

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	53
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj128mc706-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

TABLE 4-25: ECAN2 REGISTER MAP WHEN C2CTRL1.WIN = 1 FOR dsPIC33FJXXXMC708/710 DEVICES (CONTINUED)

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C2RXF11SID	056C		SID<10:3>								SID<2:0> — EXIDE — EID<17:16					17:16>	xxxx	
C2RXF11EID	056E				EID<	15:8>							EID	<7:0>				xxxx
C2RXF12SID	0570				SID<	10:3>					SID<2:0>		_	EXIDE	_	EID<	17:16>	xxxx
C2RXF12EID	0572	EID<15:8> EID<7:0>									xxxx							
C2RXF13SID	0574				SID<	10:3>					SID<2:0>		_	EXIDE	_	EID<	17:16>	xxxx
C2RXF13EID	0576				EID<	15:8>				EID<7:0>							xxxx	
C2RXF14SID	0578				SID<	10:3>				SID<2:0> — EXIDE — EID<17					17:16>	xxxx		
C2RXF14EID	057A				EID<	15:8>				EID<7:0>						xxxx		
C2RXF15SID	057C				SID<	10:3>				SID<2:0> — EXIDE — EID<17:16>					17:16>	xxxx		
C2RXF15EID	057E				EID<	15:8>			EID<7:0>						xxxx			

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-26: PORTA REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	02C0	TRISA15	TRISA14	—	-	—	TRISA10	TRISA9	—	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	C6FF
PORTA	02C2	RA15	RA14	_	_	_	RA10	RA9	_	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx
LATA	02C4	LATA15	LATA14	_	_	_	LATA10	LATA9	_	LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	xxxx
ODCA	06C0	ODCA15	ODCA14	_	_	_	_	_	_	_	_	ODCA5	ODCA4	ODCA3	ODCA2	ODCA1	ODCA0	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.

TABLE 4-27: PORTB REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	02C6	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	FFFF
PORTB	02C8	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx
LATB	02CA	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxx

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.

can operate on any W register pointer. However, it is not advisable to use W14 or W15 for Modulo Addressing, since these two registers are used as the Stack Frame Pointer and Stack Pointer, respectively.

In general, any particular circular buffer can only be configured to operate in one direction, as there are certain restrictions on the buffer start address (for incrementing buffers) or end address (for decrementing buffers), based upon the direction of the buffer.

The only exception to the usage restrictions is for buffers which have a power-of-2 length. As these buffers satisfy the start and end address criteria, they may operate in a bidirectional mode (i.e., address boundary checks will be performed on both the lower and upper address boundaries).

4.4.1 START AND END ADDRESS

The Modulo Addressing scheme requires that a starting and ending address be specified and loaded into the 16-bit Modulo Buffer Address registers: XMODSRT, XMODEND, YMODSRT and YMODEND (see Table 4-1).

Note:	Y space Modulo Addressing EA calcula-								
	tions assume word sized data (LSb of								
	every EA is always clear).								

The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32K words (64 Kbytes).

4.4.2 W ADDRESS REGISTER SELECTION

The Modulo and Bit-Reversed Addressing Control register, MODCON<15:0>, contains enable flags as well as a W register field to specify the W Address registers. The XWM and YWM fields select which registers will operate with Modulo Addressing. If XWM = 15, X RAGU and X WAGU Modulo Addressing is disabled. Similarly, if YWM = 15, Y AGU Modulo Addressing is disabled.

The X Address Space Pointer W register (XWM) to which Modulo Addressing is to be applied is stored in MODCON<3:0> (see Table 4-1). Modulo Addressing is enabled for X data space when XWM is set to any value other than '15' and the XMODEN bit is set at MODCON<15>.

The Y Address Space Pointer W register (YWM) to which Modulo Addressing is to be applied is stored in MODCON<7:4>. Modulo Addressing is enabled for Y data space when YWM is set to any value other than '15' and the YMODEN bit is set at MODCON<14>.

FIGURE 4-7: MODULO ADDRESSING OPERATION EXAMPLE

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
		CNIP<2:0>			_	_	
bit 15	·					·	bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		MI2C1IP<2:0>				SI2C1IP<2:0>	
bit 7							bit 0
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15	Unimpleme	nted: Read as '	0'				
bit 14-12	CNIP<2:0>:	Change Notifica	ation Interrup	t Priority bits			
	111 = Interro	upt is priority 7 (highest priori	ty interrupt)			
	•						
	•						
	001 = Interro	upt is priority 1					
	000 = Interru	upt source is dis	abled				
bit 11-7	Unimpleme	nted: Read as '	0'				
bit 6-4	MI2C1IP<2:	0>: I2C1 Master	r Events Inter	rupt Priority bit	S		
	111 = Interro	upt is priority 7 (highest priori	ty interrupt)			
	•						
	•						
	001 = Interru	upt is priority 1					
	000 = Interro	upt source is dis	abled				
bit 3	Unimpleme	nted: Read as '	0'				
bit 2-0	SI2C1IP<2:0	>: I2C1 Slave I	Events Interru	pt Priority bits			
	111 = Interro	upt is priority 7 (highest priori	ty interrupt)			
	•						
	•						
	001 = Intern	upt is priority 1					
	000 = Interri	upt source is dis	abled				

REGISTER 7-19: IPC4: INTERRUPT PRIORITY CONTROL REGISTER 4

REGISTER				DISABLE U		SISTER Z	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IC8MD	IC7MD	IC6MD	IC5MD	IC4MD	IC3MD	IC2MD	IC1MD
bit 15							bit 8
R/\\/_0	R/W/-0	R/W/-0	R/W-0	R/\\/-0	R/\\/-0	R/\\/_0	R/\\/_0
		OC6MD	OC5MD	OC4MD			
bit 7	0011112	CCCMD	0001112	0011112	0001112	0021112	bit 0
Legend:							
R = Readable	e bit	W = Writable t	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	IC8MD: Input	Capture 8 Mod	ule Disable bit	l			
	1 = Input Cap 0 = Input Cap	iture 8 module is	s disabled s enabled				
bit 14	IC7MD: Input	Capture 7 Mod	ule Disable bit	t			
	1 = Input Cap	ture 7 module is	s disabled				
	0 = Input Cap	ture 7 module is	s enabled				
bit 13	IC6MD: Input	Capture 6 Mod	ule Disable bit	t			
	1 = Input Cap 0 = Input Cap	iture 6 module is	s disabled s enabled				
bit 12	IC5MD: Input	Capture 5 Mod	ule Disable bit	t			
	1 = Input Cap	ture 5 module is	s disabled				
	0 = Input Cap	ture 5 module is	s enabled				
bit 11	IC4MD: Input	Capture 4 Mod	ule Disable bit	İ			
	1 = Input Cap	ture 4 module is ture 4 module is	s disabled s enabled				
bit 10	IC3MD: Input	Capture 3 Mod	ule Disable bit				
	1 = Input Cap	ture 3 module is	s disabled				
	0 = Input Cap	ture 3 module is	s enabled				
bit 9	IC2MD: Input	Capture 2 Mod	ule Disable bit	İ			
	1 = Input Cap	oture 2 module is	s disabled				
bit 8	IC1MD: Input	Capture 1 Mod	ule Disable bit	•			
	1 = Input Cap	ture 1 module is	s disabled				
	0 = Input Cap	ture 1 module is	s enabled				
bit 7	OC8MD: Out	put Compare 8	Module Disabl	e bit			
	1 = Output Co	ompare 8 modul	e is disabled				
bit 6	OC7MD: Out	out Compare 4	Module Disabl	e bit			
Sit 0	1 = Output Co	ompare 7 modul	e is disabled	o bit			
	0 = Output Co	ompare 7 modu	e is enabled				
bit 5	OC6MD: Out	put Compare 6	Module Disabl	e bit			
	1 = Output Co	ompare 6 modul	e is disabled				
bit 4	OC5MD: Out	out Compare 5	Module Disabl	e bit			
	1 = Output Co	ompare 5 modul	e is disabled				
	0 = Output Co	ompare 5 modu	e is enabled				

DS70287C-page 166

NOTES:

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0					
SPIEN		SPISIDL	—	—								
bit 15							bit 8					
U-0	R/C-0	U-0	U-0	U-0	U-0	R-0	R-0					
_	SPIROV	—		—		SPITBF	SPIRBF					
bit 7							bit 0					
Legend: C = Clearable bit												
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'						
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	IOWN					
bit 15	SPIEN: SPIX	SPIEN: SPIX Enable bit										
	 1 = Enables module and configures SCKx, SDOx, SDIx and SSx as serial port pins 0 = Disables module 											
bit 14	Unimplemented: Read as '0'											
bit 13	SPISIDL: Stop in Idle Mode bit											
	1 = Discontin	ue module ope	ration when de	evice enters lo	lle mode							
	0 = Continue	module operati	on in Idle mod	de								
bit 12-7	Unimplemen	ted: Read as ')'									
bit 6	SPIROV: Rec	eive Overflow	Flag bit			<i>c</i> i i i						
	1 = A new by	/te/word is com data in the SPI	vBLIF register	ed and discard	led. The user so	oftware has not	read the					
	0 = No overfl	ow has occurre	ed									
bit 5-2	Unimplemen	ted: Read as ')'									
bit 1	SPITBF: SPD	x Transmit Buff	er Full Status	bit								
	1 = Transmit	not yet started;	SPIxTXB is fu	III								
	0 = Transmit	started; SPIxT>	(B is empty	uritaa SDIvDU	E location loadi							
	Automatically	cleared in hard	when CPO when S	Plx module tra	ansfers data fror	n SPIxTXB to S	SPIxSR.					
bit 0	SPIRBF: SPI	x Receive Buffe	er Full Status I	bit								
	1 = Receive o	complete; SPIxI	RXB is full									
	0 = Receive is	s not complete;	SPIxRXB is e	empty								
	Automatically	set in hardwar	e when SPIx t	transfers data	from SPIxSR to	SPIXRXB.	'n					
	Automatically	cleared in hard	aware when co	ore reads SPIX	KOUF location, r	eauing SPIXRX	.D.					

REGISTER 18-1: SPIxSTAT: SPIx STATUS AND CONTROL REGISTER

	,15)										
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3				
bit 15							bit 8				
R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x				
SID2	SID1	SID0	—	EXIDE	—	EID17	EID16				
bit 7							bit 0				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimplei							
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown				
bit 15-5 bit 4 bit 3	SID<10:0>: Standard Identifier bits 1 = Message address bit SIDx must be '1' to match filter 0 = Message address bit SIDx must be '0' to match filter Unimplemented: Read as '0' EXIDE: Extended Identifier Enable bit										
bit 2 bit 1-0	If MIDE = 1 th 1 = Match onl 0 = Match onl If MIDE = 0 th Ignore EXIDE Unimplemen EID<17:16>: 1 = Message 0 = Message	ien: y messages wi y messages wi en: bit. ted: Read as 'o Extended Ider address bit EII address bit EII	th extended i th standard id o' tifier bits Dx must be '1 Dx must be '0	dentifier addre dentifier addres ' to match filter ' to match filter	sses sses						

REGISTER 21-16: CIRXFnSID: ECAN™ ACCEPTANCE FILTER n STANDARD IDENTIFIER (n = 0, 1,

REGISTER 21-17: CIRXFnEID: ECAN™ ACCEPTANCE FILTER n EXTENDED IDENTIFIER (n = 0, 1, ..., 15)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8
bit 15							bit 8

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0

EID<15:0>: Extended Identifier bits

- Maaaaga addraga bit FIDy must be '1'

1 = Message address bit EIDx must be '1' to match filter0 = Message address bit EIDx must be '0' to match filter

REGISTER 21-20: CIRXMnSID: ECAN™ ACCEPTANCE FILTER MASK n STANDARD IDENTIFIER R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x SID10 SID9 SID8 SID7 SID6 SID5 SID4 SID3 bit 15 bit 8

R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x
SID2	SID1	SID0	—	MIDE	—	EID17	EID16
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-5	SID<10:0>: Standard Identifier bits
	1 = Include bit SIDx in filter comparison
	0 = Bit SIDx is don't care in filter comparison
bit 4	Unimplemented: Read as '0'
bit 3	MIDE: Identifier Receive Mode bit
	 1 = Match only message types (standard or extended address) that correspond to EXIDE bit in filter 0 = Match either standard or extended address message if filters match (i.e., if (Filter SID) = (Message SID) or if (Filter SID/EID) = (Message SID/EID))
bit 2	Unimplemented: Read as '0'
bit 1-0	EID<17:16>: Extended Identifier bits
	1 = Include bit EIDx in filter comparison
	 Bit EIDx is don't care in filter comparison

REGISTER 21-21: CIRXMnEID: ECAN™ ACCEPTANCE FILTER MASK n EXTENDED IDENTIFIER

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 EID<15:0>: Extended Identifier bits

1 = Include bit EIDx in filter comparison

0 = Bit EIDx is don't care in filter comparison

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0				
_	—	—		—	CH123I	NB<1:0>	CH123SB				
bit 15							bit 8				
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0				
					CH123	NA<1:0>	CH123SA				
bit 7							bit 0				
Legend:											
R = Readab	ole bit	W = Writable I	oit	U = Unimple	emented bit, rea	d as '0'					
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cl	eared	x = Bit is unk	known				
bit 15-11	Unimplement	ted: Read as 'o)'								
bit 10-9	CH123NB<1:	CH123NB<1:0>: Channel 1, 2, 3 Negative Input Select for Sample B bits									
	When AD12B	When AD12B = 1, CHxNB is: U-0, Unimplemented, Read as '0'									
	11 = CH1 neg	11 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11									
	0x = CH1, CH	I2, CH3 negativ	/e input is VR	EF-	in, cho nega		10				
bit 8	CH123SB: Ch	nannel 1, 2, 3 F	ositive Input	Select for Sam	ple B bit						
	When AD12B	When AD12B = 1, CHxSB is: U-0, Unimplemented, Read as '0'									
	1 = CH1 posit	1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5									
	0 = CH1 posit	ive input is AN	0, CH2 positiv	ve input is AN1	, CH3 positive i	nput is AN2					
bit 7-3	Unimplement	ted: Read as 'o)'								
bit 2-1	CH123NA<1:	0>: Channel 1,	2, 3 Negative	e Input Select f	or Sample A bit	S					
	When AD12B	b = 1, CHXNA is	s: U-0, Unim	plemented, Re		ativo input io A	N144				
	11 = CH1 neg 10 = CH1 neg	ative input is A	N9, CH2 neg	ative input is A	NTU, CH3 nega	ive input is A	IN I I 18				
	0x = CH1, CH	I2, CH3 negativ	/e input is VR	EF-	arr, ene nega						
bit 0	CH123SA : Ch	nannel 1, 2, 3 F	ositive Input	Select for Sam	ple A bit						
	When AD12B	s = 1, CHxSA is	s: U-0, Unim	plemented, Re	ead as '0'						
	1 = CH1 posit	ive input is AN	3, CH2 positiv	ve input is AN4	, CH3 positive i	nput is AN5					
	0 = CH1 posit	ive input is AN	0, CH2 positiv	ve input is AN1	, CH3 positive i	nput is AN2					

REGISTER 22-5: ADxCHS123: ADCx INPUT CHANNEL 1, 2, 3 SELECT REGISTER

Bit Field	Register	Description
SSS<2:0>	FSS	Secure Segment Program Flash Code Protection Size
		<pre>(FOR 128K and 256K DEVICES) X11 = No Secure program Flash segment Secure space is 8K IW less BS 110 = Standard security; secure program Flash segment starts at End of BS, ends at 0x003FFE 010 = High security; secure program Flash segment starts at End of BS, ends at 0x003FFE</pre>
		Secure space is 16K IW less BS 101 = Standard security; secure program Flash segment starts at End of BS, ends at 0x007FFE 001 = High security; secure program Flash segment starts at End of BS, ends at 0x007FFE
		Secure space is 32K IW less BS 100 = Standard security; secure program Flash segment starts at End of BS, ends at 0x00FFFE 000 = High security; secure program Flash segment starts at End of BS, ends at 0x00FFFE
		(FOR 64K DEVICES) X11 = No Secure program Flash segment
		Secure space is 4K IW less BS 110 = Standard security; secure program Flash segment starts at End of BS, ends at 0x001FFE 010 = High security; secure program Flash segment starts at End of BS, ends at 0x001FFE
		Secure space is 8K IW less BS 101 = Standard security; secure program Flash segment starts at End of BS, ends at 0x003FFE 001 = High security; secure program Flash segment starts at End of BS, ends at 0x003FFE
		Secure space is 16K IW less BS 100 = Standard security; secure program Flash segment starts at End of BS, ends at 007FFEh 000 = High security; secure program Flash segment starts at End of BS, ends at 0x007FFE
RSS<1:0>	FSS	Secure Segment RAM Code Protection 11 = No Secure RAM defined 10 = Secure RAM is 256 Bytes less BS RAM 01 = Secure RAM is 2048 Bytes less BS RAM 00 = Secure RAM is 4096 Bytes less BS RAM
GSS<1:0>	FGS	General Segment Code-Protect bit 11 = User program memory is not code-protected 10 = Standard security; general program Flash segment starts at End of SS, ends at EOM 0x = High security; general program Flash segment starts at End of SS, ends at EOM

TABLE 23-2: dsPIC33FJXXXMCX06/X08/X10 CONFIGURATION BITS DESCRIPTION (CONTINUED)

TABLE 24-2: INSTRUCTION SET OVERVIEW

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
1	ADD	ADD	Acc	Add Accumulators	1	1	OA,OB,SA,SB
		ADD	f	f = f + WREG	1	1	C,DC,N,OV,Z
		ADD	f,WREG	WREG = f + WREG	1	1	C,DC,N,OV,Z
		ADD	#lit10,Wn	Wd = lit10 + Wd	1	1	C,DC,N,OV,Z
		ADD	Wb,Ws,Wd	Wd = Wb + Ws	1	1	C,DC,N,OV,Z
		ADD	Wb,#lit5,Wd	Wd = Wb + lit5	1	1	C,DC,N,OV,Z
		ADD	Wso,#Slit4,Acc	16-bit Signed Add to Accumulator	1	1	OA,OB,SA,SB
2	ADDC	ADDC	f	f = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	f,WREG	WREG = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	#lit10,Wn	Wd = lit10 + Wd + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,Ws,Wd	Wd = Wb + Ws + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,#lit5,Wd	Wd = Wb + lit5 + (C)	1	1	C,DC,N,OV,Z
3	AND	AND	f	f = f .AND. WREG	1	1	N,Z
		AND	f,WREG	WREG = f .AND. WREG	1	1	N,Z
		AND	#lit10,Wn	Wd = lit10 .AND. Wd	1	1	N,Z
		AND	Wb,Ws,Wd	Wd = Wb .AND. Ws	1	1	N,Z
		AND	Wb,#lit5,Wd	Wd = Wb .AND. lit5	1	1	N,Z
4	ASR	ASR	f	f = Arithmetic Right Shift f	1	1	C.N.OV.Z
		ASR	f.WREG	WREG = Arithmetic Right Shift f	1	1	C.N.OV.Z
		ASR	Ws.Wd	Wd = Arithmetic Right Shift Ws	1	1	C.N.OV.Z
		ASR	Wb.Wns.Wnd	Wnd = Arithmetic Right Shift Wb by Wns	1	1	N.Z
		ASR	Wb.#lit5.Wnd	Wnd = Arithmetic Right Shift Wb by lit5	1	1	N 7
5	BCLR	BCLR	f.#bit4	Bit Clear f	1	1	None
Ũ	DODIN	BCLR	Ws.#bit4	Bit Clear Ws	1	1	None
6	BRA	BRA	C.Expr	Branch if Carry	1	1(2)	None
-		BRA	GE.Expr	Branch if greater than or equal	1	1 (2)	None
		BRA	GEU. Expr	Branch if unsigned greater than or equal	1	1 (2)	None
		BRA	GT. Expr	Branch if greater than	1	1 (2)	None
		BRA	GTU Expr	Branch if unsigned greater than	1	1 (2)	None
		BRA	LE Expr	Branch if less than or equal	1	1 (2)	None
		BRA	LEU Expr	Branch if unsigned less than or equal	1	1 (2)	None
		BRA	LT Expr	Branch if less than	1	1 (2)	None
		BRA	LTIL Expr	Branch if unsigned less than	1	1 (2)	None
		BRA	N Expr	Branch if Negative	1	1 (2)	None
		BRA	NC Expr	Branch if Not Carry	1	1 (2)	None
		BRA	NN Expr	Branch if Not Negative	1	1 (2)	None
		BRA	NOV Expr	Branch if Not Overflow	1	1 (2)	None
		BRA	NZ Expr	Branch if Not Zero	1	1 (2)	None
		BRA	OA Evor	Branch if Accumulator A overflow	1	1 (2)	None
		BRA	OR Expr	Branch if Accumulator B overflow	1	1 (2)	None
		BRA	OV Expr	Branch if Overflow	1	1 (2)	None
		BRA	SA Expr	Branch if Accumulator A saturated	1	1 (2)	None
		BRA	SR, Expr	Branch if Accumulator B saturated	1	1 (2)	None
		BRA	Evor	Branch I Inconditionally	1	2	None
		BRA	7 Fynr	Branch if Zero	1	1 (2)	None
		BRA	Wn	Computed Branch	1	2	None
7	BSET	BSET	f #bit4	Bit Set f	1	1	None
'	2011	BSET	Ws #bit4	Bit Set Ws	1	1	None
8	BSW	BSW C	We Wh	Write C bit to Ws <wb></wb>	1	1	None
	2011	BSW 7	Ws Wh	Write Z bit to Ws <wb></wb>	1	1	None
9	BTG	BTG	f #bit4	Bit Toggle f	1	1	None
Ĵ	510	BTC	Wg #bit4	Bit Toggle Ws	1	1	None
L		510	"D, TD1C1	Dit loggie 110	'	1	none

IADL	C 24-2.	INSTRU	UCTION SET OVERVIE	W (CONTINUED)			
Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
29	DIV	DIV.S	Wm,Wn	Signed 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.SD	Wm,Wn	Signed 32/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.U	Wm,Wn	Unsigned 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.UD	Wm,Wn	Unsigned 32/16-bit Integer Divide	1	18	N,Z,C,OV
30	DIVF	DIVF	Wm,Wn	Signed 16/16-bit Fractional Divide	1	18	N,Z,C,OV
31	DO	DO	<pre>#lit14,Expr</pre>	Do code to PC + Expr, lit14 + 1 times	2	2	None
		DO	Wn,Expr	Do code to PC + Expr, (Wn) + 1 times	2	2	None
32	ED	ED	Wm*Wm,Acc,Wx,Wy,Wxd	Euclidean Distance (no accumulate)	1	1	OA,OB,OAB, SA,SB,SAB
33	EDAC	EDAC	Wm*Wm,Acc,Wx,Wy,Wxd	Euclidean Distance	1	1	OA,OB,OAB, SA,SB,SAB
34	EXCH	EXCH	Wns,Wnd	Swap Wns with Wnd	1	1	None
35	FBCL	FBCL	Ws,Wnd	Find Bit Change from Left (MSb) Side	1	1	С
36	FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side	1	1	С
37	FF1R	FF1R	Ws,Wnd	Find First One from Right (LSb) Side	1	1	С
38	GOTO	GOTO	Expr	Go to address	2	2	None
		GOTO	Wn	Go to indirect	1	2	None
39	INC	INC	f	f = f + 1	1	1	C,DC,N,OV,Z
		INC	f,WREG	WREG = f + 1	1	1	C,DC,N,OV,Z
		INC	Ws,Wd	Wd = Ws + 1	1	1	C,DC,N,OV,Z
40	INC2	INC2	f	f = f + 2	1	1	C,DC,N,OV,Z
		INC2	f,WREG	WREG = f + 2	1	1	C,DC,N,OV,Z
		INC2	Ws,Wd	Wd = Ws + 2	1	1	C,DC,N,OV,Z
41	IOR	IOR	f	f = f .IOR. WREG	1	1	N,Z
		IOR	f,WREG	WREG = f .IOR. WREG	1	1	N,Z
		IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N,Z
		IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N,Z
		IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N,Z
42	LAC	LAC	Wso,#Slit4,Acc	Load Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
43	LNK	LNK	#lit14	Link Frame Pointer	1	1	None
44	LSR	LSR	f	f = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	f,WREG	WREG = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C,N,OV,Z
		LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N,Z
		LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N,Z
45	MAC	MAC	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd , AWB	Multiply and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB
		MAC	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd	Square and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB
46	MOV	MOV	f,Wn	Move f to Wn	1	1	None
		MOV	f	Move f to f	1	1	N,Z
		MOV	f,WREG	Move f to WREG	1	1	N,Z
		MOV	#lit16,Wn	Move 16-bit literal to Wn	1	1	None
		MOV.b	#lit8,Wn	Move 8-bit literal to Wn	1	1	None
		MOV	Wn,f	Move Wn to f	1	1	None
		MOV	Wso,Wdo	Move Ws to Wd	1	1	None
		MOV	WREG, f	Move WREG to f	1	1	N,Z
		MOV.D	Wns,Wd	Move Double from W(ns):W(ns + 1) to Wd	1	2	None
		MOV.D	Ws,Wnd	Move Double from Ws to W(nd + 1):W(nd)	1	2	None
47	MOVSAC	MOVSAC	Acc,Wx,Wxd,Wy,Wyd,AWB	Prefetch and store accumulator	1	1	None

TABLE 24-2: INSTRUCTION SET OVERVIEW (CONTINUED)

26.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of dsPIC33FJXXXMCX06/X08/X10 electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the dsPIC33FJXXXMCX06/X08/X10 family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings⁽¹⁾

Ambient temperature under bias	40°C to +85°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	0.3V to +4.0V
Voltage on any combined analog and digital pin and MCLR, with respect to Vss	0.3V to (VDD + 0.3V)
Voltage on any digital-only pin with respect to Vss	0.3V to +5.6V
Voltage on VCAP/VDDCORE with respect to Vss	2.25V to 2.75V
Maximum current out of Vss pin	
Maximum current into VDD pin ⁽²⁾	250 mA
Maximum output current sunk by any I/O pin ⁽³⁾	4 mA
Maximum output current sourced by any I/O pin ⁽³⁾	4 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports ⁽²⁾	200 mA

- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
 - 2: Maximum allowable current is a function of device maximum power dissipation (see Table 26-2).
 - **3:** Exceptions are CLKOUT, which is able to sink/source 25 mA, and the VREF+, VREF-, SCLx, SDAx, PGECx and PGEDx pins, which are able to sink/source 12 mA.

IABLE 2	6-16:	EXTERNAL CLOCK TIMING	REQUIREMEN	15					
AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industria						
Param No.	Sym bol	Characteristic	Min	Тур ⁽¹⁾	Max	Units	Conditions		
OS10	FIN	External CLKI Frequency (External clocks allowed only in EC and ECPLL modes)	DC		40	MHz	EC		
		Oscillator Crystal Frequency	3.5 10 —		10 40 33	MHz MHz kHz	XT HS SOSC		
OS20	Tosc	Tosc = 1/Fosc	12.5	_	DC	ns			
OS25	TCY	Instruction Cycle Time ⁽²⁾	25		DC	ns			
OS30	TosL, TosH	External Clock in (OSC1) High or Low Time	0.375 x Tosc		0.625 x Tosc	ns	EC		
OS31	TosR, TosF	External Clock in (OSC1) Rise or Fall Time	_		20	ns	EC		

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

CLKO Rise Time⁽³⁾

CLKO Fall Time⁽³⁾

External Oscillator

Transconductance⁽⁴⁾

OS40

OS41

OS42

TckR

TckF

Gм

2: Instruction cycle period (TCY) equals two times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.

14

5.2

5.2

16

18

ns

ns

mA/V

VDD = 3.3V

TA = +25°C

- 3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.
- 4: Data for this parameter is Preliminary. This parameter is characterized, but not tested in manufacturing.

AC CHAR	ACTERISTI	cs	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param No.	Symbol	Characteristic		Min	Typ ⁽¹⁾	Max	Units	Conditions
DO31	TioR	Port Output Rise Time			10	25	ns	
DO32	TIOF	Port Output Fall Time	_	10	25	ns	—	
DI35	TINP	INTx Pin High or Low	20	_	_	ns		
DI40	TRBP	CNx High or Low Tim	2	_	_	TCY		

TABLE 26-20: I/O TIMING REQUIREMENTS

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

TABLE 26-23: TIMER2, TIMER4, TIMER6 AND TIMER8 EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS				Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param No.	Symbol	Characteristic			Min	Тур	Мах	Units	Conditions
TB10	TtxH	TxCK High Time	 Synchronous, no prescaler Synchronous, with prescaler 		0.5 TCY + 20			ns	Must also meet parameter TB15
					10		—	ns	
TB11	TtxL	TxCK Low Time	Synchronous, no prescaler Synchronous, with prescaler		0.5 TCY + 20	_	—	ns	Must also meet parameter TB15
					10		—	ns	
TB15	TtxP	TxCK Input Period	Synchronous, no prescaler		Tcy + 40		—	ns	N = prescale value
			Synchro with pres	nous, scaler	Greater of: 20 ns or (Tcy + 40)/N				(1, 8, 64, 256)
TB20	TCKEXT- MRL	Delay from External TxCK Clock Edge to Timer Increment		0.5 TCY	_	1.5 TCY	_	—	

TABLE 26-24:TIMER3, TIMER5, TIMER7 AND TIMER9 EXTERNAL CLOCK TIMING
REQUIREMENTS

AC CHARACTERISTICS				Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param No.	Symbol	Characteristic			Min	Тур	Max	Units	Conditions
TC10	TtxH	TxCK High Time	Synchronous		0.5 TCY + 20			ns	Must also meet parameter TC15
TC11	TtxL	TxCK Low Time	Synchro	nous	0.5 TCY + 20	_	-	ns	Must also meet parameter TC15
TC15	TtxP	TxCK Input Period	Synchronous, no prescaler		Tcy + 40	_	_	ns	N = prescale value
			Synchron with pres	nous, scaler	Greater of: 20 ns or (Tcy + 40)/N				(1, 8, 64, 256)
TC20	TCKEXTMRL	Delay from Externa Edge to Timer Incre	I TxCK CI ement	ock	0.5 TCY	_	1.5 Тсү	—	_

FIGURE 26-6: INPUT CAPTURE (CAPx) TIMING CHARACTERISTICS

Note: Refer to Figure 26-1 for load conditions.

TABLE 26-25: INPUT CAPTURE TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param No.	Symbol	Characte	Min	Мах	Units	Conditions		
IC10	TccL	ICx Input Low Time	No Prescaler	0.5 Tcy + 20	—	ns		
			With Prescaler	10	—	ns		
IC11	TccH	ICx Input High Time	No Prescaler	0.5 Tcy + 20	—	ns	—	
			With Prescaler	10	—	ns		
IC15	TccP	ICx Input Period		(Tcy + 40)/N	_	ns	N = prescale value (1, 4, 16)	

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 26-7: OUTPUT COMPARE MODULE (OCx) TIMING CHARACTERISTICS

TABLE 26-26: OUTPUT COMPARE MODULE TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Мах	Units	Conditions
OC10	TccF	OCx Output Fall Time	_		_	ns	See parameter D032
OC11	TccR	OCx Output Rise Time			—	ns	See parameter D031

Note 1: These parameters are characterized but not tested in manufacturing.

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Microchip Trader Architecture — Flash Memory Fa Program Memory Product Group Pin Count — Tape and Reel Fla Temperature Ran Package — Pattern —	dsPIC 33 FJ 256 MC7 10 T I / PT - XXX nark	Examples: a) dsPIC33FJ64MC706I/PT: Motor Control dsPIC33, 64 KB program memory, 64-pin, Industrial temp., TQFP package.
Architecture:	33 = 16-bit Digital Signal Controller	
Flash Memory Family:	FJ = Flash program memory, 3.3V	
Product Group:	MC5 = Motor Control family MC7 = Motor Control family	
Pin Count:	06 = 64-pin 08 = 80-pin 10 = 100-pin	
Temperature Range:	I = -40° C to $+85^{\circ}$ C (Industrial)	
Package:	PT = 10x10 or 12x12 mm TQFP (Thin Quad Flat- pack) PF = 14x14 mm TQFP (Thin Quad Flatpack)	
Pattern	Three-digit QTP, SQTP, Code or Special Requirements (blank otherwise)	