

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	85
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 24x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj128mc710t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.4 CPU Control Registers

REGISTER 3-1: SR: CPU STATUS REGISTER

R-0	R-0	R/C-0	R/C-0	R-0	R/C-0	R -0	R/W-0
OA	OB	SA ⁽¹⁾	SB ⁽¹⁾	OAB	SAB	DA	DC
bit 15							bit 8
R/W-0 ⁽²⁾	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
	IPL<2:0> ⁽²⁾		RA	Ν	OV	Z	С
bit 7							bit 0
r							
Legend:							
C = Clear o	only bit	R = Readable	e bit	U = Unimple	mented bit, read	l as '0'	
S = Set only	y bit	W = Writable	bit	-n = Value at	POR		
'1' = Bit is s	set	'0' = Bit is cle	ared	x = Bit is unk	nown		
			o				
DIT 15		lator A Overflow	N Status bit				
	1 = Accumula 0 = Accumula	ator A has not o	overflowed				
bit 14	OB: Accumu	lator B Overflov	w Status bit				
	1 = Accumula	ator B overflow	ed				
	0 = Accumula	ator B has not o	overflowed				
bit 13	SA: Accumul	ator A Saturati	on 'Sticky' Stat	tus bit ⁽¹⁾			
	1 = Accumula	ator A is satura	ted or has bee	en saturated at	t some time		
hit 12	SB: Accumul	ator B Saturati	urateu on 'Sticky' Stat	tus bit(1)			
	1 = Accumula	ator B is satura	ted or has bee	n saturated at	t some time		
	0 = Accumula	ator B is not sa	turated				
bit 11	0ab: 0a 0	B Combined A	Accumulator O	verflow Status	bit		
	1 = Accumula	ators A or B ha	ve overflowed				
	0 = Neither A	ccumulators A	or B have ove	erflowed			
bit 10	SAB: SA S	B Combined A	ccumulator 'St	icky' Status bi	t turated at some	time in the need	
	1 = Accumula 0 = Neither A	ccumulator A d	or B are satura	nave been sai	urated at some	ume in the pas	L
	Note: ⊤	his bit mav be	read or cleare	d (not set). Cle	earing this bit wi	ll clear SA and	SB.
bit 9	DA: DO Loop	Active bit		- (g		
	1 = DO loop ii	n progress					
	0 = DO loop n	ot in progress					
bit 8	DC: MCU AL	U Half Carry/B	orrow bit				
	1 = A carry-c	out from the 4th	low-order bit (for byte sized	data) or 8th low-	order bit (for wo	ord sized data)
	0 = No carry	-out from the 4	Ith low-order b	oit (for byte siz	zed data) or 8th	low-order bit (f	or word sized
	data) of	the result occur	rred		,	,	
							
Note 1:	This bit may be re	ead or cleared	(not set).				
2:	I he IPL<2:0> bits Level. The value IPL<3> = 1.	s are concatena in parenthese	ated with the II es indicates th	PL<3> bit (CO ne IPL if IPL<	RCON<3>) to fo :3> = 1. User i	orm the CPU Int nterrupts are d	terrupt Priority lisabled when

3: The IPL<2:0> Status bits are read only when NSTDIS = 1 (INTCON1<15>).

4.2 Data Address Space

The dsPIC33FJXXXMCX06/X08/X10 CPU has a separate 16-bit wide data memory space. The data space is accessed using separate Address Generation Units (AGUs) for read and write operations. Data memory maps of devices with different RAM sizes are shown in Figure 4-3 through Figure 4-5.

All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the data space. This arrangement gives a data space address range of 64 Kbytes or 32K words. The lower half of the data memory space (that is, when EA<15> = 0) is used for implemented memory addresses, while the upper half (EA<15> = 1) is reserved for the Program Space Visibility area (see Section 4.6.3 "Reading Data from Program Memory Using Program Space Visibility").

dsPIC33FJXXXMCX06/X08/X10 devices implement a total of up to 30 Kbytes of data memory. Should an EA point to a location outside of this area, an all-zero word or byte will be returned.

4.2.1 DATA SPACE WIDTH

The data memory space is organized in byte addressable, 16-bit wide blocks. Data is aligned in data memory and registers as 16-bit words, but all data space EAs resolve to bytes. The Least Significant Bytes of each word have even addresses, while the Most Significant Bytes have odd addresses.

4.2.2 DATA MEMORY ORGANIZATION AND ALIGNMENT

To maintain backward compatibility with PIC[®] microcontrollers and improve data space memory usage efficiency, the dsPIC33FJXXXMCX06/X08/X10 instruction set supports both word and byte operations. As a consequence of byte accessibility, all effective address calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] will result in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

Data byte reads will read the complete word that contains the byte, using the LSb of any EA to determine which byte to select. The selected byte is placed onto the LSb of the data path. That is, data memory and registers are organized as two parallel byte-wide entities with shared (word) address decode but separate write lines. Data byte writes only write to the corresponding side of the array or register which matches the byte address. All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap is generated. If the error occurred on a read, the instruction underway is completed; if it occurred on a write, the instruction will be executed but the write does not occur. In either case, a trap is then executed, allowing the system and/or user to examine the machine state prior to execution of the address Fault.

All byte loads into any W register are loaded into the Least Significant Byte. The Most Significant Byte is not modified.

A sign-extend instruction (SE) is provided to allow users to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, users can clear the MSb of any W register by executing a zero-extend (ZE) instruction on the appropriate address.

4.2.3 SFR SPACE

The first 2 Kbytes of the Near Data Space, from 0x0000 to 0x07FF, is primarily occupied by Special Function Registers (SFRs). These are used by the dsPIC33FJXXXMCX06/X08/X10 core and peripheral modules for controlling the operation of the device.

SFRs are distributed among the modules that they control and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as '0'.

Note: The actual set of peripheral features and interrupts varies by the device. Please refer to the corresponding device tables and pinout diagrams for device-specific information.

4.2.4 NEAR DATA SPACE

The 8-Kbyte area between 0x0000 and 0x1FFF is referred to as the Near Data Space. Locations in this space are directly addressable via a 13-bit absolute address field within all memory direct instructions. Additionally, the whole data space is addressable using MOV instructions, which support Memory Direct Addressing mode with a 16-bit address field, or by using Indirect Addressing mode using a working register as an Address Pointer.

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0			
		CNIP<2:0>			_	_				
bit 15	·					·	bit 8			
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
_		MI2C1IP<2:0>				SI2C1IP<2:0>				
bit 7							bit 0			
Legend:										
R = Readabl	le bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'				
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is						x = Bit is unkr	nown			
bit 15	Unimpleme	nted: Read as '	0'							
bit 14-12	CNIP<2:0>:	Change Notifica	ation Interrup	t Priority bits						
	111 = Interro	upt is priority 7 (highest priori	ty interrupt)						
	•									
	•									
	001 = Interro	upt is priority 1								
	000 = Interru	upt source is dis	abled							
bit 11-7	Unimpleme	nted: Read as '	0'							
bit 6-4	MI2C1IP<2:	MI2C1IP<2:0>: I2C1 Master Events Interrupt Priority bits								
	<pre>111 = Interrupt is priority 7 (highest priority interrupt)</pre>									
	•									
	•									
	001 = Interru	upt is priority 1								
	000 = Interro	upt source is dis	abled							
bit 3	Unimpleme	nted: Read as '	0'							
bit 2-0	SI2C1IP<2:0	>: I2C1 Slave I	Events Interru	pt Priority bits						
	111 = Interro	upt is priority 7 (highest priori	ty interrupt)						
	•									
	•									
	001 = Intern	upt is priority 1								
	000 = Interri	upt source is dis	abled							

REGISTER 7-19: IPC4: INTERRUPT PRIORITY CONTROL REGISTER 4

NOTES:

9.2 Clock Switching Operation

Applications are free to switch between any of the four clock sources (Primary, LP, FRC and LPRC) under software control at any time. To limit the possible side effects that could result from this flexibility, dsPIC33FJXXXMCX06/X08/X10 devices have a safeguard lock built into the switch process.

Note: Primary Oscillator mode has three different submodes (XT, HS and EC) which are determined by the POSCMD<1:0> Configuration bits. While an application can switch to and from Primary Oscillator mode in software, it cannot switch between the different primary submodes without reprogramming the device.

9.2.1 ENABLING CLOCK SWITCHING

To enable clock switching, the FCKSM1 Configuration bit in the Configuration register must be programmed to '0'. (Refer to **Section 23.1 "Configuration Bits"** for further details.) If the FCKSM1 Configuration bit is unprogrammed ('1'), the clock switching function and Fail-Safe Clock Monitor function are disabled. This is the default setting.

The NOSC control bits (OSCCON<10:8>) do not control the clock selection when clock switching is disabled. However, the COSC bits (OSCCON<14:12>) reflect the clock source selected by the FNOSC Configuration bits.

The OSWEN control bit (OSCCON<0>) has no effect when clock switching is disabled. It is held at '0' at all times.

9.2.2 OSCILLATOR SWITCHING SEQUENCE

At a minimum, performing a clock switch requires the following basic sequence:

- 1. If desired, read the COSC bits (OSCCON<14:12>) to determine the current oscillator source.
- 2. Perform the unlock sequence to allow a write to the OSCCON register high byte.
- Write the appropriate value to the NOSC control bits (OSCCON<10:8>) for the new oscillator source.
- 4. Perform the unlock sequence to allow a write to the OSCCON register low byte.
- 5. Set the OSWEN bit to initiate the oscillator switch.

Once the basic sequence is completed, the system clock hardware responds automatically as follows:

1. The clock switching hardware compares the COSC status bits with the new value of the NOSC control bits. If they are the same, then the clock switch is a redundant operation. In this case, the OSWEN bit is cleared automatically and the clock switch is aborted.

- If a valid clock switch has been initiated, the LOCK (OSCCON<5>) and the CF (OSCCON<3>) status bits are cleared.
- 3. The new oscillator is turned on by the hardware if it is not currently running. If a crystal oscillator must be turned on, the hardware waits until the Oscillator Start-up Timer (OST) expires. If the new source is using the PLL, the hardware waits until a PLL lock is detected (LOCK = 1).
- 4. The hardware waits for 10 clock cycles from the new clock source and then performs the clock switch.
- 5. The hardware clears the OSWEN bit to indicate a successful clock transition. In addition, the NOSC bit values are transferred to the COSC status bits.
- 6. The old clock source is turned off at this time, with the exception of LPRC (if WDT or FSCM are enabled) or LP (if LPOSCEN remains set).
 - Note 1: The processor continues to execute code throughout the clock switching sequence. Timing sensitive code should not be executed during this time.
 - 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.
 - Refer to 7. "Oscillator" (DS70186) in the "dsPIC33F Family Reference Manual" for details.

9.3 Fail-Safe Clock Monitor (FSCM)

The Fail-Safe Clock Monitor (FSCM) allows the device to continue to operate even in the event of an oscillator failure. The FSCM function is enabled by programming. If the FSCM function is enabled, the LPRC internal oscillator runs at all times (except during Sleep mode) and is not subject to control by the Watchdog Timer.

In the event of an oscillator failure, the FSCM generates a clock failure trap event and switches the system clock over to the FRC oscillator. Then the application program can either attempt to restart the oscillator or execute a controlled shutdown. The trap can be treated as a warm Reset by simply loading the Reset address into the oscillator fail trap vector.

If the PLL multiplier is used to scale the system clock, the internal FRC is also multiplied by the same factor on clock failure. Essentially, the device switches to FRC with PLL on a clock failure.

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
TON	_	TSIDL	_	—		_	_				
bit 15							bit 8				
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0				
	TGATE	TCKPS	S<1:0>		TSYNC	TCS —					
bit 7							bit 0				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, read	l as '0'					
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	iown				
bit 15	TON: Timer1	On bit									
	1 = Starts 16-	bit Timer1									
hit 14		ted: Read as '	ר י								
bit 13	TSIDI · Ston i	n Idle Mode bit									
bit 10	1 = Discontinu	ue module ope	ration when d	levice enters ld	lle mode						
	0 = Continue	module operat	ion in Idle mo	de							
bit 12-7	Unimplemen	ted: Read as '	כ'								
bit 6	TGATE: Time	er1 Gated Time	Accumulation	n Enable bit							
	When T1CS = 1:										
	This bit is igno	ored.									
	$\frac{\text{When T1CS} = 0}{1 - \text{Cotod time accumulation enabled}}$										
	0 = Gated time accumulation disabled										
bit 5-4	TCKPS<1:0>	: Timer1 Input	Clock Presca	le Select bits							
	11 = 1:256										
	10 = 1:64										
	01 = 1:8										
hit 3		tod: Pead as '	ר י								
bit 2		r1 Extornal Clo) ock Input Svn	chronization S	plact hit						
DIL Z	When TCS =		JCK IIIput Syli	chionization 36							
	1 = Synchron	<u>±:</u> ize external clo	ck input								
	0 = Do not sy	nchronize exte	rnal clock inp	ut							
	When TCS =	<u>0:</u>									
	This bit is igno	ored.									
bit 1	TCS: Timer1	Clock Source S	Select bit	· · · · · · · · · · · · · · · · · · ·							
	1 = External of	CIOCK from pin 1 lock (Ec⊻)	TCK (on the	rising edge)							
bit 0	Unimplemen	ted: Read as '	ר י								
Situ	Cimplement		5								

REGISTER 13-2: TyCON (T3CON, T5CON, T7CON OR T9CON) CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON ⁽¹⁾	—	TSIDL ⁽²⁾	—	—	—	—	—
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0
—	TGATE ⁽¹⁾	TCKPS	<1:0> ⁽¹⁾	—	—	TCS ^(1,3)	—
bit 7							bit 0

Legend:				
R = Reada	ble bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15	TON: Time	ery On bit ⁽¹⁾		
	1 = Starts 0 = Stops	16-bit Timery 16-bit Timery		
bit 14	Unimplen	nented: Read as '0'		
bit 13	TSIDL: St	op in Idle Mode bit ⁽²⁾		
	1 = Discor 0 = Contir	ntinue module operation whe	en device enters Idle mode mode	
bit 12-7	Unimplen	nented: Read as '0'		
bit 6	TGATE: T	imery Gated Time Accumula	ation Enable bit ⁽¹⁾	
	When TC: This bit is	<u>S = 1:</u> ignored		
	When TCS 1 = Gated	S = 0: time accumulation enabled		
	0 = Gated	time accumulation disabled		
bit 5-4	TCKPS<1	:0>: Timer3 Input Clock Pre	scale Select bits ⁽¹⁾	
	11 = 1:25	6		
	10 = 1:64			
	01 = 1.8 00 = 1.1			
bit 3-2	Unimplen	nented: Read as '0'		
bit 1	TCS: Time	ery Clock Source Select bit ⁽¹	l,3)	
	1 = Extern	al clock from pin TyCK (on t	he rising edge)	
	0 = Interna	al clock (FCY)		
bit 0	Unimplen	nented: Read as '0'		
Note 1:	When 32-bit o functions are s	peration is enabled (T2CON- set through T2CON.	<3> = 1), these bits have no e	ffect on Timery operation; all timer

- 2: When 32-bit timer operation is enabled (T32 = 1) in the Timer Control register (TxCON<3>), the TSIDL bit must be cleared to operate the 32-bit timer in Idle mode.
- 3: The TyCK pin is not available on all timers. Refer to the "Pin Diagrams" section for the available pins.

16.0 MOTOR CONTROL PWM MODULE

Note: This data sheet summarizes the features of the dsPIC33FJXXXMCX06/X08/X10 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 14. "Motor Control PWM" (DS70187) in the "dsPIC33F Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

This module simplifies the task of generating multiple, synchronized Pulse-Width Modulated (PWM) outputs. In particular, the following power and motion control applications are supported by the PWM module:

- · 3-Phase AC Induction Motor
- Switched Reluctance (SR) Motor
- Brushless DC (BLDC) Motor
- Uninterruptible Power Supply (UPS)
- The PWM module has the following features:
- Eight PWM I/O pins with four duty cycle generators
- Up to 16-bit resolution

- 'On-the-fly' PWM frequency changes
- · Edge and Center-Aligned Output modes
- · Single Pulse Generation mode
- Interrupt support for asymmetrical updates in Center-Aligned mode
- Output override control for Electrically Commutative Motor (ECM) operation
- 'Special Event' comparator for scheduling other peripheral events
- Fault pins to optionally drive each of the PWM output pins to a defined state
- Duty cycle updates are configurable to be immediate or synchronized to the PWM time base

This module contains four duty cycle generators, numbered 1 through 4. The module has eight PWM output pins, numbered PWM1H/PWM1L through PWM4H/PWM4L. The eight I/O pins are grouped into high/low numbered pairs, denoted by the suffix H or L, respectively. For complementary loads, the low PWM pins are always the complement of the corresponding high I/O pin.

The PWM module allows several modes of operation which are beneficial for specific power control applications.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
FAOV4H	FAOV4L	FAOV3H	FAOV3L	FAOV2H	FAOV2L	FAOV1H	FAOV1L			
bit 15	-						bit 8			
R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
FLTAM	—	—	_	FAEN4	FAEN3	FAEN2	FAEN1			
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'				
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	Iown			
bit 15-8	FAOVxH<4:1	>:FAOVxL<4:	1>: Fault Inpu	it A PWM Over	ride Value bits					
	1 = The PWN	1 output pin is c	driven active o	on an external f	Fault input even	t				
hit 7		t output pin is t		on an externa	i Fault input eve					
	FLIANI. Fault A INDUE DIL 1 - The Fault A input on functions in the Cycle by Cycle mode									
	0 = The Fault	A input pin late	ches all contro	ol pins to the st	ates programm	ed in FLTACON	√<15:8>			
bit 6-4	Unimplemen	ted: Read as '	0'							
bit 3	FAEN4: Fault	t Input A Enable	e bit							
	1 = PWM4H/F	1 = PWM4H/PWM4L pin pair is controlled by Fault Input A								
	0 = PWM4H/F	PWM4L pin pai	ir is not contro	lled by Fault Ir	nput A					
bit 2	FAEN3: Fault	t Input A Enable	e bit							
	1 = PWM3H/F	PWM3L pin pai	r is controlled	by Fault Input	A					
	0 = PWM3H/H	PWM3L pin pai	r is not contro	olled by Fault Ir	iput A					
bit 1	FAEN2: Fault	Input A Enable	e bit							
	1 = PWM2H/F 0 = PWM2H/F	PWW2L pin pai PWW2L pin pai	r is controlled	by Fault Input	A A					
hit 0	FAEN1: Fault	t Input A Enable	≏ hit		ipativ					
	1 = PWM1H/F	PWM11 pin pai	r is controlled	by Fault Input	А					
	0 = PWM1H/F	PWM1L pin pai	ir is not contro	olled by Fault Ir	nput A					

REGISTER 16-9: PxFLTACON: FAULT A CONTROL REGISTER

NOTES:

CICTRL1: ECAN™ CONTROL REGISTER 1 REGISTER 21-1: U-0 U-0 R/W-0 R/W-0 r-0 R/W-1 R/W-0 R/W-0 REQOP<2:0> CSIDL ABAT ____ ____ ____ bit 15 bit 8 R-1 R-0 R-0 U-0 R/W-0 U-0 U-0 R/W-0 OPMODE<2:0> CANCAP WIN bit 7 bit 0 Legend: r = Bit is Reserved R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-14 Unimplemented: Read as '0' bit 13 CSIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode bit 12 ABAT: Abort All Pending Transmissions bit Signal all transmit buffers to abort transmission. Module will clear this bit when all transmissions are aborted bit 11 Reserved: Do no use bit 10-8 REQOP<2:0>: Request Operation Mode bits 000 = Set Normal Operation mode 001 = Set Disable mode 010 = Set Loopback mode 011 = Set Listen Only Mode 100 = Set Configuration mode 101 = Reserved – do not use 110 = Reserved – do not use 111 = Set Listen All Messages mode bit 7-5 OPMODE<2:0>: Operation Mode bits 000 = Module is in Normal Operation mode 001 = Module is in Disable mode 010 = Module is in Loopback mode 011 = Module is in Listen Only mode 100 = Module is in Configuration mode 101 = Reserved 110 = Reserved 111 = Module is in Listen All Messages mode bit 4 Unimplemented: Read as '0' bit 3 CANCAP: CAN Message Receive Timer Capture Event Enable bit 1 = Enable input capture based on CAN message receive 0 = Disable CAN capture bit 2-1 Unimplemented: Read as '0' bit 0 WIN: SFR Map Window Select bit 1 = Use filter window 0 = Use buffer window

REGISTER 21-18: CiFMSKSEL1: ECAN™ FILTER 7-0 MASK SELECTION REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
F7MS	SK<1:0>	F6MSK<1:0>		F5MS	SK<1:0>	F4MS	K<1:0>		
bit 15				·			bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
F3MS	SK<1:0>	F2MSI	< <1:0>	F1MS	SK<1:0>	F0MS	K<1:0>		
bit 7				·		-	bit 0		
Legend:									
R = Readable	e bit	W = Writable bit		U = Unimpler	mented bit, rea	d as '0'	as '0'		
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
bit 15-14	F7MSK<1:0>	·: Mask Source	e for Filter 7 b	it					
bit 13-12	F6MSK<1:0>	: Mask Source	e for Filter 6 b	it					
bit 11-10	F5MSK<1:0>	·: Mask Source	e for Filter 5 b	it					
bit 9-8	F4MSK<1:0>	·: Mask Source	e for Filter 4 b	it					
bit 7-6	F3MSK<1:0>	·: Mask Source	e for Filter 3 b	it					
bit 5-4	F2MSK<1:0>	·: Mask Source	e for Filter 2 b	it					
bit 3-2	F1MSK<1:0>	·: Mask Source	e for Filter 1 b	it					
bit 1-0	F0MSK<1:0>	·: Mask Source	e for Filter 0 b	it					
	11 = Reserve	ed Maak 2 ra	nintana anatain	maal					
	10 = Accepta	ince Mask 2 re(gisters contair	n mask n mask					
	00 = Accepta	ince Mask 0 reg	gisters contair	n mask					

23.2 On-Chip Voltage Regulator

All of the dsPIC33FJXXXMCX06/X08/X10 devices power their core digital logic at a nominal 2.5V. This may create an issue for designs that are required to operate at a higher typical voltage, such as 3.3V. To simplify system design, all devices in the dsPIC33FJXXXMCX06/X08/X10 family incorporate an on-chip regulator that allows the device to run its core logic from VDD.

The regulator provides power to the core from the other VDD pins. The regulator requires that a low-ESR (less than 5 ohms) capacitor (such as tantalum or ceramic) be connected to the VCAP/VDDCORE pin (Figure 23-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in Table 26-13 of **Section 26.1** "**DC Characteristics**".

Note:	It is	importa	nt f	or the I	ow-	ESR capa	icito	or to
	be placed as close as possible						to	the
	VCAP/VDDCORE pin.							

On a POR, it takes approximately 20 μ s for the on-chip voltage regulator to generate an output voltage. During this time, designated as TSTARTUP, code execution is disabled. TSTARTUP is applied every time the device resumes operation after any power-down.

FIGURE 23-1: CONNECTIONS FOR THE ON-CHIP VOLTAGE REGULATOR⁽¹⁾

23.3 BOR: Brown-Out Reset

The BOR (Brown-out Reset) module is based on an internal voltage reference circuit that monitors the regulated supply voltage VCAP/VDDCORE. The main purpose of the BOR module is to generate a device Reset when a brown-out condition occurs. Brown-out conditions are generally caused by glitches on the AC mains (i.e., missing portions of the AC cycle waveform due to bad power transmission lines or voltage sags due to excessive current draw when a large inductive load is turned on).

A BOR will generate a Reset pulse which will reset the device. The BOR will select the clock source, based on the device Configuration bit values (FNOSC<2:0> and POSCMD<1:0>). Furthermore, if an oscillator mode is selected, the BOR will activate the Oscillator Start-up Timer (OST). The system clock is held until OST expires. If the PLL is used, then the clock will be held until the LOCK bit (OSCCON<5>) is '1'.

Concurrently, the PWRT time-out (TPWRT) will be applied before the internal Reset is released. If TPWRT = 0 and a crystal oscillator is being used, then a nominal delay of TFSCM = 100 is applied. The total delay in this case is TFSCM.

The BOR Status bit (RCON<1>) will be set to indicate that a BOR has occurred. The BOR circuit continues to operate while in Sleep or Idle modes and will reset the device should VDD fall below the BOR threshold voltage.

All instructions are a single word, except for certain double-word instructions, which were made double-word instructions so that all the required information is available in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true, or the program counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles with the additional instruction cycle(s) executed as a NOP. Notable exceptions are the BRA (unconditional/computed branch), indirect CALL/GOTO, all table reads and writes and RETURN/RETFIE instructions, which are single-word instructions but take two or three cycles. Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles. The double-word instructions execute in two instruction cycles.

Note: For more details on the instruction set, refer to the *"dsPIC30F/33F Programmer's Reference Manual"* (DS70157).

Field	Description
#text	Means literal defined by "text"
(text)	Means "content of text"
[text]	Means "the location addressed by text"
{ }	Optional field or operation
<n:m></n:m>	Register bit field
.b	Byte mode selection
.d	Double-Word mode selection
.S	Shadow register select
.w	Word mode selection (default)
Acc	One of two accumulators {A, B}
AWB	Accumulator write back destination address register ∈ {W13, [W13]+ = 2}
bit4	4-bit bit selection field (used in word addressed instructions) $\in \{015\}$
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero
Expr	Absolute address, label or expression (resolved by the linker)
f	File register address ∈ {0x00000x1FFF}
lit1	1-bit unsigned literal ∈ {0,1}
lit4	4-bit unsigned literal ∈ {015}
lit5	5-bit unsigned literal ∈ {031}
lit8	8-bit unsigned literal ∈ {0255}
lit10	10-bit unsigned literal \in {0255} for Byte mode, {0:1023} for Word mode
lit14	14-bit unsigned literal ∈ {016384}
lit16	16-bit unsigned literal ∈ {065535}
lit23	23-bit unsigned literal ∈ {08388608}; LSb must be '0'
None	Field does not require an entry, may be blank
OA, OB, SA, SB	DSP Status bits: AccA Overflow, AccB Overflow, AccA Saturate, AccB Saturate
PC	Program Counter
Slit10	10-bit signed literal ∈ {-512511}
Slit16	16-bit signed literal ∈ {-3276832767}
Slit6	6-bit signed literal ∈ {-1616}
Wb	Base W register ∈ {W0W15}
Wd	Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }
Wdo	Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }
Wm,Wn	Dividend, Divisor working register pair (direct addressing)
Wm*Wm	Multiplicand and Multiplier working register pair for Square instructions ∈ {W4 * W4,W5 * W5,W6 * W6,W7 * W7}

TABLE 24-1: SYMBOLS USED IN OPCODE DESCRIPTIONS

		1		··· (•••····••==)	1	1	
Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
10	BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None
		BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None
11	BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
		BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
12	BTST	BTST	f,#bit4	Bit Test f	1	1	Z
		BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
		BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
		BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
		BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
13	BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
		BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
		BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
14	CALL	CALL	lit23	Call subroutine	2	2	None
		CALL	Wn	Call indirect subroutine	1	2	None
15	CLR	CLR	f	f = 0x0000	1	1	None
		CLR	WREG	WREG = 0x0000	1	1	None
		CLR	Ws	Ws = 0x0000	1	1	None
		CLR	Acc,Wx,Wxd,Wy,Wyd,AWB	Clear Accumulator	1	1	OA,OB,SA,SB
16	CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO,Sleep
17	COM	COM	f	f = f	1	1	N,Z
		СОМ	f,WREG	WREG = \overline{f}	1	1	N.Z
		COM	Ws.Wd	$Wd = \overline{Ws}$	1	1	N.Z
18	CP	CP	f	Compare f with WREG	1	1	C.DC.N.OV.Z
		CP	- Wb.#lit5	Compare Wb with lit5	1	1	C.DC.N.OV.Z
		CP	Wb.Ws	Compare Wb with Ws (Wb – Ws)	1	1	C.DC.N.OV.Z
19	CP0	CP0	f	Compare f with 0x0000	1	1	C.DC.N.OV.Z
	010	CPO	Ws	Compare Ws with 0x0000	1	1	
20	CPB	CPB	f	Compare f with WREG with Borrow	1	1	
20	012	CPB	- Wb #lit5	Compare Wb with lit5, with Borrow	1	1	
		CPB	Wb,Ws	Compare Wb with Ws, with Borrow $(Wb - Ws - \overline{C})$	1	1	C,DC,N,OV,Z
21	CPSEQ	CPSEQ	Wb, Wn	Compare Wb with Wn, skip if =	1	1 (2 or 3)	None
22	CPSGT	CPSGT	Wb, Wn	Compare Wb with Wn, skip if >	1	(2 or 3)	None
23	CPSLT	CPSLT	Wb, Wn	Compare Wb with Wn, skip if <	1	1 (2 or 3)	None
24	CPSNE	CPSNE	Wb, Wn	Compare Wb with Wn, skip if ≠	1	1 (2 or 3)	None
25	DAW	DAW	Wn	Wn = decimal adjust Wn	1	1	С
26	DEC	DEC	f	f = f - 1	1	1	C,DC,N,OV,Z
		DEC	f,WREG	WREG = f – 1	1	1	C,DC,N,OV,Z
		DEC	Ws,Wd	Wd = Ws - 1	1	1	C,DC,N,OV,Z
27	DEC2	DEC2	f	f = f – 2	1	1	C,DC,N,OV,Z
		DEC2	f,WREG	WREG = f – 2	1	1	C,DC,N,OV,Z
		DEC2	Ws,Wd	Wd = Ws - 2	1	1	C,DC,N,OV,Z
28	DISI	DISI	#lit14	Disable Interrupts for k instruction cycles	1	1	None

TABLE 24-2: INSTRUCTION SET OVERVIEW (CONTINUED)

25.2 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for all PIC MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

25.3 MPLAB C18 and MPLAB C30 C Compilers

The MPLAB C18 and MPLAB C30 Code Development Systems are complete ANSI C compilers for Microchip's PIC18 and PIC24 families of microcontrollers and the dsPIC30 and dsPIC33 family of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use not found with other compilers.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

25.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

25.5 MPLAB ASM30 Assembler, Linker and Librarian

MPLAB ASM30 Assembler produces relocatable machine code from symbolic assembly language for dsPIC30F devices. MPLAB C30 C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- Support for the entire dsPIC30F instruction set
- · Support for fixed-point and floating-point data
- · Command line interface
- Rich directive set
- Flexible macro language
- · MPLAB IDE compatibility

25.6 MPLAB SIM Software Simulator

The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC[®] DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C18 and MPLAB C30 C Compilers, and the MPASM and MPLAB ASM30 Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

25.11 PICSTART Plus Development Programmer

The PICSTART Plus Development Programmer is an easy-to-use, low-cost, prototype programmer. It connects to the PC via a COM (RS-232) port. MPLAB Integrated Development Environment software makes using the programmer simple and efficient. The PICSTART Plus Development Programmer supports most PIC devices in DIP packages up to 40 pins. Larger pin count devices, such as the PIC16C92X and PIC17C76X, may be supported with an adapter socket. The PICSTART Plus Development Programmer is CE compliant.

25.12 PICkit 2 Development Programmer

The PICkit 2 Development Programmer is a low-cost programmer and selected Flash device debugger with an easy-to-use interface for programming many of Microchip's baseline, mid-range and PIC18F families of Flash memory microcontrollers. The PICkit 2 Starter Kit includes a prototyping development board, twelve sequential lessons, software and HI-TECH's PICC[™] Lite C compiler, and is designed to help get up to speed quickly using PIC microcontrollers. The kit provides everything needed to program, evaluate and develop applications using Microchip's powerful, mid-range Flash memory family of microcontrollers.

25.13 Demonstration, Development and Evaluation Boards

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial					
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions	
		Program Flash Memory						
D130a	Eр	Cell Endurance	100	1000	—	E/W	See Note 2	
D131	Vpr	VDD for Read	VMIN	_	3.6	V	Vмın = Minimum operating voltage	
D132B	VPEW	VDD for Self-Timed Write	VMIN	—	3.6	V	VMIN = Minimum operating voltage	
D134	TRETD	Characteristic Retention	20	_	—	Year	Provided no other specifications are violated	
D135	IDDP	Supply Current during Programming	—	10	—	mA		
D136a	Trw	Row Write Time	1.32	_	1.74	ms	Trw = 11064 FRC cycles, See Note 2	
D137a	TPE	Page Erase Time	20.1	-	26.5	ms	TPE = 168517 FRC cycles, See Note 2	
D138a	Tww	Word Write Cycle Time	42.3	_	55.9	μs	Tww = 355 FRC cycles, See Note 2	

TABLE 26-12: DC CHARACTERISTICS: PROGRAM MEMORY

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: Other conditions: FRC = 7.37 MHz, TUN<5:0> = b'011111 (for Min), TUN<5:0> = b'100000 (for Max). This parameter depends on the FRC accuracy (see Table 26-19) and the value of the FRC Oscillator Tuning register (see Register 9-4). For complete details on calculating the Minimum and Maximum time see Section 5.3 "Programming Operations".

TABLE 26-13: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial									
Param No.	Symbol	Characteristics	Min	Тур	Мах	Units	Comments		
	Cefc	External Filter Capacitor Value	4.7	10	_	μF	Capacitor must be low series resistance (< 5 ohms)		

FIGURE 26-14: SPIX MODULE MASTER MODE (CKE = 0) TIMING CHARACTERISTICS

TABLE 26-32: SPIx MASTER MODE (CKE = 0) TIMING REQUIREMENTS

			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Typ ⁽²⁾	Мах	Units	Conditions	
SP10	TscL	SCKx Output Low Time	Tcy/2	—	_	ns	See Note 3	
SP11	TscH	SCKx Output High Time	TCY/2	_		ns	See Note 3	
SP20	TscF	SCKx Output Fall Time	_	—		ns	See parameter D032 and Note 4	
SP21	TscR	SCKx Output Rise Time	—	—		ns	See parameter D031 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time	—	—	_	ns	See parameter D032 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time	—	—		ns	See parameter D031 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	23			ns	_	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30		_	ns	—	

Note 1: These parameters are characterized but not tested in manufacturing.

- 2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.
- **3:** The minimum clock period for SCKx is 100 ns. Therefore, the clock generated in Master mode must not violate this specification.
- **4:** Assumes 50 pF load on all SPIx pins.

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com