counter	High Byte R	Register			0000
TBLPAG	0032	_	_	_	_	_	_	_	-			Table F	Page Addres	ss Pointer R	Register			0000
PSVPAG	0034	_	_	_	_	_	_	—	_		Progra	am Memory	Visibility Pa	age Addres	s Pointer Re	egister		0000
RCOUNT	0036							Repe	at Loop Cou	inter Registe	er							xxxx
DCOUNT	0038								DCOUNT									xxxx
DOSTARTL	003A							DOS	TARTL<15:	1>							0	xxxx
DOSTARTH	003C	_	_	_	_	_	_	_	_	_	_			DOSTAF	RTH<5:0>			00xx
DOENDL	003E							DOE	NDL<15:1	>							0	xxxx
DOENDH	0040	_	_	—	—	_	—	—	—		—			DOE	NDH			00xx
SR	0042	OA	OB	SA	SB	OAB	SAB	DA	DC	IPL2	IPL1	IPL0	RA	Ν	OV	Z	С	0000
CORCON	0044		_	_	US	EDT		DL<2:0>		SATA	SATB	SATDW	ACCSAT	IPL3	PSV	RND	IF	0020
MODCON	0046	XMODEN	YMODEN	_	—		BWM	1<3:0>			YWM	<3:0>	•		XWM	<3:0>		0000
XMODSRT	0048							X	(S<15:1>								0	xxxx
XMODEND	004A								(E<15:1>								1	xxxx

TABLE 4-1. CPU CORE REGISTERS MAP

TABLE 4-2	25:	ECAN2	REGIS	STER MA	AP WHE	N C2C1	RL1.W	IN = 1	FOR ds	PIC33FJ		3708/71	0 DEVIC	CES				
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Reset
	0500-				-	-		Se	e definitior	when WIN	= x							
0001150174	051E		505			r	5055		F1BP<3:0> F0BP<3:0>									
C2BUFPNT1	0520		-	P<3:0>				P<3:0>										0000
C2BUFPNT2	0522			P<3:0>			-	D<3:0>				P<3:0>				><3:0>		0000
C2BUFPNT3 C2BUFPNT4	0524			8P<3:0> 8P<3:0>				P<3:0>				P<3:0> P<3:0>			-	2<3:0>		0000
	0526		F15B	SP<3:0>		10.25	F14B	P<3:0>						MIDE	F12BI	><3:0>	17:16>	0000
C2RXM0SID C2RXM0EID	0530 0532					10:3> 15:8>					SID<2:0>			MIDE <7:0>	_	EIDS	17:16>	XXXX
C2RXM0EID	0532					10:3>					SID<2:0>			MIDE	_	EID-	17:16>	XXXX
C2RXM15ID	0534					15:8>					310~2.02			<7:0>	_	EIDS	17.10-	xxxx
C2RXM1LID	0538					10:3>					SID<2:0>			MIDE	_	FIDe	17:16>	xxxx
C2RXM2EID	053A					15:8>					010 -2.0		EID:	<7:0>			17.10	xxxx
C2RXF0SID	0540					10:3>					SID<2:0>		_	EXIDE	_	FID<	17:16>	XXXX
C2RXF0EID	0542				-	15:8>					012 210		FID	<7:0>		2.0		xxxx
C2RXF1SID	0544				SID<10:3>					SID<2:0>		_	EXIDE	_	EID<	17:16>	xxxx	
C2RXF1EID	0546		EID<15:8>							EID	<7:0>				xxxx			
C2RXF2SID	0548				SID<	10:3>					SID<2:0>		_	EXIDE	_	EID<	17:16>	xxxx
C2RXF2EID	054A				EID<	15:8>							EID	<7:0>				xxxx
C2RXF3SID	054C				SID<	10:3>					SID<2:0>			EXIDE	_	EID<	17:16>	xxxx
C2RXF3EID	054E				EID<	15:8>							EID	<7:0>				xxxx
C2RXF4SID	0550				SID<	10:3>					SID<2:0>		_	EXIDE	—	EID<	17:16>	xxxx
C2RXF4EID	0552				EID<	15:8>							EID	<7:0>				xxxx
C2RXF5SID	0554				SID<	10:3>					SID<2:0>			EXIDE	—	EID<	17:16>	xxxx
C2RXF5EID	0556				EID<	15:8>							EID	<7:0>				xxxx
C2RXF6SID	0558				SID<	10:3>					SID<2:0>			EXIDE		EID<	17:16>	xxxx
C2RXF6EID	055A				EID<	15:8>							EID	<7:0>				xxxx
C2RXF7SID	055C				SID<	10:3>					SID<2:0>			EXIDE		EID<	17:16>	xxxx
C2RXF7EID	055E				EID<	15:8>							EID	<7:0>		_		xxxx
C2RXF8SID	0560				SID<	10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C2RXF8EID	0562				EID<	15:8>							EID	<7:0>				xxxx
C2RXF9SID	0564				SID<	10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C2RXF9EID	0566				EID<	15:8>							EID	<7:0>		1		xxxx
C2RXF10SID	0568				SID<	10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C2RXF10EID	056A				EID<	15:8>							EID	<7:0>				xxxx

TABLE 4-25: ECAN2 REGISTER MAP WHEN C2CTRL1.WIN = 1 FOR dsPIC33FJXXXMC708/710 DEVICES

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.6 Interfacing Program and Data Memory Spaces

The dsPIC33FJXXXMCX06/X08/X10 architecture uses a 24-bit wide program space and a 16-bit wide data space. The architecture is also a modified Harvard scheme, meaning that data can also be present in the program space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both spaces.

Aside from normal execution, the dsPIC33FJXXXMCX06/X08/X10 architecture provides two methods by which program space can be accessed during operation:

- Using table instructions to access individual bytes or words anywhere in the program space
- Remapping a portion of the program space into the data space (Program Space Visibility)

Table instructions allow an application to read or write to small areas of the program memory. This capability makes the method ideal for accessing data tables that need to be updated from time to time. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for look ups from a large table of static data. It can only access the least significant word of the program word.

4.6.1 ADDRESSING PROGRAM SPACE

Since the address ranges for the data and program spaces are 16 and 24 bits, respectively, a method is needed to create a 23-bit or 24-bit program address from 16-bit data registers. The solution depends on the interface method to be used.

For table operations, the 8-bit Table Page register (TBLPAG) is used to define a 32K word region within the program space. This is concatenated with a 16-bit EA to arrive at a full 24-bit program space address. In this format, the Most Significant bit of TBLPAG is used to determine if the operation occurs in the user memory (TBLPAG<7> = 0) or the configuration memory (TBLPAG<7> = 1).

For remapping operations, the 8-bit Program Space Visibility register (PSVPAG) is used to define a 16K word page in the program space. When the Most Significant bit of the EA is '1', PSVPAG is concatenated with the lower 15 bits of the EA to form a 23-bit program space address. Unlike table operations, this limits remapping operations strictly to the user memory area.

Table 4-38 and Figure 4-9 show how the program EA is created for table operations and remapping accesses from the data EA. Here, P<23:0> refers to a program space word, whereas D<15:0> refers to a data space word.

TABLE 4-38: PROGRAM SPACE ADDRESS CONSTRUCTION

	Access	Program Space Address								
Access Type	Space	<23>	<22:16>	<15>	<14:1>	<0>				
Instruction Access	User	0		PC<22:1>	>	0				
(Code Execution)			0xxx xxxx :	xxxx xx	xx xxxx xxx0					
TBLRD/TBLWT	User	TB	LPAG<7:0>		Data EA<15:0>					
(Byte/Word Read/Write)		0	xxx xxxx	xxxx xxxx xxxx xxxx						
	Configuration	TB	LPAG<7:0>		Data EA<15:0>					
		1	xxx xxxx	xxxx x	xxx xxxx xxxx					
Program Space Visibility	User	0	PSVPAG<							
(Block Remap/Read)		0	xxxx xxx							

Note 1: Data EA<15> is always '1' in this case, but is not used in calculating the program space address. Bit 15 of the address is PSVPAG<0>.

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
		IC5IP<2:0>		_		IC4IP<2:0>	
bit 15							bit
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—		IC3IP<2:0>		_		DMA3IP<2:0>	
bit 7							bit
Legend:							
R = Readab	le bit	W = Writable I	oit	U = Unimpler	mented bit, rea	ad as '0'	
n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown
bit 15	Unimpleme	nted: Read as 'd)'				
bit 14-12	IC5IP<2:0>:	Input Capture C	hannel 5 Inte	errupt Priority b	its		
	111 = Interr	upt is priority 7 (ł	nighest priori	ty interrupt)			
	•						
	•						
		upt is priority 1					
		upt source is disa					
bit 11	-	nted: Read as 'o					
bit 10-8		Input Capture C			its		
	111 = Interr	upt is priority 7 (h	nignest priori	ty interrupt)			
	•						
	•						
		upt is priority 1 upt source is disa	abled				
bit 7		nted: Read as '					
bit 6-4		Input Capture C		errunt Priority b	its		
		upt is priority 7 (h					
	•		0 1	, ,			
	•						
	• 001 = Interr	upt is priority 1					
		upt source is disa	abled				
bit 3	Unimpleme	nted: Read as 'o)'				
bit 2-0	DMA3IP<2:	0>: DMA Channe	el 3 Data Tra	nsfer Complete	Interrupt Price	rity bits	
	111 = Interr	upt is priority 7 (ł	nighest priori	ty interrupt)			
	•						
	•						
		upt is priority 1					
	000 = Interr						

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
_		FLTAIP<2:0>			—	—	_
bit 15				·	·	-	bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—		DMA5IP<2:0>			—	—	
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15	Unimpleme	nted: Read as '	0'				
bit 14-12	FLTAIP<2:0	>: PWM Fault A	Interrupt Pric	ority bits			
	111 = Interr	upt is priority 7 (highest priorit	y interrupt)			
	•						
	•						
	001 = Interr	upt is priority 1					
	000 = Interr	upt source is dis	abled				
bit 11-7	Unimpleme	nted: Read as '	0'				
bit 6-4	DMA5IP<2:	0>: DMA Chann	el 5 Data Tra	nsfer Complete	e Interrupt Prior	ity bits	
	111 = Interr	upt is priority 7 (highest priorit	y interrupt)			
	•						
	•						
	001 = Interr	upt is priority 1					
		upt source is dis	abled				
bit 3-0	Unimpleme	nted: Read as '	0'				

REGISTER 7-30: IPC15: INTERRUPT PRIORITY CONTROL REGISTER 15

REGISTER 13-2: TyCON (T3CON, T5CON, T7CON OR T9CON) CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON ⁽¹⁾	—	TSIDL ⁽²⁾	_	—	—	—	—
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0
—	TGATE ⁽¹⁾	TCKPS	<1:0> ⁽¹⁾	—	—	TCS ^(1,3)	—
bit 7							bit 0

Legend:				
R = Readab	le bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value a	t POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15	TON: Tim	ery On bit ⁽¹⁾		
		16-bit Timery 16-bit Timery		
bit 14	Unimpler	nented: Read as '0'		
bit 13	TSIDL: St	op in Idle Mode bit ⁽²⁾		
		ntinue module operation who	en device enters Idle mode e mode	
bit 12-7	Unimpler	nented: Read as '0'		
bit 6	TGATE: 1	imery Gated Time Accumu	lation Enable bit ⁽¹⁾	
	When TC This bit is			
	$\frac{\text{When TC}}{1 = \text{Gates}}$	<u>S = 0:</u> I time accumulation enabled	4	
		time accumulation disable		
bit 5-4	TCKPS<1	I:0>: Timer3 Input Clock Pr	escale Select bits ⁽¹⁾	
	11 = 1:25	6		
	10 = 1:64			
	01 = 1:8 00 = 1:1			
bit 3-2		nented: Read as '0'		
bit 1	•	ery Clock Source Select bit	(1.3)	
		nal clock from pin TyCK (on		
		al clock (FCY)	the hong edge	
bit 0	Unimpler			

- 2: When 32-bit timer operation is enabled (T32 = 1) in the Timer Control register (TxCON<3>), the TSIDL bit must be cleared to operate the 32-bit timer in Idle mode.
- 3: The TyCK pin is not available on all timers. Refer to the "Pin Diagrams" section for the available pins.

REGISTER 21-5: CIFIFO: ECAN™ FIFO STATUS REGISTER

U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
	_			FBP	<5:0>		
bit 15		·					bit 8
U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
	—			FNRI	B<5:0>		L:1 0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable b	pit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-14	Unimpleme	nted: Read as 'o)'				
bit 13-8	FBP<5:0>:	FIFO Write Buffe	r Pointer bits				
	011111 = R						
	011110 = R	B30 buffer					
	 000001 = T	RB1 buffer					
	000000 = T	RB0 buffer					
bit 7-6	Unimpleme	nted: Read as 'c)'				
bit 5-0	FNRB<5:0>	: FIFO Next Rea	d Buffer Poin	ter bits			
	011111 = R	B31 buffer					
	011110 = R	B30 buffer					
	 000001 = T	RB1 buffer					

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID5	EID4	EID3	EID2	EID1	EID0	RTR	RB1
bit 15							bit 8
U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	—	RB0	DLC3	DLC2	DLC1	DLC0
bit 7	·				•	•	bit 0
Legend:							
R = Readable	hit	W = Writable	hit	II = I Inimpler	mented hit read	as '0'	

REGISTER 21-29: CiTRBnDLC: ECAN™ BUFFER n DATA LENGTH CONTROL (n = 0, 1, ..., 31)

Legend:				
R = Readable bit	Readable bit W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-10	EID<5:0>: Extended Identifier bits
bit 9	RTR: Remote Transmission Request bit
	 1 = Message will request remote transmission 0 = Normal message
bit 8	RB1: Reserved Bit 1
	User must set this bit to '0' per CAN protocol.
bit 7-5	Unimplemented: Read as '0'
bit 4	RB0: Reserved Bit 0
	User must set this bit to '0' per CAN protocol.
bit 3-0	DLC<3:0>: Data Length Code bits

REGISTER 21-30: CiTRBnDm: ECANTM BUFFER n DATA FIELD BYTE m (n = 0, 1, ..., 31; m = 0, 1, ..., 7)⁽¹⁾

| R/W-x |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TRBnDm7 | TRBnDm6 | TRBnDm5 | TRBnDm4 | TRBnDm3 | TRBnDm2 | TRBnDm1 | TRBnDm0 |
| bit 7 | | | | | | | bit 0 |

Legend:						
R = Readable bit	W = Writable bit	W = Writable bit U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 7-0 **TRBnDm<7:0>:** Data Field Buffer 'n' Byte 'm' bits

Note 1: The Most Significant Byte contains byte (m + 1) of the buffer.

REGISTER 22-2: ADxCON2: ADCx CONTROL REGISTER 2 (where x = 1 or 2)

R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0			
VCFG<2:0>					CSCNA	CHPS	<1:0>			
bit 15			·				bit 8			
R-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
BUFS			SMP	<3:0>		BUFM	ALTS			
bit 7							bit (
Legend:										
R = Readabl	e bit	W = Writable	e bit	U = Unimple	mented bit, rea	d as '0'				
-n = Value at		'1' = Bit is se	et	'0' = Bit is cl		x = Bit is unkr	nown			
bit 15-13	VCFG<2:0>:	Converter Vo	Itage Reference	Configuration	n bits					
		Vref+	VREF-							
	000	Avdd	Avss							
	001 Exte	ernal VREF+	Avss							
	010	AVDD	External VREF-							
	011 Exte	ernal VREF+	External VREF- Avss							
bit 12-11										
bit 12-11	-	nted: Read as	tions for CH0+ d	uring Sampla	A hit					
	1 = Scan inp	-		uning Sample	A DI					
	0 = Do not s									
bit 9-8	CHPS<1:0>:	Selects Chan	nels Utilized bits	6						
			1:0> is: U-0, Ur	nimplemente	d, Read as '0'					
	1x = Converts CH0, CH1, CH2 and CH3 01 = Converts CH0 and CH1									
	01 = Convert		пі							
bit 7	BUFS: Buffer	r Fill Status bit	(only valid whe	n BUFM = 1)						
			second half of b		ould access dat	ta in the first hal	lf			
			first half of buffe	er, user should	l access data in	the second hal	lf			
bit 6	-	nted: Read as								
bit 5-2			nent Rate for DN	/A Addresses	bits or number	of sample/conv	version			
	operations pe	•	MA address o	or generates	interrunt after	completion of	f everv 16th			
		ple/conversion		y generates	interrupt alter	completion of	r every rou			
			MA address o	or generates	interrupt after	completion of	f every 15th			
	samp	ple/conversion	operation							
	•									
	• 0001 = Incre	ements the D	MA address o	or generates	interrupt after	completion a	of every 2nd			
		le/conversion				6 1.0				
		ements the le/conversion	DMA address operation	or generat	es interrupt a	after completic	on of every			
bit 1	BUFM: Buffe	r Fill Mode Se	elect bit							
			f buffer on first ir ffer from the beg		e second half c	of buffer on next	interrupt			
	-			-						
bit 0	ALTS: Altern	-	ple Mode Selec	t bit						
bit 0		ate Input Sam	ple Mode Selec lects for Sample		nple and Samp	e B on next sar	nple			

REGISTER 22-4: ADxCON4: ADCx CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—		—		—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	—	—	-	—	DMABL<2:0>		
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable b	bit	U = Unimplemented bit, read as '0'			
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	eared x = Bit is unknown		

bit 15-3 Unimplemented: Read as '0'

bit 2-0

DMABL<2:0>: Selects Number of DMA Buffer Locations per Analog Input bits

111 = Allocates 128 words of buffer to each analog input

110 = Allocates 64 words of buffer to each analog input

101 = Allocates 32 words of buffer to each analog input

100 = Allocates 16 words of buffer to each analog input

011 = Allocates 8 words of buffer to each analog input

010 = Allocates 4 words of buffer to each analog input

001 = Allocates 2 words of buffer to each analog input

000 = Allocates 1 word of buffer to each analog input

Bit Field	Register	Description
BWRP	FBS	Boot Segment Program Flash Write Protection 1 = Boot segment may be written 0 = Boot segment is write-protected
BSS<2:0>	FBS	Boot Segment Program Flash Code Protection Size X11 = No Boot program Flash segment
		Boot space is 1K IW less VS 110 = Standard security; boot program Flash segment starts at End of VS, ends at 0007FEh 010 = High security; boot program Flash segment starts at End of VS, ends at 0007FEh
		Boot space is 4K IW less VS 101 = Standard security; boot program Flash segment starts at End of VS, ends at 001FFEh 001 = High security; boot program Flash segment starts at End of VS, ends at 001FFEh
		Boot space is 8K IW less VS 100 = Standard security; boot program Flash segment starts at End of VS, ends at 003FFEh 000 = High security; boot program Flash segment starts at End of VS, ends at 003FFEh
RBS<1:0>	FBS	Boot Segment RAM Code Protection 11 = No Boot RAM defined 10 = Boot RAM is 128 Bytes 01 = Boot RAM is 256 Bytes 00 = Boot RAM is 1024 Bytes
SWRP	FSS	Secure Segment Program Flash Write Protection 1 = Secure segment may be written 0 = Secure segment is write-protected

TABLE 23-2: dsPIC33FJXXXMCX06/X08/X10 CONFIGURATION BITS DESCRIPTION

IABL	E 24-2:	INSTRUCTION SET OVERVIEW (CONTINUED)									
Base Instr #	Assembly Mnemonic			# of Words	# of Cycles	Status Flags Affected					
10	BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None				
		BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None				
11	BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None				
		BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None				
12	BTST	BTST	f,#bit4	Bit Test f	1	1	Z				
		BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С				
		BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z				
		BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С				
		BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z				
13	BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z				
		BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С				
		BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z				
14	CALL	CALL	lit23	Call subroutine	2	2	None				
		CALL	Wn	Call indirect subroutine	1	2	None				
15	CLR	CLR	f	f = 0x0000	1	1	None				
		CLR	WREG	WREG = 0x0000	1	1	None				
		CLR	Ws	Ws = 0x0000	1	1	None				
		CLR	Acc,Wx,Wxd,Wy,Wyd,AWB	Clear Accumulator	1	1	OA,OB,SA,SB				
16	CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO,Sleep				
17	COM	СОМ	f	$f = \overline{f}$	1	1	N,Z				
		СОМ	f,WREG	WREG = \overline{f}	1	1	N,Z				
		СОМ	Ws,Wd	$Wd = \overline{Ws}$	1	1	N,Z				
18	CP	CP	f	Compare f with WREG	1	1	C,DC,N,OV,Z				
10	CF	CP	Wb,#lit5	Compare Wb with lit5	1	1	C,DC,N,OV,Z				
		CP	Wb,Ws	Compare Wb with Ws (Wb – Ws)	1	1	C,DC,N,OV,Z				
19	CPO	CPO	f	Compare f with 0x0000	1	1	C,DC,N,OV,Z				
19	CPU	CPO	Ws	Compare Ws with 0x0000	1	1	C,DC,N,OV,Z				
20	СРВ		f	Compare f with WREG, with Borrow	1	1					
20	CPB	CPB		Compare Wb with lit5, with Borrow	1	1	C,DC,N,OV,Z				
		CPB CPB	Wb,#lit5 Wb,Ws	Compare Wb with Ns, with Borrow (Wb – Ws – \overline{C})	1	1	C,DC,N,OV,Z C,DC,N,OV,Z				
21	CPSEQ	CPSEQ	Wb, Wn	Compare Wb with Wn, skip if =	1	1 (2 or 3)	None				
22	CPSGT	CPSGT	Wb, Wn	Compare Wb with Wn, skip if >	1	(2 or 3)	None				
23	CPSLT	CPSLT	Wb, Wn	Compare Wb with Wn, skip if <	1	1 (2 or 3)	None				
24	CPSNE	CPSNE	Wb, Wn	Compare Wb with Wn, skip if ≠	1	1 (2 or 3)	None				
25	DAW	DAW	Wn	Wn = decimal adjust Wn	1	1	С				
26	DEC	DEC	f	f = f - 1	1	1	C,DC,N,OV,Z				
		DEC	f,WREG	WREG = f – 1	1	1	C,DC,N,OV,Z				
		DEC	Ws,Wd	Wd = Ws - 1	1	1	C,DC,N,OV,Z				
27	DEC2	DEC2	f	f = f - 2	1	1	C,DC,N,OV,Z				
		DEC2	f,WREG	WREG = f – 2	1	1	C,DC,N,OV,Z				
		DEC2	Ws,Wd	Wd = Ws - 2	1	1	C,DC,N,OV,Z				
28	DISI	DISI	#lit14	Disable Interrupts for k instruction cycles	1	1	None				

TABLE 24-2: INSTRUCTION SET OVERVIEW (CONTINUED)

TABLE 24-2 :	INSTRUCTION SET OVERVIEW (CONTINUED)

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
66	RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N,Z
67	SAC	SAC	Acc,#Slit4,Wdo	Store Accumulator	1	1	None
		SAC.R	Acc,#Slit4,Wdo	Store Rounded Accumulator	1	1	None
68	SE	SE	Ws,Wnd	Wnd = sign-extended Ws	1	1	C,N,Z
69	SETM	SETM	f	f = 0xFFFF	1	1	None
		SETM	WREG	WREG = 0xFFFF	1	1	None
		SETM	Ws	Ws = 0xFFFF	1	1	None
70	SFTAC	SFTAC	Acc,Wn	Arithmetic Shift Accumulator by (Wn)	1	1	OA,OB,OAB SA,SB,SAB
		SFTAC	Acc,#Slit6	Arithmetic Shift Accumulator by Slit6	1	1	OA,OB,OAB SA,SB,SAB
71	SL	SL	f	f = Left Shift f	1	1	C,N,OV,Z
		SL	f,WREG	WREG = Left Shift f	1	1	C,N,OV,Z
		SL	Ws,Wd	Wd = Left Shift Ws	1	1	C,N,OV,Z
		SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N,Z
		SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N,Z
72 SUB	SUB	SUB	Асс	Subtract Accumulators	1	1	OA,OB,OAB SA,SB,SAB
		SUB	f	f = f – WREG	1	1	C,DC,N,OV,
		SUB	f,WREG	WREG = f – WREG	1	1	C,DC,N,OV,
		SUB	#lit10,Wn	Wn = Wn - lit10	1	1	C,DC,N,OV,
		SUB	Wb,Ws,Wd	Wd = Wb – Ws	1	1	C,DC,N,OV,
		SUB	Wb,#lit5,Wd	Wd = Wb – lit5	1	1	C,DC,N,OV,
73	SUBB	SUBB	f	$f = f - WREG - (\overline{C})$	1	1	C,DC,N,OV,
		SUBB	f,WREG	WREG = $f - WREG - (\overline{C})$	1	1	C,DC,N,OV,
		SUBB	#lit10,Wn	$Wn = Wn - Iit10 - (\overline{C})$	1	1	C,DC,N,OV,
		SUBB	Wb,Ws,Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C,DC,N,OV,
		SUBB	Wb,#lit5,Wd	$Wd = Wb - lit5 - (\overline{C})$	1	1	C,DC,N,OV,
74	SUBR	SUBR	f	f = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	f,WREG	WREG = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	Wb,Ws,Wd	Wd = Ws – Wb	1	1	C,DC,N,OV,Z
		SUBR	Wb,#lit5,Wd	Wd = lit5 – Wb	1	1	C,DC,N,OV,Z
75	SUBBR	SUBBR	f	$f = WREG - f - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	f,WREG	WREG = WREG – f – (\overline{C})	1	1	C,DC,N,OV,Z
		SUBBR	Wb,Ws,Wd	$Wd = Ws - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	Wb,#lit5,Wd	$Wd = lit5 - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
76	SWAP	SWAP.b	Wn	Wn = nibble swap Wn	1	1	None
		SWAP	Wn	Wn = byte swap Wn	1	1	None
77	TBLRDH	TBLRDH	Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	2	None
78	TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	2	None
79	TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None
30	TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None
31	ULNK	ULNK		Unlink Frame Pointer	1	1	None
32	XOR	XOR	f	f = f .XOR. WREG	1	1	N,Z
		XOR	f,WREG	WREG = f .XOR. WREG	1	1	N,Z
		XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N,Z
		XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N,Z
		XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N,Z
83	ZE	ZE	Ws,Wnd	Wnd = Zero-extend Ws	1	1	C,Z,N

25.7 MPLAB ICE 2000 High-Performance In-Circuit Emulator

The MPLAB ICE 2000 In-Circuit Emulator is intended to provide the product development engineer with a complete microcontroller design tool set for PIC microcontrollers. Software control of the MPLAB ICE 2000 In-Circuit Emulator is advanced by the MPLAB Integrated Development Environment, which allows editing, building, downloading and source debugging from a single environment.

The MPLAB ICE 2000 is a full-featured emulator system with enhanced trace, trigger and data monitoring features. Interchangeable processor modules allow the system to be easily reconfigured for emulation of different processors. The architecture of the MPLAB ICE 2000 In-Circuit Emulator allows expansion to support new PIC microcontrollers.

The MPLAB ICE 2000 In-Circuit Emulator system has been designed as a real-time emulation system with advanced features that are typically found on more expensive development tools. The PC platform and Microsoft[®] Windows[®] 32-bit operating system were chosen to best make these features available in a simple, unified application.

25.8 MPLAB REAL ICE In-Circuit Emulator System

MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs PIC[®] Flash MCUs and dsPIC[®] Flash DSCs with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit.

The MPLAB REAL ICE probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with the popular MPLAB ICD 2 system (RJ11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

MPLAB REAL ICE is field upgradeable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added, such as software breakpoints and assembly code trace. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, real-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables.

25.9 MPLAB ICD 2 In-Circuit Debugger

Microchip's In-Circuit Debugger, MPLAB ICD 2, is a powerful, low-cost, run-time development tool, connecting to the host PC via an RS-232 or high-speed USB interface. This tool is based on the Flash PIC MCUs and can be used to develop for these and other PIC MCUs and dsPIC DSCs. The MPLAB ICD 2 utilizes the in-circuit debugging capability built into the Flash devices. This feature, along with Microchip's In-Circuit Serial Programming[™] (ICSP[™]) protocol, offers costeffective, in-circuit Flash debugging from the graphical user interface of the MPLAB Integrated Development Environment. This enables a designer to develop and debug source code by setting breakpoints, single stepping and watching variables, and CPU status and peripheral registers. Running at full speed enables testing hardware and applications in real time. MPLAB ICD 2 also serves as a development programmer for selected PIC devices.

25.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an SD/MMC card for file storage and secure data applications.

DC CHA	RACTER	ISTICS	(unless	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Мах	Conditions			
	VIL	Input Low Voltage							
DI10		I/O pins	Vss	—	0.2 Vdd	V			
DI15		MCLR	Vss	_	0.2 VDD	V			
DI16		I/O Pins with OSC1 or SOSCI	Vss	_	0.2 VDD	V			
DI18		I/O Pins with I ² C	Vss	_	0.3 VDD	V	SMbus disabled		
DI19		I/O Pins with I ² C	Vss	—	0.2 VDD	V	SMbus enabled		
	Viн	Input High Voltage							
DI20		I/O Pins Not 5V Tolerant ⁽⁴⁾ I/O Pins 5V Tolerant ⁽⁴⁾	0.8 Vdd 0.8 Vdd	_	Vdd 5.5	V V			
		I/O Pins Not 5V Tolerant ⁽⁴⁾ I/O Pins 5V Tolerant ⁽⁴⁾	2 2	_	Vdd 5.5	V V	VDD = 3.3V VDD = 3.3V		
DI26		I/O Pins with OSC1 or SOSCI	0.7 Vdd	_	Vdd	V			
DI28		I/O Pins with I ² C	0.7 Vdd	_	5.5	V	SMbus disabled		
DI29		I/O Pins with I ² C	0.8 Vdd	_	5.5	V	SMbus enabled		
	ICNPU	CNx Pull-up Current							
DI30			50	250	400	μA	VDD = 3.3V, VPIN = VSS		
	lı∟	Input Leakage Current ^(2,3)							
DI50		I/O Pins	—	—	±2	μA	$Vss \le VPIN \le VDD,$ Pin at high-impedance		
DI51		I/O Pins Not 5V Tolerant ⁽⁴⁾	—	—	±2	μA	$Vss \le VPIN \le VDD,$ Pin at high-impedance		
DI51a		I/O Pins Not 5V Tolerant ⁽⁴⁾	_	—	±2	μA	Shared with external reference pins		
DI51b		I/O Pins Not 5V Tolerant ⁽⁴⁾	_	—	±3.5	μA	Vss ≤ VPIN ≤ VDD, Pin at high-impedance		
DI51c		I/O Pins Not 5V Tolerant ⁽⁴⁾	_	_	±8	μA	Analog pins shared with external reference pins		
DI55		MCLR	_	_	±2	μA	$Vss \le Vpin \le Vdd$		
DI56		OSC1	_	—	±2	μA	$Vss \le VPIN \le VDD,$ XT and HS modes		

TABLE 26-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

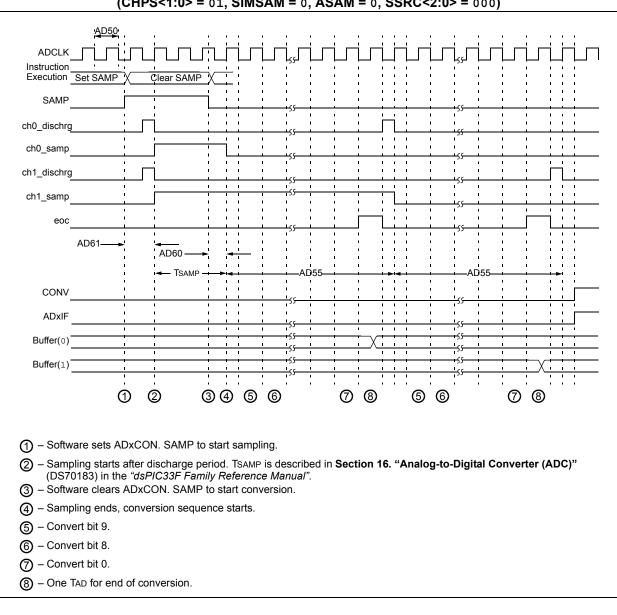

- 3: Negative current is defined as current sourced by the pin.
- 4: See "Pin Diagrams" for a list of 5V tolerant pins.

TABLE 26-21: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER TIMING REQUIREMENTS

AC CHARACTERISTICS				Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Мах	Units	Conditions		
SY10	TMCL	MCLR Pulse-Width (low)	2	_	_	μs	-40°C to +85°C		
SY11	TPWRT	Power-up Timer Period		2 4 8 16 32 64 128		ms	-40°C to +85°C User programmable		
SY12 SY13	Tpor Tioz	Power-on Reset Delay <u>I/O Hig</u> h-Impedance from MCLR Low or Watchdog Timer Reset	3 0.68	10 0.72	30 1.2	μs μs	-40°C to +85°C —		
SY20	Twdt1	Watchdog Timer Time-out Period	—	_		_	See Section 23.4 "Watchdog Timer (WDT)" and LPRC specification F21 (Table 26-19)		
SY30	Tost	Oscillator Start-up Timer Period	—	1024 Tosc	—	—	Tosc = OSC1 period		
SY35	TFSCM	Fail-Safe Clock Monitor Delay	—	500	900	μs	-40°C to +85°C		

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

FIGURE 26-24: ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS<1:0> = 01, SIMSAM = 0, ASAM = 0, SSRC<2:0> = 000)

NOTES:

INDEX

1	١
^	•

A/D Converter	2/1
DMA	
Initialization	241
Key Features	
AC Characteristics	
Internal RC Accuracy	
Load Conditions	
ADC Module	
ADC11 Register Map	
ADC2 Register Map	
Alternate Interrupt Vector Table (AIVT)	85
Arithmetic Logic Unit (ALU)	
Assembler	
MPASM Assembler	

В

Barrel Shifter	33
Bit-Reversed Addressing	66
Example	67
Implementation	
Sequence Table (16-Entry)	67
Block Diagrams	
16-bit Timer1 Module	
A/D Module	
Connections for On-Chip Voltage Regulator	
Device Clock	
DSP Engine	
dsPIC33F	
dsPIC33F CPU Core	
ECAN Module	
Input Capture	
Output Compare	
PLL	
PWM Module	
Quadrature Encoder Interface	
Reset System	
Shared Port Structure	
SPI	
Timer2 (16-bit)	
Timer2/3 (32-bit)	
UART	
Watchdog Timer (WDT)	

С

C Compilers	
MPLAB C18	270
MPLAB C30	
Clock Switching	151
Enabling	151
Sequence	151
Code Examples	
Erasing a Program Memory Page	
Initiating a Programming Sequence	77
Loading Write Buffers	77
Port Write/Read	
PWRSAV Instruction Syntax	153
Code Protection	. 253, 260
Configuration Bits	253
Configuration Register Map	253
Configuring Analog Port Pins	162
CPU	
Control Register	

CPU Clocking System	144
Options	
Selection	
Customer Change Notification Service	335
Customer Notification Service	335
Customer Support	335

D

U	
Data Accumulators and Adder/Subtractor	31
Data Space Write Saturation	33
Overflow and Saturation	31
Round Logic	32
Write Back	32
Data Address Space	37
Alignment	
Memory Map for dsPIC33FJXXXMCX06/X08/X10	De-
vices with 16 KB RAM	39
Memory Map for dsPIC33FJXXXMCX06/X08/X10	
vices with 30 KB RAM	
Memory Map for dsPIC33FJXXXMCX06/X08/X10	De-
vices with 8 KB RAM	38
Near Data Space	37
Software Stack	63
Width	37
DC Characteristics	
I/O Pin Input Specifications	
I/O Pin Output Specifications	
Idle Current (IIDLE)	
Operating Current (IDD)	276
Power-Down Current (IPD)	278
Program Memory	
Temperature and Voltage Specifications	275
Development Support	269
DMA Module	
DMA Register Map	
DMAC Registers	
DMAxCNT	134
DMAxCON	134
DMAxPAD	
DMAxREQ	
DMAxSTA	134
DMAxSTB	
DSP Engine	29
Multiplier	31

Е

ECAN Module	
CiFMSKSEL2 register 2	233
ECAN1 Register Map (C1CTRL1.WIN = 0 or 1)	55
ECAN1 Register Map (C1CTRL1.WIN = 0)	55
ECAN1 Register Map (C1CTRL1.WIN = 1)	56
ECAN2 Register Map (C2CTRL1.WIN = 0 or 1)	58
ECAN2 Register Map (C2CTRL1.WIN = 0) 58,	59
Frame Types2	
Modes of Operation 2	217
Overview	215
ECAN Registers	
Filter 15-8 Mask Selection Register (CiFMSKSEL2) 2	233
Electrical Characteristics 2	273
AC	282
Enhanced CAN Module 2	215
Equations	
Device Operating Frequency1	
Errata	11