

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	85
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 24x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj128mc710-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT DIGITAL SIGNAL CONTROLLERS

Note: This data sheet summarizes the features of the dsPIC33FJXXXMCX06/X08/X10 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F Family Reference Manual", which is available from the Microchip website (www.microchip.com).

2.1 Basic Connection Requirements

Getting started with the dsPIC33FJXXXMCX06/X08/X10 family of 16-bit Digital Signal Controllers (DSCs) requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected:

- All VDD and Vss pins (see Section 2.2 "Decoupling Capacitors")
- All AVDD and AVSS pins (regardless if ADC module is not used)

(see Section 2.2 "Decoupling Capacitors")

- VCAP/VDDCORE (see Section 2.3 "Capacitor on Internal Voltage Regulator (VCAP/VDDCORE)")
- MCLR pin (see Section 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see **Section 2.5 "ICSP Pins**")
- OSC1 and OSC2 pins when external oscillator source is used

(see Section 2.6 "External Oscillator Pins")

Additionally, the following pins may be required:

• VREF+/VREF- pins used when external voltage reference for ADC module is implemented

Note:	The	AVdd	and	AVss	pins	mus	st be
	conn	ected	indep	endent	of	the	ADC
	volta	ge refe					

2.2 Decoupling Capacitors

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: Recommendation of 0.1 μ F (100 nF), 10-20V. This capacitor should be a low-ESR and have resonance frequency in the range of 20 MHz and higher. It is recommended that ceramic capacitors be used.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high frequency noise: If the board is experiencing high frequency noise, upward of tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 μ F in parallel with 0.001 μ F.
- **Maximizing performance:** On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum thereby reducing PCB track inductance.

2.7 Oscillator Value Conditions on Device Start-up

If the PLL of the target device is enabled and configured for the device start-up oscillator, the maximum oscillator source frequency must be limited to 4 MHz < F_{IN} < 8 MHz to comply with device PLL start-up conditions. This means that if the external oscillator frequency is outside this range, the application must start-up in the FRC mode first. The default PLL settings after a POR with an oscillator frequency outside this range will violate the device operating speed.

Once the device powers up, the application firmware can initialize the PLL SFRs, CLKDIV and PLLDBF to a suitable value, and then perform a clock switch to the Oscillator + PLL clock source. Note that clock switching must be enabled in the device Configuration word.

2.8 Configuration of Analog and Digital Pins During ICSP Operations

If MPLAB ICD 2, ICD 3 or REAL ICE is selected as a debugger, it automatically initializes all of the A/D input pins (ANx) as "digital" pins, by setting all bits in the AD1PCFGL register.

The bits in this register that correspond to the A/D pins that are initialized by MPLAB ICD 2, ICD 3 or REAL ICE, must not be cleared by the user application firmware; otherwise, communication errors will result between the debugger and the device.

If your application needs to use certain A/D pins as analog input pins during the debug session, the user application must clear the corresponding bits in the AD1PCFGL register during initialization of the ADC module.

When MPLAB ICD 2, ICD 3 or REAL ICE is used as a programmer, the user application firmware must correctly configure the AD1PCFGL register. Automatic initialization of this register is only done during debugger operation. Failure to correctly configure the register(s) will result in all A/D pins being recognized as analog input pins, resulting in the port value being read as a logic '0', which may affect user application functionality.

2.9 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic-low state.

Alternatively, connect a 1k to 10k resistor to Vss on unused pins and drive the output to logic low.

TABLE 4-2: CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJXXXMCX10 DEVICES

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0060	CN15IE	CN14IE	CN13IE	CN12IE	CN11IE	CN10IE	CN9IE	CN8IE	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNEN2	0062	_	-	_	_	_	_	_	_	CN23IE	CN22IE	CN21IE	CN20IE	CN19IE	CN18IE	CN17IE	CN16IE	0000
CNPU1	0068	CN15PUE	CN14PUE	CN13PUE	CN12PUE	CN11PUE	CN10PUE	CN9PUE	CN8PUE	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000
CNPU2	006A	—	_	_	_	_	_	_	-	CN23PUE	CN22PUE	CN21PUE	CN20PUE	CN19PUE	CN18PUE	CN17PUE	CN16PUE	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-3: CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJXXXMCX08 DEVICES

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0060	CN15IE	CN14IE	CN13IE	CN12IE	CN11IE	CN10IE	CN9IE	CN8IE	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNEN2	0062	—	_	_	_	_	—		_	_		CN21IE	CN20IE	CN19IE	CN18IE	CN17IE	CN16IE	0000
CNPU1	0068	CN15PUE	CN14PUE	CN13PUE	CN12PUE	CN11PUE	CN10PUE	CN9PUE	CN8PUE	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000
CNPU2	006A	—	_	_	_	_	_	_	_	_	-	CN21PUE	CN20PUE	CN19PUE	CN18PUE	CN17PUE	CN16PUE	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-4: CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJXXXMCX06 DEVICES

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0060	CN15IE	CN14IE	CN13IE	CN12IE	CN11IE	CN10IE	CN9IE	CN8IE	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNEN2	0062	_	_	_	_	_	_	_	_	_	_	CN21IE	CN20IE	-	CN18IE	CN17IE	CN16IE	0000
CNPU1	0068	CN15PUE	CN14PUE	CN13PUE	CN12PUE	CN11PUE	CN10PUE	CN9PUE	CN8PUE	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000
CNPU2	006A	—	_	_	_	_	_	_	_	_	_	CN21PUE	CN20PUE	_	CN18PUE	CN17PUE	CN16PUE	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

5.0 FLASH PROGRAM MEMORY

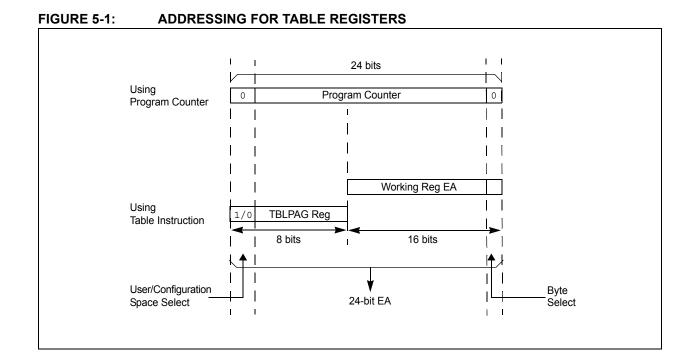
Note: This data sheet summarizes the features of the dsPIC33FJXXXMCX06/X08/X10 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 5. "Flash Programming" (DS70191) in the "dsPIC33F Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The dsPIC33FJXXXMCX06/X08/X10 devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the entire VDD range.

Flash memory can be programmed in two ways:

- In-Circuit Serial Programming[™] (ICSP[™]) programming capability
- 2. Run-Time Self-Programming (RTSP)

ICSP allows a dsPIC33FJXXXMCX06/X08/X10 device to be serially programmed while in the end application circuit. This is simply done with two lines for programming clock and programming data (one of the alternate programming pin pairs: PGECx/PGEDx), and three other lines for power (VDD), ground (Vss) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the digital signal controller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.


RTSP is accomplished using TBLRD (table read) and TBLWT (table write) instructions. With RTSP, the user can write program memory data by blocks (or 'rows') of 64 instructions (192 bytes) at a time or by single program memory word; and the user can erase program memory in blocks or 'pages' of 512 instructions (1536 bytes) at a time.

5.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the table read and table write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits <7:0> of the TBLPAG register and the Effective Address (EA) from a W register specified in the table instruction, as shown in Figure 5-1.

The TBLRDL and TBLWTL instructions are used to read or write to bits <15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits <23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE		
bit 15		·			•	÷	bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INTOIE		
bit 7	UC2IE	ICZIE	DIVIAULE		OCTIE	ICTIE	bit 0		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'			
-n = Value at		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	iown		
iii valao at		1 Bitle co	•	o Dicio dia					
bit 15	Unimplemen	ted: Read as '	0'						
bit 14	DMA1IE: DM	A Channel 1 D	ata Transfer C	Complete Interi	rupt Enable bit				
		equest enable							
		equest not en							
bit 13				rupt Enable bit					
		equest enable equest not ena							
bit 12	•	RT1 Transmitte		able bit					
		equest enable	•						
	0 = Interrupt request not enabled								
bit 11		RT1 Receiver I	•	le bit					
		equest enable equest not ena							
bit 10	-	Event Interrup							
		equest enable							
		equest not en							
bit 9	SPI1EIE: SPI	1 Error Interru	pt Enable bit						
		equest enable							
	•	equest not en							
bit 8		Interrupt Enab							
		equest enable equest not ena							
bit 7	-	Interrupt Enab							
		equest enable							
	0 = Interrupt r	equest not en	abled						
bit 6	•	ut Compare Ch		upt Enable bit					
		equest enable							
bit 5	•	equest not en Capture Chann		Enabla bit					
DIL 5	•	equest enable	•						
		request not en							
bit 4	DMA0IE: DM	A Channel 0 D	ata Transfer C	Complete Interi	rupt Enable bit				
		equest enable							
		equest not en							
bit 3		Interrupt Enab							
		equest enable equest not en							

REGISTER 7-14: IEC4: INTERRUPT ENABLE CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	_	—	—	—
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
C2TXIE	C1TXIE	DMA7IE	DMA6IE	_	U2EIE	U1EIE	FLTBIE
bit 7							bit 0

Legend:											
R = Readat	ole bit	W = Writable bit	U = Unimplemented bit,	read as '0'							
-n = Value a	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown							
bit 15-8	Unimple	mented: Read as '0'									
bit 7	C2TXIE:	ECAN2 Transmit Data Requ	est Interrupt Enable bit								
		Interrupt request enabled									
0 = Interrupt request not enabled											
bit 6	6 C1TXIE: ECAN1 Transmit Data Request Interrupt Enable bit										
		rupt request enabled									
0 = Interrupt request not enabled											
bit 5 DMA7IE: DMA Channel 7 Data Transfer Complete Enable Status bit											
		rupt request enabled									
		rupt request not enabled									
bit 4			fer Complete Enable Status b	it							
		rupt request enabled									
		rupt request not enabled									
bit 3	-	mented: Read as '0'									
bit 2		JART2 Error Interrupt Enable	e bit								
		rupt request enabled									
		rupt request not enabled									
bit 1 U1EIE: UART1 Error Interrupt Enable bit											
		rupt request enabled									
		rupt request not enabled									
bit 0		FLTBIE: PWM Fault B Interrupt Enable bit									
		rupt request enabled									
	0 = inter	rupt request not enabled									

REGISTER 7-32: IPC17: INTERRUPT PRIORITY CONTROL REGISTER 17

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
—		C2TXIP<2:0>		—		C1TXIP<2:0>					
bit 15							bit 8				
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
	10/00-1	DMA7IP<2:0>	11/00-0		10/00-1	DMA6IP<2:0>	10,00-0				
bit 7							bit				
Legend: R = Readable	, hit	W = Writable	hit	LI – Unimplo	montod hit ro	od oo '0'					
n = Value at		'1' = Bit is set		'0' = Bit is cle	mented bit, re	x = Bit is unkn	0,4/0				
	FUK	I – Dit is set			aleu		OWIT				
bit 15	Unimpleme	nted: Read as 'o	כ'								
bit 14-12	C2TXIP<2:0>: ECAN2 Transmit Data Request Interrupt Priority bits										
	111 = Interr	upt is priority 7 (I	nighest priorit	ty interrupt)							
	•										
	•										
		upt is priority 1									
	000 = Interr	000 = Interrupt source is disabled									
bit 11	Unimpleme	Unimplemented: Read as '0'									
bit 10-8		>: ECAN1 Trans			Priority bits						
	111 = Interr	upt is priority 7 (I	nighest priorit	ty interrupt)							
	•										
	•										
		upt is priority 1 upt source is dis	abled								
bit 7		nted: Read as '									
bit 6-4	-	0>: DMA Channe		nsfer Complete	Interrunt Prid	ority hits					
		upt is priority 7 (I		•	monupting	Shiry Sho					
	•			·) ······							
	•										
	• 001 - Intorr	unt is priority 1									
		upt is priority 1 upt source is dis	abled								
bit 3		nted: Read as '									
bit 2-0	-	0>: DMA Channe		nsfer Complete	Interrupt Price	pritv bits					
		upt is priority 7 (I		-							
	•		5 1	- 1/							
	•										
	•										
	001 - Interr	upt is priority 1									

7.4 Interrupt Setup Procedures

7.4.1 INITIALIZATION

To configure an interrupt source, do the following:

- 1. Set the NSTDIS bit (INTCON1<15>) if nested interrupts are not desired.
- Select the user-assigned priority level for the interrupt source by writing the control bits in the appropriate IPCx register. The priority level will depend on the specific application and type of interrupt source. If multiple priority levels are not desired, the IPCx register control bits for all enabled interrupt sources may be programmed to the same non-zero value.

Note: At a device Reset, the IPCx registers are initialized such that all user interrupt sources are assigned to priority level 4.

- 3. Clear the interrupt flag status bit associated with the peripheral in the associated IFSx register.
- 4. Enable the interrupt source by setting the interrupt enable control bit associated with the source in the appropriate IECx register.

7.4.2 INTERRUPT SERVICE ROUTINE

The method that is used to declare an ISR and initialize the IVT with the correct vector address will depend on the programming language (i.e., C or assembler) and the language development tool suite that is used to develop the application. In general, the user must clear the interrupt flag in the appropriate IFSx register for the source of interrupt that the ISR handles. Otherwise, the ISR will be re-entered immediately after exiting the routine. If the ISR is coded in assembly language, it must be terminated using a RETFIE instruction to unstack the saved PC value, SRL value and old CPU priority level.

7.4.3 TRAP SERVICE ROUTINE

A Trap Service Routine (TSR) is coded like an ISR, except that the appropriate trap status flag in the INTCON1 register must be cleared to avoid re-entry into the TSR.

7.4.4 INTERRUPT DISABLE

All user interrupts can be disabled using the following procedure:

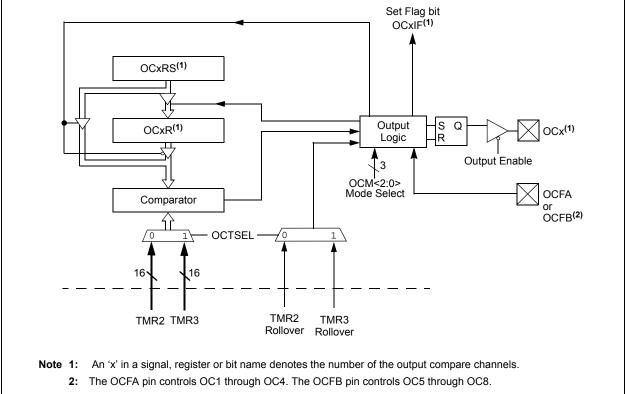
- 1. Push the current SR value onto the software stack using the PUSH instruction.
- 2. Force the CPU to priority level 7 by inclusive ORing the value OEh with SRL.

To enable user interrupts, the POP instruction may be used to restore the previous SR value.

Note that only user interrupts with a priority level of 7 or less can be disabled. Trap sources (level 8-level 15) cannot be disabled.

The DISI instruction provides a convenient way to disable interrupts of priority levels 1-6 for a fixed period of time. Level 7 interrupt sources are not disabled by the DISI instruction.

15.0 OUTPUT COMPARE


Note: This data sheet summarizes the features of the dsPIC33FJXXXMCX06/X08/X10 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F Family Reference Manual", Section 13. "Output Compare" (DS70209), which is available on the Microchip web site (www.microchip.com).

The output compare module can select either Timer2 or Timer3 for its time base. The module compares the value of the timer with the value of one or two Compare registers depending on the operating mode selected. The state of the output pin changes when the timer value matches the Compare register value. The output compare module generates either a single output pulse, or a sequence of output pulses, by changing the state of the output pin on the compare match events. The output compare module can also generate interrupts on compare match events.

The output compare module has multiple operating modes:

- Active-Low One-Shot mode
- Active-High One-Shot mode
- Toggle mode
- Delayed One-Shot mode
- Continuous Pulse mode
- PWM mode without Fault Protection
- · PWM mode with Fault Protection

REGISTER 18-2: SPIXCON1: SPIX CONTROL REGISTER 1 (CONTINUED)

bit 4-2	SPRE<2:0>: Secondary Prescale bits (Master mode) ⁽²⁾ 111 = Secondary prescale 1:1 110 = Secondary prescale 2:1
	•
	•
	•
	000 = Secondary prescale 8:1
bit 1-0	PPRE<1:0>: Primary Prescale bits (Master mode) ⁽²⁾
	11 = Primary prescale 1:1
	10 = Primary prescale 4:1
	01 = Primary prescale 16:1

- 00 = Primary prescale 64:1
- **Note 1:** The CKE bit is not used in the Framed SPI modes. The user should program this bit to '0' for the Framed SPI modes (FRMEN = 1).
 - 2: Do not set both the Primary and Secondary prescalers to a value of 1:1.
 - **3:** This bit must be cleared when FRMEN = 1.

R-0 HSC	R-0 HSC	U-0	U-0	U-0	R/C-0 HS	R-0 HSC	R-0 HSC		
ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT	ADD10		
bit 15							bit 8		
R/C-0 HS	R/C-0 HS	R-0 HSC	R/C-0 HSC	R/C-0 HSC	R-0 HSC	R-0 HSC	R-0 HSC		
IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF		
bit 7							bit 0		
Legend:		U = Unimpler	nented bit rea	ad as '0'					
R = Readable	bit	W = Writable		HS = Set in h	ardware	HSC = Hardwa	are set/cleared		
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown		
bit 15	ACKSTAT: Ac (when operation 1 = NACK rec 0 = ACK recein Hardware set	ng as I ² C mas reived from sla ived from slave	ter, applicable ve e		nsmit operation)			
bit 14	TRSTAT: Transmit Status bit (when operating as I ² C master, applicable to master transmit operation)								
	 1 = Master transmit is in progress (8 bits + ACK) 0 = Master transmit is not in progress Hardware set at beginning of master transmission. Hardware clear at end of slave Acknowledge. 								
bit 13-11	Unimplement	Jnimplemented: Read as '0'							
bit 10	BCL: Master	3CL: Master Bus Collision Detect bit							
	1 = A bus coll 0 = No collisio Hardware set	on		ing a master o	peration				
bit 9	GCSTAT: Ger	neral Call Statu	ıs bit						
	0 = General c	all address wa all address wa when address	s not received		ss. Hardware c	lear at Stop det	ection.		
bit 8	ADD10: 10-Bi	it Address Stat	us bit						
		ress was not r	natched	ched 10-bit ad	dress. Hardwai	re clear at Stop	detection.		
bit 7	IWCOL: Write	Collision Dete	ect bit						
	0 = No collisio	on	-		ause the I ² C mo usy (cleared by	-			
bit 6	I2COV: Recei								
	1 = A byte wa 0 = No overflo	s received whi	le the I2CxRC	-	till holding the j	-			
bit 5					(,,,,	· · · · · · · · · · · · · · · · · · ·			
	1 = Indicates 1 0 = Indicates 1	 D_A: Data/Address bit (when operating as I²C slave) 1 = Indicates that the last byte received was data 0 = Indicates that the last byte received was device address Hardware clear at device address match. Hardware set by reception of slave byte. 							
bit 4	P: Stop bit								
	P: Stop bit 1 = Indicates that a Stop bit has been detected last 0 = Stop bit was not detected last Hardware set or clear when Start, Repeated Start or Stop detected.								

REGISTER 19-2: I2CxSTAT: I2Cx STATUS REGISTER

REGISTER 21-9: CiCFG1: ECAN[™] BAUD RATE CONFIGURATION REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	—	_	_	_	_	_	_	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
SJ\	V<1:0>			BRF	P<5:0>			
bit 7							bit 0	
Legend:								
R = Readabl	R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
-n = Value at	= Value at POR '1' = Bit is set			'0' = Bit is cleared x =		x = Bit is unkr	a = Bit is unknown	
bit 15-8	Unimplemen	ted: Read as '	0'					
bit 7-6	SJW<1:0>: S	synchronization	Jump Width	bits				
	11 = Length i							
	10 = Length i 01 = Length i							
	00 = Length is							
bit 5-0	C C	Baud Rate Pres	caler bits					
	11 1111 = T	Q = 2 x 64 x 1/	FCAN					
	•							
	•							
	•							
		$Q = 2 \times 3 \times 1/F_{0}$						
		00 0001 = $TQ = 2 \times 2 \times 1/FCAN$ 00 0000 = $TQ = 2 \times 1 \times 1/FCAN$						
	00 0000 = 1	$Q = 2 \times 1 \times 1/F$	CAN					

	,15)						(
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3		
bit 15							bit 8		
R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x		
SID2	SID1	SID0	—	EXIDE	_	EID17	EID16		
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is set				'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15-5	SID<10:0>: S	Standard Identifi	er bits						
		address bit SIE address bit SIE							
bit 4	Unimplemen	ted: Read as 'd)'						
bit 3	EXIDE: Exte	nded Identifier	Enable bit						
	If MIDE = 1 th	hen:							
		ly messages wi							
		ly messages wi	th standard id	dentifier addres	ses				
	If MIDE = 0 th Ignore EXIDE								
bit 2	Unimplemen	ted: Read as 'o)'						
bit 1-0	EID<17:16>:	Extended Iden	tifier bits						
	•	address bit EIE address bit EIE							

REGISTER 21-16: CIRXFnSID: ECAN™ ACCEPTANCE FILTER n STANDARD IDENTIFIER (n = 0, 1,

REGISTER 21-17: CIRXFnEID: ECAN™ ACCEPTANCE FILTER n EXTENDED IDENTIFIER (n = 0, 1, ..., 15)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8
bit 15					•		bit 8

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EID7 | EID6 | EID5 | EID4 | EID3 | EID2 | EID1 | EID0 |
| bit 7 | | | | | | | bit 0 |

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit,	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-0

EID<15:0>: Extended Identifier bits

1 = Message address bit EIDx must be '1' to match filter

0 = Message address bit EIDx must be '0' to match filter

REGISTER 21-22: CiRXFUL1: ECAN™ RECEIVE BUFFER FULL REGISTER 1

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXFUL15	RXFUL14	RXFUL13	RXFUL12	RXFUL11	RXFUL10	RXFUL9	RXFUL8
bit 15							bit 8

| R/C-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| RXFUL7 | RXFUL6 | RXFUL5 | RXFUL4 | RXFUL3 | RXFUL2 | RXFUL1 | RXFUL0 |
| bit 7 | | | • | | | | bit 0 |

Legend:	C = Clear only bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

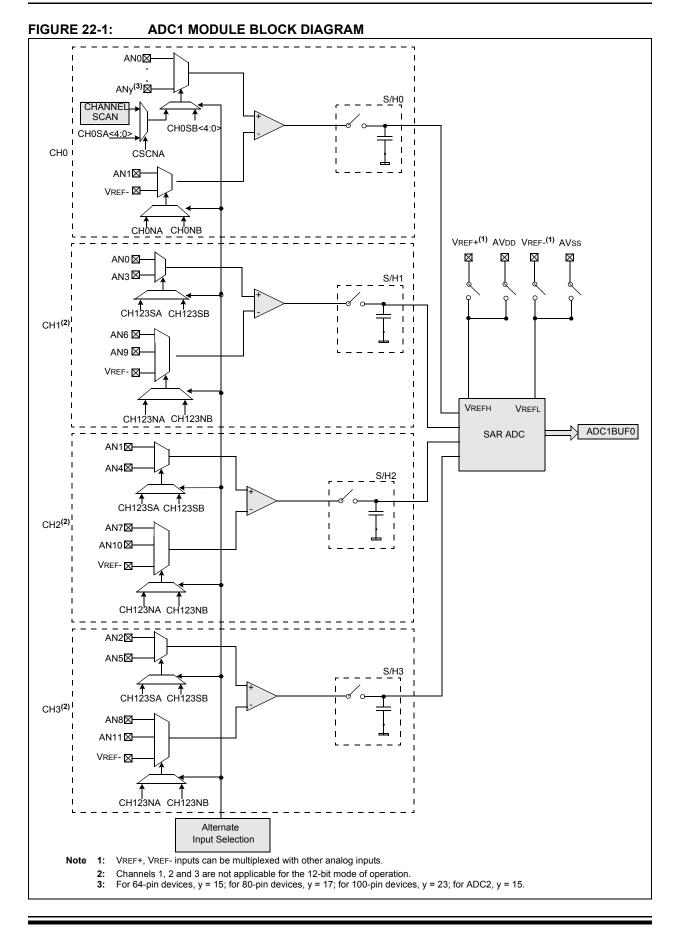
bit 15-0 **RXFUL<15:0>:** Receive Buffer n Full bits

1 = Buffer is full (set by module)

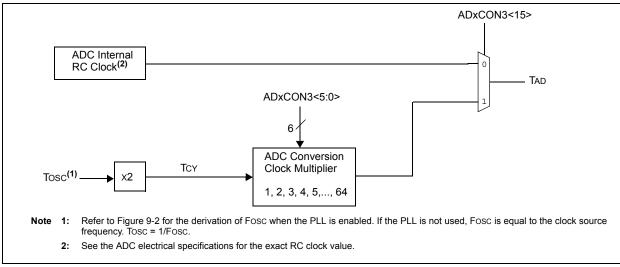
0 = Buffer is empty (clear by application software)

REGISTER 21-23: CIRXFUL2: ECAN™ RECEIVE BUFFER FULL REGISTER 2

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXFUL31 | RXFUL30 | RXFUL29 | RXFUL28 | RXFUL27 | RXFUL26 | RXFUL25 | RXFUL24 |
| bit 15 | | | • | • | | | bit 8 |


| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXFUL23 | RXFUL22 | RXFUL21 | RXFUL20 | RXFUL19 | RXFUL18 | RXFUL17 | RXFUL16 |
| bit 7 | | | | | | | bit 0 |

Legend:	C = Clear only bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown


bit 15-0 **RXFUL<31:16>:** Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty (clear by application software)

Bit Field	Register	Description			
SSS<2:0>	FSS	Secure Segment Program Flash Code Protection Size			
		<pre>(FOR 128K and 256K DEVICES) X11 = No Secure program Flash segment Secure space is 8K IW less BS 110 = Standard security; secure program Flash segment starts at End of BS, ends at 0x003FFE 010 = High security; secure program Flash segment starts at End of BS, ends at 0x003FFE</pre>			
		Secure space is 16K IW less BS 101 = Standard security; secure program Flash segment starts at End of BS, ends at 0x007FFE 001 = High security; secure program Flash segment starts at End of BS, ends at 0x007FFE			
		Secure space is 32K IW less BS 100 = Standard security; secure program Flash segment starts at End of BS, ends at 0x00FFFE 000 = High security; secure program Flash segment starts at End of BS, ends at 0x00FFFE			
		(FOR 64K DEVICES) x11 = No Secure program Flash segment			
		Secure space is 4K IW less BS 110 = Standard security; secure program Flash segment starts at End of BS, ends at 0x001FFE 010 = High security; secure program Flash segment starts at End of BS, ends at 0x001FFE			
		Secure space is 8K IW less BS 101 = Standard security; secure program Flash segment starts at End of BS, ends at 0x003FFE 001 = High security; secure program Flash segment starts at End of BS, ends at 0x003FFE			
		Secure space is 16K IW less BS 100 = Standard security; secure program Flash segment starts at End of BS, ends at 007FFEh 000 = High security; secure program Flash segment starts at End of BS, ends at 0x007FFE			
RSS<1:0>	FSS	Secure Segment RAM Code Protection 11 = No Secure RAM defined 10 = Secure RAM is 256 Bytes less BS RAM 01 = Secure RAM is 2048 Bytes less BS RAM 00 = Secure RAM is 4096 Bytes less BS RAM			
GSS<1:0>	FGS	General Segment Code-Protect bit 11 = User program memory is not code-protected 10 = Standard security; general program Flash segment starts at End of SS, ends at EOM 0x = High security; general program Flash segment starts at End of SS, ends at EOM			

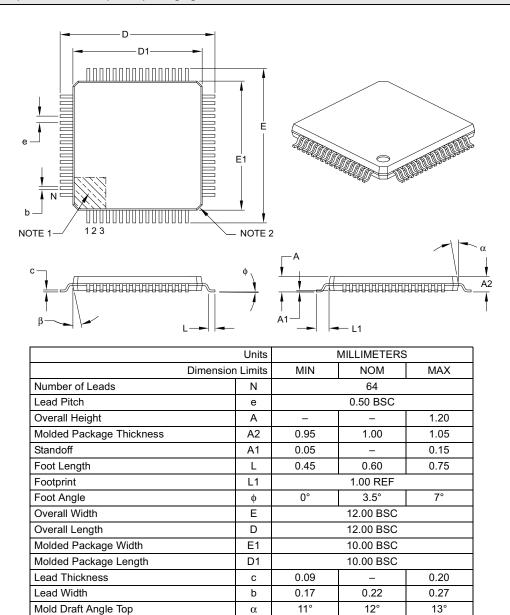
TABLE 23-2: dsPIC33FJXXXMCX06/X08/X10 CONFIGURATION BITS DESCRIPTION (CONTINUED)

IABL	E 24-2:	INSTRUCTION SET OVERVIEW (CONTINUED)								
Base Instr #	Assembly Mnemonic			Description	# of Words		Status Flags Affected			
10	BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None			
		BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None			
11	BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None			
		BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None			
12	BTST	BTST	f,#bit4	Bit Test f	1	1	Z			
		BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С			
		BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z			
		BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С			
		BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z			
13	BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z			
		BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С			
		BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z			
14	CALL	CALL	lit23	Call subroutine	2	2	None			
		CALL	Wn	Call indirect subroutine	1	2	None			
15	CLR	CLR	f	f = 0x0000	1	1	None			
		CLR	WREG	WREG = 0x0000	1	1	None			
		CLR	Ws	Ws = 0x0000	1	1	None			
		CLR	Acc,Wx,Wxd,Wy,Wyd,AWB	Clear Accumulator	1	1	OA,OB,SA,SB			
16	CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO,Sleep			
17	COM	СОМ	f	f = f	1	1	N,Z			
		СОМ	f,WREG	WREG = f	1	1	N,Z			
		СОМ		$Wd = \overline{Ws}$	1	1	N,Z			
18	CP	CP	Ws,Wd f	Compare f with WREG	1	1	C,DC,N,OV,Z			
10	CP	CP		Compare Wb with lit5	1	1				
			Wb,#lit5		1	1	C,DC,N,OV,Z			
19	CD0	CP	Wb,Ws f	Compare Wb with Ws (Wb – Ws)	1	1	C,DC,N,OV,Z			
19	CP0	CP0		Compare f with 0x0000	1		C,DC,N,OV,Z			
00	6777	CP0	Ws	Compare Ws with 0x0000	-	1	C,DC,N,OV,Z			
20	CPB	CPB	f	Compare f with WREG, with Borrow	1	1	C,DC,N,OV,Z			
		CPB CPB	Wb,#lit5 Wb,Ws	Compare Wb with lit5, with Borrow Compare Wb with Ws, with Borrow (Wb – Ws – C)	1	1 1	C,DC,N,OV,Z C,DC,N,OV,Z			
21	CPSEQ	CPSEQ	Wb, Wn	Compare Wb with Wn, skip if =	1	1 (2 or 3)	None			
22	CPSGT	CPSGT	Wb, Wn	Compare Wb with Wn, skip if >	1	(2 or 3)	None			
23	CPSLT	CPSLT	Wb, Wn	Compare Wb with Wn, skip if <	1	1 (2 or 3)	None			
24	CPSNE	CPSNE	Wb, Wn	Compare Wb with Wn, skip if ≠	1	1 (2 or 3)	None			
25	DAW	DAW	Wn	Wn = decimal adjust Wn	1	1	С			
26	DEC	DEC	f	f = f - 1	1	1	C,DC,N,OV,Z			
		DEC	f,WREG	WREG = f – 1	1	1	C,DC,N,OV,Z			
		DEC	Ws,Wd	Wd = Ws - 1	1	1	C,DC,N,OV,Z			
27	DEC2	DEC2	f	f = f - 2	1	1	C,DC,N,OV,Z			
		DEC2	f,WREG	WREG = f – 2	1	1	C,DC,N,OV,Z			
		DEC2	Ws,Wd	Wd = Ws - 2	1	1	C,DC,N,OV,Z			
28	DISI	DISI	#lit14	Disable Interrupts for k instruction cycles	1	1	None			

TABLE 24-2: INSTRUCTION SET OVERVIEW (CONTINUED)

TABLE 26-39: ADC MODULE SPECIFICATIONS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions	
			Device	Supply	/			
AD01	AVdd	Module VDD Supply	Greater of VDD – 0.3 or 3.0	_	Lesser of VDD + 0.3 or 3.6	V	_	
AD02	AVss	Module Vss Supply	Vss – 0.3		Vss + 0.3	V	—	
			Reference	ce Inpu	ts			
AD05	VREFH	Reference Voltage High	AVss + 2.7	-	AVDD	V	See Note 1	
AD05a			3.0	—	3.6	V	Vrefh = AVdd Vrefl = AVss = 0	
AD06	VREFL	Reference Voltage Low	AVss		AVDD - 2.7	V	See Note 1	
AD06a			0	_	0	V	Vrefh = AVdd Vrefl = AVss = 0	
AD07	VREF	Absolute Reference Voltage	2.7		3.6	V	VREF = VREFH - VREFL	
AD08	IREF	Current Drain	_	250 —	550 10	μΑ μΑ	ADC operating, see Note 1 ADC off, see Note 1	
AD08a	Iad	Operating Current	_	7.0 2.7	9.0 3.2	mA mA	10-bit ADC mode, See Note 2 12-bit ADC mode, See Note 2	
			Analo	g Input				
AD12	VINH	Input Voltage Range VINH	VINL	_	Vrefh	V	This voltage reflects Sample and Hold Channels 0, 1, 2 and 3 (CH0-CH3), positive input	
AD13	VINL	Input Voltage Range VINL	VREFL		AVss + 1V	V	This voltage reflects Sample and Hold Channels 0, 1, 2, and 3 (CH0-CH3), negative input	
AD17	Rin	Recommended Imped- ance of Analog Voltage Source			200 200	$\Omega \Omega$	10-bit ADC 12-bit ADC	


Note 1: These parameters are not characterized or tested in manufacturing.

2: These parameters are characterized; but not tested in manufacturing

27.2 Package Details

64-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

Mold Draft Angle Bottom

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

β

11°

12°

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-085B

13°