

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	85
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 24x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj256mc510t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

U-0	U-0	U-0	R/W-0	R/W-0	R-0	R-0	R-0
			US	EDT ⁽¹⁾		DL<2:0>	
bit 15							bit
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R/W-0	R/W-0	R/W-0
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	PSV	RND	IF
bit 7	•	÷		•			bit
Legend:		C = Clear on	y bit				
R = Readable	e bit	W = Writable	bit	-n = Value at	POR	'1' = Bit is set	
0' = Bit is clea	ared	ʻx = Bit is unk	nown	U = Unimplei	mented bit, read	d as '0'	
bit 15-13	Unimplemen	ted: Read as '	0'				
bit 12	US: DSP Mul	tiply Unsigned	Signed Contro	ol bit			
	Ų	ne multiplies a ne multiplies a	Ų				
bit 11	EDT: Early DO	Loop Termina	ation Control b	it(1)			
	1 = Terminate 0 = No effect	e executing DO	loop at end of	current loop it	eration		
bit 10-8	DL<2:0>: DO	Loop Nesting	Level Status bi	ts			
	111 = 7 DO lo	ops active					
	•						
	001 = 1 DO lo	on active					
	000 = 0 DO lo						
bit 7	SATA: AccA	Saturation Ena	ble bit				
		tor A saturatio					
bit 6		itor A saturatio Saturation Ena					
		tor B saturatio					
		itor B saturatio					
bit 5	SATDW: Data	a Space Write	from DSP Eng	ine Saturation	Enable bit		
		ce write satura ce write satura					
bit 4	-	cumulator Satu		elect bit			
		ration (super s					
		ration (normal					
bit 3		terrupt Priority					
		rupt priority lev rupt priority lev	-	nan 7			
bit 2	PSV: Progran	n Space Visibil	ity in Data Spa	ice Enable bit			
		space visible i					
bit 1	•	space not visib	•	ce			
		ng Mode Seleo onventional) ro		èd			
	•	(convergent)	•				
bit 0	IF: Integer or	Fractional Mul	tiplier Mode Se	elect bit			
		ode enabled fo I mode enable					

REGISTER 3-2: CORCON: CORE CONTROL REGISTER

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level.

4.2 Data Address Space

The dsPIC33FJXXXMCX06/X08/X10 CPU has a separate 16-bit wide data memory space. The data space is accessed using separate Address Generation Units (AGUs) for read and write operations. Data memory maps of devices with different RAM sizes are shown in Figure 4-3 through Figure 4-5.

All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the data space. This arrangement gives a data space address range of 64 Kbytes or 32K words. The lower half of the data memory space (that is, when EA<15> = 0) is used for implemented memory addresses, while the upper half (EA<15> = 1) is reserved for the Program Space Visibility area (see Section 4.6.3 "Reading Data from Program Memory Using Program Space Visibility").

dsPIC33FJXXXMCX06/X08/X10 devices implement a total of up to 30 Kbytes of data memory. Should an EA point to a location outside of this area, an all-zero word or byte will be returned.

4.2.1 DATA SPACE WIDTH

The data memory space is organized in byte addressable, 16-bit wide blocks. Data is aligned in data memory and registers as 16-bit words, but all data space EAs resolve to bytes. The Least Significant Bytes of each word have even addresses, while the Most Significant Bytes have odd addresses.

4.2.2 DATA MEMORY ORGANIZATION AND ALIGNMENT

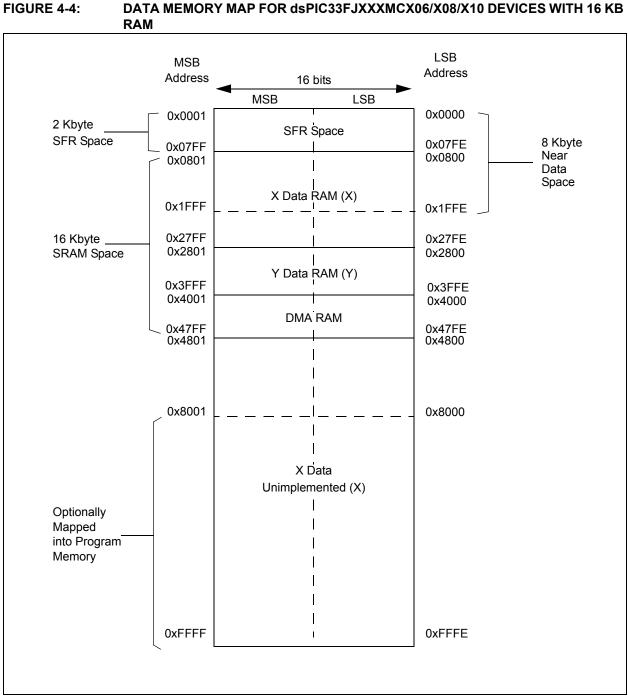
To maintain backward compatibility with PIC[®] microcontrollers and improve data space memory usage efficiency, the dsPIC33FJXXXMCX06/X08/X10 instruction set supports both word and byte operations. As a consequence of byte accessibility, all effective address calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] will result in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

Data byte reads will read the complete word that contains the byte, using the LSb of any EA to determine which byte to select. The selected byte is placed onto the LSb of the data path. That is, data memory and registers are organized as two parallel byte-wide entities with shared (word) address decode but separate write lines. Data byte writes only write to the corresponding side of the array or register which matches the byte address. All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap is generated. If the error occurred on a read, the instruction underway is completed; if it occurred on a write, the instruction will be executed but the write does not occur. In either case, a trap is then executed, allowing the system and/or user to examine the machine state prior to execution of the address Fault.

All byte loads into any W register are loaded into the Least Significant Byte. The Most Significant Byte is not modified.

A sign-extend instruction (SE) is provided to allow users to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, users can clear the MSb of any W register by executing a zero-extend (ZE) instruction on the appropriate address.

4.2.3 SFR SPACE


The first 2 Kbytes of the Near Data Space, from 0x0000 to 0x07FF, is primarily occupied by Special Function Registers (SFRs). These are used by the dsPIC33FJXXXMCX06/X08/X10 core and peripheral modules for controlling the operation of the device.

SFRs are distributed among the modules that they control and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as '0'.

Note: The actual set of peripheral features and interrupts varies by the device. Please refer to the corresponding device tables and pinout diagrams for device-specific information.

4.2.4 NEAR DATA SPACE

The 8-Kbyte area between 0x0000 and 0x1FFF is referred to as the Near Data Space. Locations in this space are directly addressable via a 13-bit absolute address field within all memory direct instructions. Additionally, the whole data space is addressable using MOV instructions, which support Memory Direct Addressing mode with a 16-bit address field, or by using Indirect Addressing mode using a working register as an Address Pointer.

DATA MEMORY MAP FOR dsPIC33FJXXXMCX06/X08/X10 DEVICES WITH 16 KB

TABLE 4-22: ECAN1 REGISTER MAP WHEN C1CTRL1.WIN = 1

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0400- 041E		-	-	-				See definit	ion when V	VIN = x		·			-	-	
C1BUFPNT1	0420		F3BF	P<3:0>			F2BF	P<3:0>		F1BP<3:0> F0BP<3:0>							0000	
C1BUFPNT2	0422		F7BP<3:0> F6BP<3:0>						F5BP	<3:0>			F4BP	<3:0>		0000		
C1BUFPNT3	0424		F11B	P<3:0>			F10B	P<3:0>			F9BP	<3:0>			F8BP	<3:0>		0000
C1BUFPNT4	0426		F15BP<3:0> F14BP<3:0>							F13BF	P<3:0>			F12BF	P<3:0>		0000	
C1RXM0SID	0430				SID<	10:3>					SID<2:0>		—	MIDE	_	EID<'	17:16>	xxxx
C1RXM0EID	0432				EID<	15:8>							EID<	7:0>	_	-		xxxx
C1RXM1SID	0434		SID<10:3>							SID<2:0>		—	MIDE	_	EID<	17:16>	xxxx	
C1RXM1EID	0436		EID<15:8>									EID<	7:0>				xxxx	
C1RXM2SID	0438		SID<10:3>					SID<2:0> — MIDE — EID<17:16>						17:16>	xxxx			
C1RXM2EID	043A	EID<15:8>								EID<	7:0>	_	-		xxxx			
C1RXF0SID	0440	SID<10:3>					SID<2:0> — EXIDE — EID<17:16>						17:16>	xxxx				
C1RXF0EID	0442		EID<15:8>								EID<	7:0>	_	-		xxxx		
C1RXF1SID	0444		SID<10:3>						SID<2:0>		—	EXIDE	_	EID<	17:16>	xxxx		
C1RXF1EID	0446		EID<15:8>								EID<	7:0>	_	-		xxxx		
C1RXF2SID	0448				SID<	10:3>					SID<2:0>		—	EXIDE	_	EID<	17:16>	xxxx
C1RXF2EID	044A				EID<	15:8>							EID<	7:0>		•		xxxx
C1RXF3SID	044C				SID<	:10:3>				SID<2:0> — EXIDE — EID<17:16>					17:16>	xxxx		
C1RXF3EID	044E				EID<	15:8>				EID<7:0>							xxxx	
C1RXF4SID	0450				SID<	:10:3>				SID<2:0> — EXIDE — EID<17:16>						17:16>	xxxx	
C1RXF4EID	0452				EID<	15:8>				EID<7:0>							xxxx	
C1RXF5SID	0454				SID<	:10:3>				SID<2:0> — EXIDE — EID<17:16>						17:16>	xxxx	
C1RXF5EID	0456				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF6SID	0458				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF6EID	045A				EID<	15:8>							EID<	7:0>				xxxx
C1RXF7SID	045C				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF7EID	045E				EID<	15:8>							EID<	7:0>				xxxx
C1RXF8SID	0460		SID<10:3>						SID<2:0> — EXIDE — EID<17:16>					17:16>	xxxx			
C1RXF8EID	0462		EID<15:8>							EID<7:0>							xxxx	
C1RXF9SID	0464				SID<	10:3>				SID<2:0> — EXIDE — EID<17:16>					17:16>	xxxx		
C1RXF9EID	0466				EID<	15:8>				EID<7:0>						xxxx		
C1RXF10SID	0468				SID<	10:3>				SID<2:0> — EXIDE — EID<17:16>					17:16>	xxxx		
C1RXF10EID	046A				EID<	15:8>							EID<	7:0>				xxxx

dsPIC33FJXXXMCX06/X08/X10

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-22: ECAN1 REGISTER MAP WHEN C1CTRL1.WIN = 1(CONTINUED)

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C1RXF11SID	046C				SID<	10:3>					SID<2:0>	•	_	EXIDE	—	EID<1	7:16>	xxxx
C1RXF11EID	046E				EID<	15:8>							EID<	7:0>				xxxx
C1RXF12SID	0470		SID<10:3>							SID<2:0> — EXIDE — EID<17:16>					7:16>	xxxx		
C1RXF12EID	0472		EID<15:8>										EID<	7:0>				xxxx
C1RXF13SID	0474				SID<	10:3>					SID<2:0>		_	EXIDE	_	EID<1	7:16>	xxxx
C1RXF13EID	0476				EID<	15:8>							EID<	7:0>				xxxx
C1RXF14SID	0478				SID<	10:3>					SID<2:0>		_	EXIDE	_	EID<1	7:16>	xxxx
C1RXF14EID	047A	EID<15:8>							EID<7:0>						xxxx			
C1RXF15SID	047C	SID<10:3>							SID<2:0> — EXIDE — EID<17:					7:16>	xxxx			
C1RXF15EID	047E				EID<	15:8>				EID<7:0>						xxxx		

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

7.0 INTERRUPT CONTROLLER

Note: This data sheet summarizes the features of the dsPIC33FJXXXMCX06/X08/X10 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 6.** "Interrupts" (DS70184) in the "dsPIC33F Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The interrupt controller for the dsPIC33FJXXXMCX06/ X08/X10 family of devices reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the dsPIC33FJXXXMCX06/X08/X10 CPU. It has the following features:

- Up to eight processor exceptions and software traps
- Seven user-selectable priority levels
- Interrupt Vector Table (IVT) with up to 118 vectors
- A unique vector for each interrupt or exception source
- · Fixed priority within a specified user priority level
- Alternate Interrupt Vector Table (AIVT) for debug support
- Fixed interrupt entry and return latencies

7.1 Interrupt Vector Table

The Interrupt Vector Table (IVT) is shown in Figure 7-1. The IVT resides in program memory, starting at location 000004h. The IVT contains 126 vectors consisting of eight nonmaskable trap vectors plus up to 118 sources of interrupt. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).

Interrupt vectors are prioritized in terms of their natural priority; this priority is linked to their position in the vector table. All other things being equal, lower addresses have a higher natural priority. For example, the interrupt associated with vector 0 will take priority over interrupts at any other vector address.

The dsPIC33FJXXXMCX06/X08/X10 family of devices implement up to 67 unique interrupts and five nonmaskable traps. These are summarized in Table 7-1 and Table 7-2.

7.1.1 ALTERNATE INTERRUPT VECTOR TABLE

The Alternate Interrupt Vector Table (AIVT) is located after the IVT, as shown in Figure 7-1. Access to the AIVT is provided by the ALTIVT control bit (INTCON2<15>). If the ALTIVT bit is set, all interrupt and exception processes use the alternate vectors instead of the default vectors. The alternate vectors are organized in the same manner as the default vectors.

The AIVT supports debugging by providing a means to switch between an application and a support environment without requiring the interrupt vectors to be reprogrammed. This feature also enables switching between applications for evaluation of different software algorithms at run time. If the AIVT is not needed, the AIVT should be programmed with the same addresses used in the IVT.

7.2 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The dsPIC33FJXXXMCX06/X08/X10 device clears its registers in response to a Reset, which forces the PC to zero. The digital signal controller then begins program execution at location 0x000000. The user programs a GOTO instruction at the Reset address, which redirects program execution to the appropriate start-up routine.

Note: Any unimplemented or unused vector locations in the IVT and AIVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE
bit 15		·			•	÷	bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INTOIE
bit 7	UC2IE	ICZIE	DIVIAULE		OCTIE	ICTIE	bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	iown
iii valao at		1 Bitle co	•	o Dicio dia			
bit 15	Unimplemen	ted: Read as '	0'				
bit 14	DMA1IE: DM	A Channel 1 D	ata Transfer C	Complete Interi	rupt Enable bit		
		equest enable					
		equest not en					
bit 13				rupt Enable bit			
		equest enable equest not ena					
bit 12	•	RT1 Transmitte		able bit			
		equest enable	•				
	0 = Interrupt r	equest not en	abled				
bit 11		RT1 Receiver I	•	le bit			
		equest enable equest not ena					
bit 10	-	Event Interrup					
		equest enable					
		equest not en					
bit 9	SPI1EIE: SPI	1 Error Interru	pt Enable bit				
		equest enable					
	•	equest not en					
bit 8		Interrupt Enab					
		equest enable equest not ena					
bit 7	-	Interrupt Enab					
		equest enable					
	0 = Interrupt r	equest not en	abled				
bit 6	•	ut Compare Ch		upt Enable bit			
		equest enable					
bit 5	•	equest not en Capture Chann		Enabla bit			
DIL 5	•	equest enable	•				
		request not en					
bit 4	DMA0IE: DM	A Channel 0 D	ata Transfer C	Complete Interi	rupt Enable bit		
		equest enable					
		equest not en					
bit 3		Interrupt Enab					
		equest enable equest not en					

REGISTER 7-11: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1 (CONTINUED)

bit 3	CNIE: Input Change Notification Interrupt Enable bit
	1 = Interrupt request enabled
	0 = Interrupt request not enabled
bit 2	Unimplemented: Read as '0'
bit 1	MI2C1IE: I2C1 Master Events Interrupt Enable bit
	1 = Interrupt request enabled
	0 = Interrupt request not enabled

- bit 0 SI2C1IE: I2C1 Slave Events Interrupt Enable bit
 - 1 = Interrupt request enabled
 - 0 = Interrupt request not enabled

REGISTER 8-3: DMAXSTA: DMA CHANNEL x RAM START ADDRESS OFFSET REGISTER A

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STA	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STA	<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 STA<15:0>: Primary DMA RAM Start Address bits (source or destination)

REGISTER 8-4: DMAxSTB: DMA CHANNEL x RAM START ADDRESS OFFSET REGISTER B

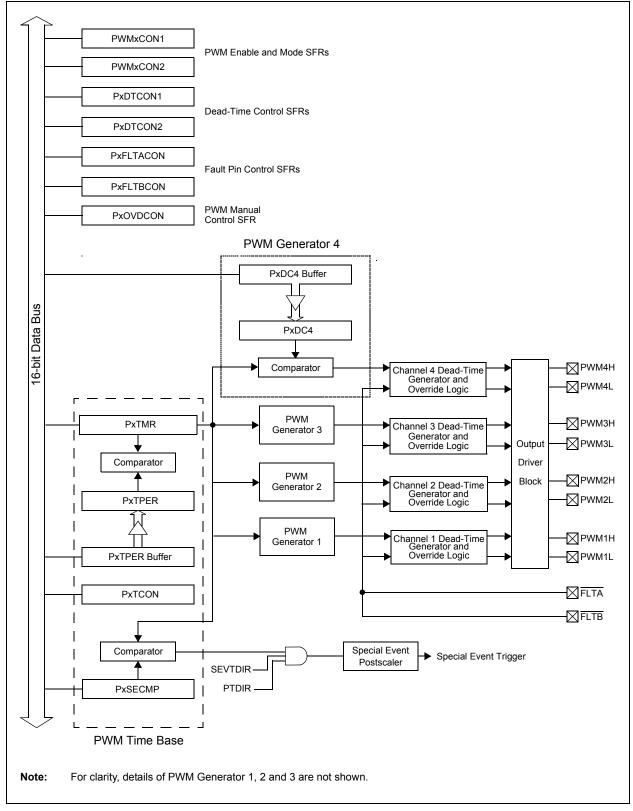
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STB	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STE	3<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimplen	nented bit, rea	id as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unki	nown

bit 15-0 STB<15:0>: Secondary DMA RAM Start Address bits (source or destination)

16.0 MOTOR CONTROL PWM MODULE

Note: This data sheet summarizes the features of the dsPIC33FJXXXMCX06/X08/X10 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 14. "Motor Control PWM" (DS70187) in the "dsPIC33F Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

This module simplifies the task of generating multiple, synchronized Pulse-Width Modulated (PWM) outputs. In particular, the following power and motion control applications are supported by the PWM module:


- · 3-Phase AC Induction Motor
- Switched Reluctance (SR) Motor
- Brushless DC (BLDC) Motor
- Uninterruptible Power Supply (UPS)
- The PWM module has the following features:
- Eight PWM I/O pins with four duty cycle generators
- Up to 16-bit resolution

- 'On-the-fly' PWM frequency changes
- · Edge and Center-Aligned Output modes
- · Single Pulse Generation mode
- Interrupt support for asymmetrical updates in Center-Aligned mode
- Output override control for Electrically Commutative Motor (ECM) operation
- 'Special Event' comparator for scheduling other peripheral events
- Fault pins to optionally drive each of the PWM output pins to a defined state
- Duty cycle updates are configurable to be immediate or synchronized to the PWM time base

This module contains four duty cycle generators, numbered 1 through 4. The module has eight PWM output pins, numbered PWM1H/PWM1L through PWM4H/PWM4L. The eight I/O pins are grouped into high/low numbered pairs, denoted by the suffix H or L, respectively. For complementary loads, the low PWM pins are always the complement of the corresponding high I/O pin.

The PWM module allows several modes of operation which are beneficial for specific power control applications.

FIGURE 16-1: PWM MODULE BLOCK DIAGRAM

NOTES:

21.0 ENHANCED CAN (ECAN™) MODULE

Note: This data sheet summarizes the features of the dsPIC33FJXXXMCX06/X08/X10 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 21. "Enhanced Controller Area Network (ECAN™)" (DS70185) in the "dsPIC33F Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

21.1 Overview

The Enhanced Controller Area Network (ECAN[™]) module is a serial interface, useful for communicating with other CAN modules or microcontroller devices. This interface/protocol was designed to allow communications within noisy environments. The dsPIC33FJXXXMCX06/X08/X10 devices contain up to two ECAN modules.

The CAN module is a communication controller implementing the CAN 2.0 A/B protocol, as defined in the BOSCH specification. The module will support CAN 1.2, CAN 2.0A, CAN 2.0B Passive and CAN 2.0B Active versions of the protocol. The module implementation is a full CAN system. The CAN specification is not covered within this data sheet. The reader may refer to the BOSCH CAN specification for further details.

The module features are as follows:

- Implementation of the CAN protocol, CAN 1.2, CAN 2.0A and CAN 2.0B
- Standard and extended data frames
- 0-8 bytes data length
- Programmable bit rate up to 1 Mbit/sec
- Automatic response to remote transmission requests
- Up to eight transmit buffers with application specified prioritization and abort capability (each buffer may contain up to 8 bytes of data)
- Up to 32 receive buffers (each buffer may contain up to 8 bytes of data)
- Up to 16 full (standard/extended identifier) acceptance filters
- · Three full acceptance filter masks
- DeviceNet[™] addressing support
- Programmable wake-up functionality with integrated low-pass filter
- Programmable Loopback mode supports self-test operation
- Signaling via interrupt capabilities for all CAN receiver and transmitter error states
- Programmable clock source

- Programmable link to input capture module (IC2 for both CAN1 and CAN2) for time-stamping and network synchronization
- · Low-power Sleep and Idle mode

The CAN bus module consists of a protocol engine and message buffering/control. The CAN protocol engine handles all functions for receiving and transmitting messages on the CAN bus. Messages are transmitted by first loading the appropriate data registers. Status and errors can be checked by reading the appropriate registers. Any message detected on the CAN bus is checked for errors and then matched against filters to see if it should be received and stored in one of the receive registers.

21.2 Frame Types

The CAN module transmits various types of frames which include data messages, or remote transmission requests initiated by the user, as other frames that are automatically generated for control purposes. The following frame types are supported:

· Standard Data Frame:

A standard data frame is generated by a node when the node wishes to transmit data. It includes an 11-bit Standard Identifier (SID), but not an 18-bit Extended Identifier (EID).

· Extended Data Frame:

An extended data frame is similar to a standard data frame, but includes an extended identifier as well.

· Remote Frame:

It is possible for a destination node to request the data from the source. For this purpose, the destination node sends a remote frame with an identifier that matches the identifier of the required data frame. The appropriate data source node will then send a data frame as a response to this remote request.

Error Frame:

An error frame is generated by any node that detects a bus error. An error frame consists of two fields: an error flag field and an error delimiter field.

· Overload Frame:

An overload frame can be generated by a node as a result of two conditions. First, the node detects a dominant bit during interframe space which is an illegal condition. Second, due to internal conditions, the node is not yet able to start reception of the next message. A node may generate a maximum of 2 sequential overload frames to delay the start of the next message.

• Interframe Space:

Interframe space separates a proceeding frame (of whatever type) from a following data or remote frame.

REGISTER 21-9: CiCFG1: ECAN[™] BAUD RATE CONFIGURATION REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	_	_	_	_	_	_
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SJ\	V<1:0>			BRF	P<5:0>		
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-8	Unimplemen	ted: Read as '	0'				
bit 7-6	SJW<1:0>: S	synchronization	Jump Width	bits			
	11 = Length i						
	10 = Length i 01 = Length i						
	00 = Length is						
bit 5-0	C C	Baud Rate Pres	caler bits				
	11 1111 = T	Q = 2 x 64 x 1/	FCAN				
	•						
	•						
	•						
		$Q = 2 \times 3 \times 1/F_{0}$					
		$Q = 2 \times 2 \times 1/F_{0}$					
	00 0000 = 1	$Q = 2 \times 1 \times 1/Fc$	CAN				

REGISTER 21-10: CiCFG2: ECAN™ BAUD RATE CONFIGURATION REGISTER 2

U-0	R/W-x	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
—	WAKFIL	—	_	—	:	SEG2PH<2:0>	
bit 15							bit 8

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
SEG2PHTS	SAM	:	SEG1PH<2:0>			PRSEG<2:0>	
bit 7							bit 0

R = Readable bit W = Writable bit		U = Unimplemented bit,	U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknow			
bit 15	Unimpleme	ented: Read as '0'					
bit 14		elect CAN bus Line Filter N bus line filter for wake-					
		is line filter is not used for	-				
bit 13-11	Unimpleme	Unimplemented: Read as '0'					
bit 10-8	SEG2PH<2:0>: Phase Buffer Segment 2 bits						
	111 = Leng 000 = Leng	th is 8 x TQ th is 1 x TQ					
bit 7	SEG2PHTS: Phase Segment 2 Time Select bit						
	• •	programmable im of SEG1PH bits or Info	ormation Processing Time (IPT), whichever is greater			
bit 6	SAM: Sam	ole of the CAN bus Line b	it				
		e is sampled three times a e is sampled once at the s					
bit 5-3	SEG1PH<2:0>: Phase Buffer Segment 1 bits						
	-	th is 8 x Tq th is 1 x Tq					
bit 2-0	PRSEG<2:	0>: Propagation Time Seg	gment bits				
	0	th is 8 x TQ					
	000 = Leng	th is 1 x Tq					

REGISTER 21-19: CiFMSKSEL2: ECAN™ FILTER 15-8 MASK SELECTION REGISTER

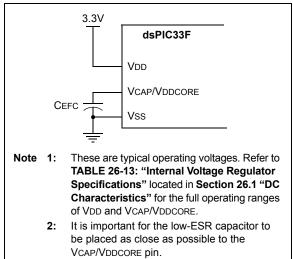
R/W-0 F15MSK< bit 15 R/W-0 F11MSK< bit 7	R/W-0	R/W-0 F14MS R/W-0 F10MS	R/W-0	R/W-0 F13MS R/W-0 F9MSł	R/W-0	R/W-0 F12MSI R/W-0	R/W-0 K<1:0> bit 8 R/W-0	
bit 15 R/W-0 F11MSK< bit 7	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	bit 8	
R/W-0 F11MSK< bit 7								
F11MSK< bit 7							R/W-0	
F11MSK< bit 7							R/W-0	
bit 7	<1:0>	F10MS	K<1:0>	F9MSł	(-1:0>			
					<u>\<u></u>\.U></u>	F8MSK<1:0>		
							bit 0	
Legend:								
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown		
bit 13-12 F bit 11-10 F	11 = Reserve 10 = Acceptar 11 = Acceptar 10 = Acceptar 14MSK<1:0 13MSK<1:0	nce Mask 2 reg nce Mask 1 reg nce Mask 0 reg >: Mask Sourc >: Mask Sourc	gisters contain gisters contain gisters contain gisters contain e for Filter 14 e for Filter 13	n mask n mask	s as bit 15-14)			

bit 7-6F11MSK<1:0>: Mask Source for Filter 11 bit (same values as bit 15-14)bit 5-4F10MSK<1:0>: Mask Source for Filter 10 bit (same values as bit 15-14)

bit 3-2 **F9MSK<1:0>:** Mask Source for Filter 9 bit (same values as bit 15-14)

bit 1-0 **F8MSK<1:0>:** Mask Source for Filter 8 bit (same values as bit 15-14)

23.2 On-Chip Voltage Regulator


All of the dsPIC33FJXXXMCX06/X08/X10 devices power their core digital logic at a nominal 2.5V. This may create an issue for designs that are required to operate at a higher typical voltage, such as 3.3V. To simplify system design, all devices in the dsPIC33FJXXXMCX06/X08/X10 family incorporate an on-chip regulator that allows the device to run its core logic from VDD.

The regulator provides power to the core from the other VDD pins. The regulator requires that a low-ESR (less than 5 ohms) capacitor (such as tantalum or ceramic) be connected to the VCAP/VDDCORE pin (Figure 23-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in Table 26-13 of **Section 26.1** "**DC Characteristics**".

Note:	It is important for the low-ESR capacitor to					
	be placed as close as possible to the					
	VCAP/VDDCORE pin.					

On a POR, it takes approximately 20 μ s for the on-chip voltage regulator to generate an output voltage. During this time, designated as TSTARTUP, code execution is disabled. TSTARTUP is applied every time the device resumes operation after any power-down.

FIGURE 23-1: CONNECTIONS FOR THE ON-CHIP VOLTAGE REGULATOR⁽¹⁾

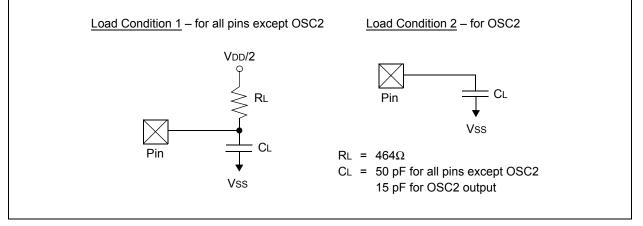
23.3 BOR: Brown-Out Reset

The BOR (Brown-out Reset) module is based on an internal voltage reference circuit that monitors the regulated supply voltage VCAP/VDDCORE. The main purpose of the BOR module is to generate a device Reset when a brown-out condition occurs. Brown-out conditions are generally caused by glitches on the AC mains (i.e., missing portions of the AC cycle waveform due to bad power transmission lines or voltage sags due to excessive current draw when a large inductive load is turned on).

A BOR will generate a Reset pulse which will reset the device. The BOR will select the clock source, based on the device Configuration bit values (FNOSC<2:0> and POSCMD<1:0>). Furthermore, if an oscillator mode is selected, the BOR will activate the Oscillator Start-up Timer (OST). The system clock is held until OST expires. If the PLL is used, then the clock will be held until the LOCK bit (OSCCON<5>) is '1'.

Concurrently, the PWRT time-out (TPWRT) will be applied before the internal Reset is released. If TPWRT = 0 and a crystal oscillator is being used, then a nominal delay of TFSCM = 100 is applied. The total delay in this case is TFSCM.

The BOR Status bit (RCON<1>) will be set to indicate that a BOR has occurred. The BOR circuit continues to operate while in Sleep or Idle modes and will reset the device should VDD fall below the BOR threshold voltage.


26.2 AC Characteristics and Timing Parameters

The information contained in this section defines dsPIC33FJXXXMCX06/X08/X10 AC characteristics and timing parameters.

TABLE 26-14: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions: 3.0V to 3.6V				
	(unless otherwise stated)				
AC CHARACTERISTICS	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
	Operating voltage VDD range as described in Section 26.0 "Electrical				
	Characteristics".				

FIGURE 26-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 26-15: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions
DO50	Cosc2	OSC2/SOSC2 pin	_	_	15		In XT and HS modes when external clock is used to drive OSC1
DO56	Cio	All I/O pins and OSC2	—	—	50	pF	EC mode
DO58	Св	SCLx, SDAx		—	400	pF	In I ² C™ mode

NOTES:

Modes of Operation

F

Flash Program Memory	
Control Registers	
Operations	
Programming Algorithm	
RTSP Operation Table Instructions	
Flexible Configuration	
FSCM	200
Delay for Crystal and PLL Clock Sources	
Device Resets	
1	
I/O Ports	
Parallel I/O (PIO)	
Write/Read Timing	102
Addresses	202
Operating Modes	
Registers	
I ² C Module	
I2C1 Register Map	
I2C2 Register Map	
In-Circuit Debugger	
In-Circuit Emulation	
In-Circuit Serial Programming (ICSP)	. 253, 260
Input Capture	
Registers	
Input Change Notification Module	
Instruction Addressing Modes File Register Instructions	
Fundamental Modes Supported	
MAC Instructions	
MCU Instructions	
Move and Accumulator Instructions	
Other Instructions	
Instruction Set	
Overview	
Summary	
Instruction-Based Power-Saving Modes	
Idle	
Sleep	
Internal RC Oscillator Use with WDT	250
Internet Address	
Interrupt Control and Status Registers	
IECx	
IFSx	
INTCON1	
INTCON2	
IPCx	
Interrupt Setup Procedures	
Initialization	
Interrupt Disable	
Interrupt Service Routine Trap Service Routine	
Interrupt Vector Table (IVT)	
Interrupts Coincident with Power Save Instructions.	
J	
JTAG Boundary Scan Interface	
Μ	
	o-
Memory Organization	
Microchip Internet Web Site	335

Power-Saving Features 153 Clock Frequency and Switching 153 Data Access from Program Memory Using Program Data Access from Program Memory Using Table Instructions 70 Data Access from, Address Generation 69 Memory Map...... 35