
Microchip Technology - DSPIC33FJ256MC710-I/PF Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor dsPIC

Core Size 16-Bit

Speed 40 MIPs

Connectivity CANbus, I²C, IrDA, LINbus, SPI, UART/USART

Peripherals Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT

Number of I/O 85

Program Memory Size 256KB (256K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 30K x 8

Voltage - Supply (Vcc/Vdd) 3V ~ 3.6V

Data Converters A/D 24x10/12b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 100-TQFP

Supplier Device Package 100-TQFP (14x14)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj256mc710-i-pf

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/dspic33fj256mc710-i-pf-4386566
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

dsPIC33FJXXXMCX06/X08/X10

NOTES:
DS70287C-page 12 © 2009 Microchip Technology Inc.

dsPIC33FJXXXMCX06/X08/X10
VSS P — Ground reference for logic and I/O pins.
VREF+ I Analog Analog voltage reference (high) input.
VREF- I Analog Analog voltage reference (low) input.

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Name Pin
Type

Buffer
Type Description

Legend: CMOS = CMOS compatible input or output Analog = Analog input P = Power
ST = Schmitt Trigger input with CMOS levels O = Output I = Input
© 2009 Microchip Technology Inc. DS70287C-page 17

dsPIC33FJXXXMCX06/X08/X10
4.0 MEMORY ORGANIZATION

The dsPIC33FJXXXMCX06/X08/X10 architecture fea-
tures separate program and data memory spaces and
buses. This architecture also allows the direct access
of program memory from the data space during code
execution.

4.1 Program Address Space
The program address memory space of the
dsPIC33FJXXXMCX06/X08/X10 devices is 4M instruc-
tions. The space is addressable by a 24-bit value
derived from either the 23-bit Program Counter (PC)
during program execution, or from table operation or
data space remapping as described in Section 4.6
“Interfacing Program and Data Memory Spaces”.

User access to the program memory space is restricted
to the lower half of the address range (0x000000 to
0x7FFFFF). The exception is the use of TBLRD/TBLWT
operations, which use TBLPAG<7> to permit access to
the Configuration bits and Device ID sections of the
configuration memory space. Memory usage for the
dsPIC33FJXXXMCX06/X08/X10 family of devices is
shown in Figure 4-1.

FIGURE 4-1: PROGRAM MEMORY MAP FOR dsPIC33FJXXXMCX06/X08/X10 DEVICES

Note: This data sheet summarizes the features
of the dsPIC33FJXXXMCX06/X08/X10
family of devices. However, it is not
intended to be a comprehensive reference
source. To complement the information in
this data sheet, refer to Section 3. “Data
Memory” (DS70202) and Section 4.
“Program Memory” (DS70203) in the
“dsPIC33F Family Reference Manual”,
which is available from the Microchip web
site (www.microchip.com).

Reset Address
0x000000

0x0000FE

0x000002

0x000100

Device Configuration

User Program
Flash Memory

0x00AC00
0x00ABFE

(22K instructions)

0x800000

0xF80000
Registers 0xF80017

0xF80010

DEVID (2)
0xFEFFFE
0xFF0000
0xFFFFFE

0xF7FFFE

Unimplemented
(Read ‘0’s)

GOTO Instruction
0x000004

Reserved

0x7FFFFE

Reserved

0x000200
0x0001FE
0x000104Alternate Vector Table

Reserved
Interrupt Vector Table

Reset Address

Device Configuration
Registers

DEVID (2)

Unimplemented
(Read ‘0’s)

GOTO Instruction

Reserved

Reserved

Alternate Vector Table
Reserved

Interrupt Vector Table
Reset Address

Device Configuration

User Program
Flash Memory

(88K instructions)

Registers

DEVID (2)

GOTO Instruction

Reserved

Reserved

Alternate Vector Table
Reserved

Interrupt Vector Table

dsPIC33FJ64MCXXX dsPIC33FJ128MCXXX dsPIC33FJ256MCXXX

C
on

fig
ur

at
io

n
M

em
or

y
Sp

ac
e

U
se

r M
em

or
y

Sp
ac

e

0x015800
0x0157FE

Note: Memory areas are not shown to scale.

User Program

(44K instructions)
Flash Memory

(Read ‘0’s)
Unimplemented

0x02AC00
0x02ABFE
© 2009 Microchip Technology Inc. DS70287C-page 35

dsPIC33FJXXXMCX06/X08/X10

4.4.3 MODULO ADDRESSING

APPLICABILITY
Modulo Addressing can be applied to the Effective
Address (EA) calculation associated with any W
register. It is important to realize that the address
boundaries check for addresses less than or greater
than the upper (for incrementing buffers) and lower (for
decrementing buffers) boundary addresses (not just
equal to). Address changes may, therefore, jump
beyond boundaries and still be adjusted correctly.

4.5 Bit-Reversed Addressing
Bit-Reversed Addressing mode is intended to simplify
data reordering for radix-2 FFT algorithms. It is
supported by the X AGU for data writes only.

The modifier, which may be a constant value or register
contents, is regarded as having its bit order reversed. The
address source and destination are kept in normal order.
Thus, the only operand requiring reversal is the modifier.

4.5.1 BIT-REVERSED ADDRESSING
IMPLEMENTATION

Bit-Reversed Addressing mode is enabled when the
following conditions exist:

1. The BWM bits (W register selection) in the
MODCON register are any value other than ‘15’
(the stack cannot be accessed using
Bit-Reversed Addressing).

2. The BREN bit is set in the XBREV register.
3. The addressing mode used is Register Indirect

with Pre-Increment or Post-Increment.

If the length of a bit-reversed buffer is M = 2N bytes,
the last ‘N’ bits of the data buffer start address must
be zeros.

XB<14:0> is the Bit-Reversed Address modifier, or
‘pivot point’, which is typically a constant. In the case of
an FFT computation, its value is equal to half of the FFT
data buffer size.

When enabled, Bit-Reversed Addressing is only exe-
cuted for Register Indirect with Pre-Increment or
Post-Increment Addressing and word sized data
writes. It will not function for any other addressing
mode or for byte sized data; normal addresses are gen-
erated instead. When Bit-Reversed Addressing is
active, the W Address Pointer is always added to the
address modifier (XB) and the offset associated with
the Register Indirect Addressing mode is ignored. In
addition, as word sized data is a requirement, the LSb
of the EA is ignored (and always clear).

If Bit-Reversed Addressing has already been enabled
by setting the BREN (XBREV<15>) bit, then a write to
the XBREV register should not be immediately followed
by an indirect read operation using the W register that
has been designated as the bit-reversed pointer.

Note: The modulo corrected effective address is
written back to the register only when
Pre-Modify or Post-Modify Addressing
mode is used to compute the effective
address. When an address offset (e.g.,
[W7+W2]) is used, Modulo Address cor-
rection is performed but the contents of
the register remain unchanged.

Note: All bit-reversed EA calculations assume
word sized data (LSb of every EA is
always clear). The XB value is scaled
accordingly to generate compatible (byte)
addresses.

Note: Modulo Addressing and Bit-Reversed
Addressing should not be enabled
together. In the event that the user attempts
to do so, Bit-Reversed Addressing will
assume priority for the X WAGU, and X
WAGU Modulo Addressing will be dis-
abled. However, Modulo Addressing will
continue to function in the X RAGU.
DS70287C-page 66 © 2009 Microchip Technology Inc.

dsPIC33FJXXXMCX06/X08/X10
6.0 RESET

The Reset module combines all Reset sources and
controls the device Master Reset Signal, SYSRST. The
following is a list of device Reset sources:

• POR: Power-on Reset
• BOR: Brown-out Reset
• MCLR: Master Clear Pin Reset
• SWR: RESET Instruction
• WDT: Watchdog Timer Reset
• TRAPR: Trap Conflict Reset
• IOPUWR: Illegal Opcode and Uninitialized W

Register Reset

A simplified block diagram of the Reset module is
shown in Figure 6-1.

Any active source of Reset will make the SYSRST
signal active. Many registers associated with the CPU
and peripherals are forced to a known Reset state.
Most registers are unaffected by a Reset; their status is
unknown on POR and unchanged by all other Resets.

All types of device Reset will set a corresponding status
bit in the RCON register to indicate the type of Reset
(see Register 6-1). A POR will clear all bits except for
the POR bit (RCON<0>), which is set. The user can set
or clear any bit at any time during code execution. The
RCON bits only serve as status bits. Setting a particular
Reset status bit in software does not cause a device
Reset to occur.

The RCON register also has other bits associated with
the Watchdog Timer and device power-saving states.
The function of these bits is discussed in other sections
of this manual.

FIGURE 6-1: RESET SYSTEM BLOCK DIAGRAM

Note: This data sheet summarizes the features
of the dsPIC33FJXXXMCX06/X08/X10
family of devices. However, it is not
intended to be a comprehensive reference
source. To complement the information in
this data sheet, refer to Section 8.
“Reset” (DS70192) in the “dsPIC33F
Family Reference Manual”, which is
available from the Microchip web site
(www.microchip.com).

Note: Refer to the specific peripheral or CPU
section of this manual for register Reset
states.

Note: The status bits in the RCON register
should be cleared after they are read so
that the next RCON register value after a
device Reset will be meaningful.

MCLR

VDD

Internal
Regulator

BOR

Sleep or Idle

RESET Instruction

WDT
Module

Glitch Filter

Trap Conflict

Illegal Opcode

Uninitialized W Register

SYSRST

VDD Rise
Detect

POR
© 2009 Microchip Technology Inc. DS70287C-page 79

dsPIC33FJXXXMCX06/X08/X10

REGISTER 7-26: IPC11: INTERRUPT PRIORITY CONTROL REGISTER 11

U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0
— T6IP<2:0> — DMA4IP<2:0>

bit 15 bit 8

U-0 U-0 U-0 U-0 U-0 R/W-1 R/W-0 R/W-0
— — — — — OC8IP<2:0>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15 Unimplemented: Read as ‘0’
bit 14-12 T6IP<2:0>: Timer6 Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)
•
•
•
001 = Interrupt is priority 1
000 = Interrupt source is disabled

bit 11 Unimplemented: Read as ‘0’
bit 10-8 DMA4IP<2:0>: DMA Channel 4 Data Transfer Complete Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)
•
•
•
001 = Interrupt is priority 1
000 = Interrupt source is disabled

bit 7-3 Unimplemented: Read as ‘0’
bit 2-0 OC8IP<2:0>: Output Compare Channel 8 Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)
•
•
•
001 = Interrupt is priority 1
000 = Interrupt source is disabled
© 2009 Microchip Technology Inc. DS70287C-page 123

dsPIC33FJXXXMCX06/X08/X10

7.4 Interrupt Setup Procedures

7.4.1 INITIALIZATION
To configure an interrupt source, do the following:

1. Set the NSTDIS bit (INTCON1<15>) if nested
interrupts are not desired.

2. Select the user-assigned priority level for the
interrupt source by writing the control bits in the
appropriate IPCx register. The priority level will
depend on the specific application and type of
interrupt source. If multiple priority levels are not
desired, the IPCx register control bits for all
enabled interrupt sources may be programmed
to the same non-zero value.

3. Clear the interrupt flag status bit associated with
the peripheral in the associated IFSx register.

4. Enable the interrupt source by setting the inter-
rupt enable control bit associated with the
source in the appropriate IECx register.

7.4.2 INTERRUPT SERVICE ROUTINE
The method that is used to declare an ISR and initialize
the IVT with the correct vector address will depend on
the programming language (i.e., C or assembler) and
the language development tool suite that is used to
develop the application. In general, the user must clear
the interrupt flag in the appropriate IFSx register for the
source of interrupt that the ISR handles. Otherwise, the
ISR will be re-entered immediately after exiting the
routine. If the ISR is coded in assembly language, it
must be terminated using a RETFIE instruction to
unstack the saved PC value, SRL value and old CPU
priority level.

7.4.3 TRAP SERVICE ROUTINE
A Trap Service Routine (TSR) is coded like an ISR,
except that the appropriate trap status flag in the
INTCON1 register must be cleared to avoid re-entry
into the TSR.

7.4.4 INTERRUPT DISABLE
All user interrupts can be disabled using the following
procedure:

1. Push the current SR value onto the software
stack using the PUSH instruction.

2. Force the CPU to priority level 7 by inclusive
ORing the value OEh with SRL.

To enable user interrupts, the POP instruction may be
used to restore the previous SR value.

Note that only user interrupts with a priority level of 7 or
less can be disabled. Trap sources (level 8-level 15)
cannot be disabled.

The DISI instruction provides a convenient way to dis-
able interrupts of priority levels 1-6 for a fixed period of
time. Level 7 interrupt sources are not disabled by the
DISI instruction.

Note: At a device Reset, the IPCx registers are
initialized such that all user interrupt
sources are assigned to priority level 4.
© 2009 Microchip Technology Inc. DS70287C-page 131

dsPIC33FJXXXMCX06/X08/X10

8.0 DIRECT MEMORY ACCESS

(DMA)

Direct Memory Access (DMA) is a very efficient
mechanism of copying data between peripheral SFRs
(e.g., the UART Receive register and Input Capture 1
buffer) and buffers or variables stored in RAM, with
minimal CPU intervention. The DMA controller can
automatically copy entire blocks of data without
requiring the user software to read or write the
peripheral Special Function Registers (SFRs) every
time a peripheral interrupt occurs. The DMA controller
uses a dedicated bus for data transfers and, therefore,
does not steal cycles from the code execution flow of
the CPU. To exploit the DMA capability, the
corresponding user buffers or variables must be
located in DMA RAM.

The dsPIC33FJXXXMCX06/X08/X10 peripherals that
can utilize DMA are listed in Table 8-1 along with their
associated Interrupt Request (IRQ) numbers.

TABLE 8-1: PERIPHERALS WITH DMA
SUPPORT

The DMA controller features eight identical data
transfer channels. Each channel has its own set of
control and status registers. Each DMA channel can be
configured to copy data either from buffers stored in
dual port DMA RAM to peripheral SFRs or from
peripheral SFRs to buffers in DMA RAM.

The DMA controller supports the following features:

• Word or byte sized data transfers.
• Transfers from peripheral to DMA RAM or DMA

RAM to peripheral.
• Indirect Addressing of DMA RAM locations with or

without automatic post-increment.
• Peripheral Indirect Addressing – In some

peripherals, the DMA RAM read/write addresses
may be partially derived from the peripheral.

• One-Shot Block Transfers – Terminating DMA
transfer after one block transfer.

• Continuous Block Transfers – Reloading DMA
RAM buffer start address after every block
transfer is complete.

• Ping-Pong Mode – Switching between two DMA
RAM start addresses between successive block
transfers, thereby filling two buffers alternately.

• Automatic or manual initiation of block transfers.
• Each channel can select from 20 possible

sources of data sources or destinations.

For each DMA channel, a DMA interrupt request is
generated when a block transfer is complete.
Alternatively, an interrupt can be generated when half of
the block has been filled.

Note: This data sheet summarizes the features
of the dsPIC33FJXXXMCX06/X08/X10
family of devices. However, it is not
intended to be a comprehensive reference
source. To complement the information in
this data sheet, refer to Section 22.
“Direct Memory Access (DMA)”
(DS70182) in the “dsPIC33F Family
Reference Manual”, which is available
from the Microchip web site
(www.microchip.com).

Peripheral IRQ Number

INT0 0
Input Capture 1 1
Input Capture 2 5
Output Compare 1 2
Output Compare 2 6
Timer2 7
Timer3 8
SPI1 10
SPI2 33
UART1 Reception 11
UART1 Transmission 12
UART2 Reception 30
UART2 Transmission 31
ADC1 13
ADC2 21
ECAN1 Reception 34
ECAN1 Transmission 70
ECAN2 Reception 55
ECAN2 Transmission 71
© 2009 Microchip Technology Inc. DS70287C-page 133

dsPIC33FJXXXMCX06/X08/X10

REGISTER 10-3: PMD3: PERIPHERAL MODULE DISABLE CONTROL REGISTER 3

R/W-0 R/W-0 R/W-0 R/W-0 U-0 U-0 U-0 U-0
T9MD T8MD T7MD T6MD — — — —

bit 15 bit 8

U-0 U-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0
— — — — — — I2C2MD AD2MD

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15 T9MD: Timer9 Module Disable bit
1 = Timer9 module is disabled
0 = Timer9 module is enabled

bit 14 T8MD: Timer8 Module Disable bit
1 = Timer8 module is disabled
0 = Timer8 module is enabled

bit 13 T7MD: Timer7 Module Disable bit
1 = Timer7 module is disabled
0 = Timer7 module is enabled

bit 12 T6MD: Timer6 Module Disable bit
1 = Timer6 module is disabled
0 = Timer6 module is enabled

bit 11-2 Unimplemented: Read as ‘0’
bit 1 I2C2MD: I2C2 Module Disable bit

1 = I2C2 module is disabled
0 = I2C2 module is enabled

bit 0 AD2MD: AD2 Module Disable bit
1 = AD2 module is disabled
0 = AD2 module is enabled
© 2009 Microchip Technology Inc. DS70287C-page 159

dsPIC33FJXXXMCX06/X08/X10

NOTES:
DS70287C-page 160 © 2009 Microchip Technology Inc.

dsPIC33FJXXXMCX06/X08/X10
REGISTER 17-1: QEIxCON: QEI CONTROL REGISTER

R/W-0 U-0 R/W-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0
CNTERR — QEISIDL INDEX UPDN QEIM<2:0>

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
SWPAB PCDOUT TQGATE TQCKPS<1:0> POSRES TQCS UPDN_SRC

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15 CNTERR: Count Error Status Flag bit
1 = Position count error has occurred
0 = No position count error has occurred
(CNTERR flag only applies when QEIM<2:0> = ‘110’ or ‘100’)

bit 14 Unimplemented: Read as ‘0’
bit 13 QEISIDL: Stop in Idle Mode bit

1 = Discontinue module operation when device enters Idle mode
0 = Continue module operation in Idle mode

bit 12 INDEX: Index Pin State Status bit (Read-Only)
1 = Index pin is High
0 = Index pin is Low

bit 11 UPDN: Position Counter Direction Status bit
1 = Position Counter direction is positive (+)
0 = Position Counter direction is negative (-)
(Read-only bit when QEIM<2:0> = ‘1XX’)
(Read/Write bit when QEIM<2:0> = ‘001’)

bit 10-8 QEIM<2:0>: Quadrature Encoder Interface Mode Select bits
111 = Quadrature Encoder Interface enabled (x4 mode) with position counter reset by match (MAXCNT)
110 = Quadrature Encoder Interface enabled (x4 mode) with Index Pulse reset of position counter
101 = Quadrature Encoder Interface enabled (x2 mode) with position counter reset by match (MAXCNT)
100 = Quadrature Encoder Interface enabled (x2 mode) with Index Pulse reset of position counter
011 = Unused (Module disabled)
010 = Unused (Module disabled)
001 = Starts 16-bit Timer
000 = Quadrature Encoder Interface/Timer off

bit 7 SWPAB: Phase A and Phase B Input Swap Select bit
1 = Phase A and Phase B inputs swapped
0 = Phase A and Phase B inputs not swapped

bit 6 PCDOUT: Position Counter Direction State Output Enable bit
1 = Position Counter direction status output enable (QEI logic controls state of I/O pin)
0 = Position Counter direction status output disabled (normal I/O pin operation)

bit 5 TQGATE: Timer Gated Time Accumulation Enable bit
1 = Timer gated time accumulation enabled
0 = Timer gated time accumulation disabled
DS70287C-page 192 © 2009 Microchip Technology Inc.

dsPIC33FJXXXMCX06/X08/X10

REGISTER 18-1: SPIxSTAT: SPIx STATUS AND CONTROL REGISTER

R/W-0 U-0 R/W-0 U-0 U-0 U-0 U-0 U-0
SPIEN — SPISIDL — — — — —

bit 15 bit 8

U-0 R/C-0 U-0 U-0 U-0 U-0 R-0 R-0
— SPIROV — — — — SPITBF SPIRBF

bit 7 bit 0

Legend: C = Clearable bit
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15 SPIEN: SPIx Enable bit
1 = Enables module and configures SCKx, SDOx, SDIx and SSx as serial port pins
0 = Disables module

bit 14 Unimplemented: Read as ‘0’
bit 13 SPISIDL: Stop in Idle Mode bit

1 = Discontinue module operation when device enters Idle mode
0 = Continue module operation in Idle mode

bit 12-7 Unimplemented: Read as ‘0’
bit 6 SPIROV: Receive Overflow Flag bit

1 = A new byte/word is completely received and discarded. The user software has not read the
previous data in the SPIxBUF register

0 = No overflow has occurred
bit 5-2 Unimplemented: Read as ‘0’
bit 1 SPITBF: SPIx Transmit Buffer Full Status bit

1 = Transmit not yet started; SPIxTXB is full
0 = Transmit started; SPIxTXB is empty
Automatically set in hardware when CPU writes SPIxBUF location, loading SPIxTXB.
Automatically cleared in hardware when SPIx module transfers data from SPIxTXB to SPIxSR.

bit 0 SPIRBF: SPIx Receive Buffer Full Status bit
1 = Receive complete; SPIxRXB is full
0 = Receive is not complete; SPIxRXB is empty
Automatically set in hardware when SPIx transfers data from SPIxSR to SPIxRXB.
Automatically cleared in hardware when core reads SPIxBUF location, reading SPIxRXB.
DS70287C-page 196 © 2009 Microchip Technology Inc.

dsPIC33FJXXXMCX06/X08/X10

NOTES:
DS70287C-page 208 © 2009 Microchip Technology Inc.

dsPIC33FJXXXMCX06/X08/X10

21.0 ENHANCED CAN (ECAN™)

MODULE

21.1 Overview
The Enhanced Controller Area Network (ECAN™)
module is a serial interface, useful for communicating
with other CAN modules or microcontroller devices.
This interface/protocol was designed to allow commu-
nications within noisy environments. The
dsPIC33FJXXXMCX06/X08/X10 devices contain up to
two ECAN modules.

The CAN module is a communication controller imple-
menting the CAN 2.0 A/B protocol, as defined in the
BOSCH specification. The module will support CAN 1.2,
CAN 2.0A, CAN 2.0B Passive and CAN 2.0B Active
versions of the protocol. The module implementation is
a full CAN system. The CAN specification is not covered
within this data sheet. The reader may refer to the
BOSCH CAN specification for further details.

The module features are as follows:

• Implementation of the CAN protocol, CAN 1.2,
CAN 2.0A and CAN 2.0B

• Standard and extended data frames
• 0-8 bytes data length
• Programmable bit rate up to 1 Mbit/sec
• Automatic response to remote transmission

requests
• Up to eight transmit buffers with application speci-

fied prioritization and abort capability (each buffer
may contain up to 8 bytes of data)

• Up to 32 receive buffers (each buffer may contain
up to 8 bytes of data)

• Up to 16 full (standard/extended identifier)
acceptance filters

• Three full acceptance filter masks
• DeviceNet™ addressing support
• Programmable wake-up functionality with

integrated low-pass filter
• Programmable Loopback mode supports self-test

operation
• Signaling via interrupt capabilities for all CAN

receiver and transmitter error states
• Programmable clock source

• Programmable link to input capture module (IC2
for both CAN1 and CAN2) for time-stamping and
network synchronization

• Low-power Sleep and Idle mode

The CAN bus module consists of a protocol engine and
message buffering/control. The CAN protocol engine
handles all functions for receiving and transmitting
messages on the CAN bus. Messages are transmitted
by first loading the appropriate data registers. Status
and errors can be checked by reading the appropriate
registers. Any message detected on the CAN bus is
checked for errors and then matched against filters to
see if it should be received and stored in one of the
receive registers.

21.2 Frame Types
The CAN module transmits various types of frames
which include data messages, or remote transmission
requests initiated by the user, as other frames that are
automatically generated for control purposes. The
following frame types are supported:

• Standard Data Frame:
A standard data frame is generated by a node
when the node wishes to transmit data. It includes
an 11-bit Standard Identifier (SID), but not an
18-bit Extended Identifier (EID).

• Extended Data Frame:
An extended data frame is similar to a standard
data frame, but includes an extended identifier as
well.

• Remote Frame:
It is possible for a destination node to request the
data from the source. For this purpose, the
destination node sends a remote frame with an
identifier that matches the identifier of the required
data frame. The appropriate data source node will
then send a data frame as a response to this
remote request.

• Error Frame:
An error frame is generated by any node that
detects a bus error. An error frame consists of two
fields: an error flag field and an error delimiter field.

• Overload Frame:
An overload frame can be generated by a node as
a result of two conditions. First, the node detects a
dominant bit during interframe space which is an
illegal condition. Second, due to internal condi-
tions, the node is not yet able to start reception of
the next message. A node may generate a maxi-
mum of 2 sequential overload frames to delay the
start of the next message.

• Interframe Space:
Interframe space separates a proceeding frame
(of whatever type) from a following data or remote
frame.

Note: This data sheet summarizes the features
of the dsPIC33FJXXXMCX06/X08/X10
family of devices. However, it is not
intended to be a comprehensive reference
source. To complement the information in
this data sheet, refer to Section 21.
“Enhanced Controller Area Network
(ECAN™)” (DS70185) in the “dsPIC33F
Family Reference Manual”, which is
available from the Microchip web site
(www.microchip.com).
© 2009 Microchip Technology Inc. DS70287C-page 215

dsPIC33FJXXXMCX06/X08/X10

REGISTER 21-6: CiINTF: ECAN™ INTERRUPT FLAG REGISTER

U-0 U-0 R-0 R-0 R-0 R-0 R-0 R-0
— — TXBO TXBP RXBP TXWAR RXWAR EWARN

bit 15 bit 8

R/C-0 R/C-0 R/C-0 U-0 R/C-0 R/C-0 R/C-0 R/C-0
IVRIF WAKIF ERRIF — FIFOIF RBOVIF RBIF TBIF

bit 7 bit 0

Legend: C = Clear only bit
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-14 Unimplemented: Read as ‘0’
bit 13 TXBO: Transmitter in Error State Bus Off bit
bit 12 TXBP: Transmitter in Error State Bus Passive bit
bit 11 RXBP: Receiver in Error State Bus Passive bit
bit 10 TXWAR: Transmitter in Error State Warning bit
bit 9 RXWAR: Receiver in Error State Warning bit
bit 8 EWARN: Transmitter or Receiver in Error State Warning bit
bit 7 IVRIF: Invalid Message Received Interrupt Flag bit
bit 6 WAKIF: Bus Wake-up Activity Interrupt Flag bit
bit 5 ERRIF: Error Interrupt Flag bit (multiple sources in CiINTF<13:8> register)
bit 4 Unimplemented: Read as ‘0’
bit 3 FIFOIF: FIFO Almost Full Interrupt Flag bit
bit 2 RBOVIF: RX Buffer Overflow Interrupt Flag bit
bit 1 RBIF: RX Buffer Interrupt Flag bit
bit 0 TBIF: TX Buffer Interrupt Flag bit
© 2009 Microchip Technology Inc. DS70287C-page 223

dsPIC33FJXXXMCX06/X08/X10
10 BTSC BTSC f,#bit4 Bit Test f, Skip if Clear 1 1
(2 or 3)

None

BTSC Ws,#bit4 Bit Test Ws, Skip if Clear 1 1
(2 or 3)

None

11 BTSS BTSS f,#bit4 Bit Test f, Skip if Set 1 1
(2 or 3)

None

BTSS Ws,#bit4 Bit Test Ws, Skip if Set 1 1
(2 or 3)

None

12 BTST BTST f,#bit4 Bit Test f 1 1 Z

BTST.C Ws,#bit4 Bit Test Ws to C 1 1 C

BTST.Z Ws,#bit4 Bit Test Ws to Z 1 1 Z

BTST.C Ws,Wb Bit Test Ws<Wb> to C 1 1 C

BTST.Z Ws,Wb Bit Test Ws<Wb> to Z 1 1 Z

13 BTSTS BTSTS f,#bit4 Bit Test then Set f 1 1 Z

BTSTS.C Ws,#bit4 Bit Test Ws to C, then Set 1 1 C

BTSTS.Z Ws,#bit4 Bit Test Ws to Z, then Set 1 1 Z

14 CALL CALL lit23 Call subroutine 2 2 None

CALL Wn Call indirect subroutine 1 2 None

15 CLR CLR f f = 0x0000 1 1 None

CLR WREG WREG = 0x0000 1 1 None

CLR Ws Ws = 0x0000 1 1 None

CLR Acc,Wx,Wxd,Wy,Wyd,AWB Clear Accumulator 1 1 OA,OB,SA,SB

16 CLRWDT CLRWDT Clear Watchdog Timer 1 1 WDTO,Sleep

17 COM COM f f = f 1 1 N,Z

COM f,WREG WREG = f 1 1 N,Z

COM Ws,Wd Wd = Ws 1 1 N,Z

18 CP CP f Compare f with WREG 1 1 C,DC,N,OV,Z

CP Wb,#lit5 Compare Wb with lit5 1 1 C,DC,N,OV,Z

CP Wb,Ws Compare Wb with Ws (Wb – Ws) 1 1 C,DC,N,OV,Z

19 CP0 CP0 f Compare f with 0x0000 1 1 C,DC,N,OV,Z

CP0 Ws Compare Ws with 0x0000 1 1 C,DC,N,OV,Z

20 CPB CPB f Compare f with WREG, with Borrow 1 1 C,DC,N,OV,Z

CPB Wb,#lit5 Compare Wb with lit5, with Borrow 1 1 C,DC,N,OV,Z

CPB Wb,Ws Compare Wb with Ws, with Borrow
 (Wb – Ws – C)

1 1 C,DC,N,OV,Z

21 CPSEQ CPSEQ Wb, Wn Compare Wb with Wn, skip if = 1 1
(2 or 3)

None

22 CPSGT CPSGT Wb, Wn Compare Wb with Wn, skip if > 1 1
(2 or 3)

None

23 CPSLT CPSLT Wb, Wn Compare Wb with Wn, skip if < 1 1
(2 or 3)

None

24 CPSNE CPSNE Wb, Wn Compare Wb with Wn, skip if ≠ 1 1
(2 or 3)

None

25 DAW DAW Wn Wn = decimal adjust Wn 1 1 C

26 DEC DEC f f = f – 1 1 1 C,DC,N,OV,Z

DEC f,WREG WREG = f – 1 1 1 C,DC,N,OV,Z

DEC Ws,Wd Wd = Ws – 1 1 1 C,DC,N,OV,Z

27 DEC2 DEC2 f f = f – 2 1 1 C,DC,N,OV,Z

DEC2 f,WREG WREG = f – 2 1 1 C,DC,N,OV,Z

DEC2 Ws,Wd Wd = Ws – 2 1 1 C,DC,N,OV,Z

28 DISI DISI #lit14 Disable Interrupts for k instruction cycles 1 1 None

TABLE 24-2: INSTRUCTION SET OVERVIEW (CONTINUED)
Base
Instr

#
Assembly
Mnemonic Assembly Syntax Description # of

Words
of

Cycles
Status Flags

Affected
© 2009 Microchip Technology Inc. DS70287C-page 265

dsPIC33FJXXXMCX06/X08/X10
29 DIV DIV.S Wm,Wn Signed 16/16-bit Integer Divide 1 18 N,Z,C,OV

DIV.SD Wm,Wn Signed 32/16-bit Integer Divide 1 18 N,Z,C,OV

DIV.U Wm,Wn Unsigned 16/16-bit Integer Divide 1 18 N,Z,C,OV

DIV.UD Wm,Wn Unsigned 32/16-bit Integer Divide 1 18 N,Z,C,OV

30 DIVF DIVF Wm,Wn Signed 16/16-bit Fractional Divide 1 18 N,Z,C,OV

31 DO DO #lit14,Expr Do code to PC + Expr, lit14 + 1 times 2 2 None

DO Wn,Expr Do code to PC + Expr, (Wn) + 1 times 2 2 None

32 ED ED Wm*Wm,Acc,Wx,Wy,Wxd Euclidean Distance (no accumulate) 1 1 OA,OB,OAB,
SA,SB,SAB

33 EDAC EDAC Wm*Wm,Acc,Wx,Wy,Wxd Euclidean Distance 1 1 OA,OB,OAB,
SA,SB,SAB

34 EXCH EXCH Wns,Wnd Swap Wns with Wnd 1 1 None

35 FBCL FBCL Ws,Wnd Find Bit Change from Left (MSb) Side 1 1 C

36 FF1L FF1L Ws,Wnd Find First One from Left (MSb) Side 1 1 C

37 FF1R FF1R Ws,Wnd Find First One from Right (LSb) Side 1 1 C

38 GOTO GOTO Expr Go to address 2 2 None

GOTO Wn Go to indirect 1 2 None

39 INC INC f f = f + 1 1 1 C,DC,N,OV,Z

INC f,WREG WREG = f + 1 1 1 C,DC,N,OV,Z

INC Ws,Wd Wd = Ws + 1 1 1 C,DC,N,OV,Z

40 INC2 INC2 f f = f + 2 1 1 C,DC,N,OV,Z

INC2 f,WREG WREG = f + 2 1 1 C,DC,N,OV,Z

INC2 Ws,Wd Wd = Ws + 2 1 1 C,DC,N,OV,Z

41 IOR IOR f f = f .IOR. WREG 1 1 N,Z

IOR f,WREG WREG = f .IOR. WREG 1 1 N,Z

IOR #lit10,Wn Wd = lit10 .IOR. Wd 1 1 N,Z

IOR Wb,Ws,Wd Wd = Wb .IOR. Ws 1 1 N,Z

IOR Wb,#lit5,Wd Wd = Wb .IOR. lit5 1 1 N,Z

42 LAC LAC Wso,#Slit4,Acc Load Accumulator 1 1 OA,OB,OAB,
SA,SB,SAB

43 LNK LNK #lit14 Link Frame Pointer 1 1 None

44 LSR LSR f f = Logical Right Shift f 1 1 C,N,OV,Z

LSR f,WREG WREG = Logical Right Shift f 1 1 C,N,OV,Z

LSR Ws,Wd Wd = Logical Right Shift Ws 1 1 C,N,OV,Z

LSR Wb,Wns,Wnd Wnd = Logical Right Shift Wb by Wns 1 1 N,Z

LSR Wb,#lit5,Wnd Wnd = Logical Right Shift Wb by lit5 1 1 N,Z

45 MAC MAC Wm*Wn,Acc,Wx,Wxd,Wy,Wyd
,
AWB

Multiply and Accumulate 1 1 OA,OB,OAB,
SA,SB,SAB

MAC Wm*Wm,Acc,Wx,Wxd,Wy,Wyd Square and Accumulate 1 1 OA,OB,OAB,
SA,SB,SAB

46 MOV MOV f,Wn Move f to Wn 1 1 None

MOV f Move f to f 1 1 N,Z

MOV f,WREG Move f to WREG 1 1 N,Z

MOV #lit16,Wn Move 16-bit literal to Wn 1 1 None

MOV.b #lit8,Wn Move 8-bit literal to Wn 1 1 None

MOV Wn,f Move Wn to f 1 1 None

MOV Wso,Wdo Move Ws to Wd 1 1 None

MOV WREG,f Move WREG to f 1 1 N,Z

MOV.D Wns,Wd Move Double from W(ns):W(ns + 1) to Wd 1 2 None

MOV.D Ws,Wnd Move Double from Ws to W(nd + 1):W(nd) 1 2 None

47 MOVSAC MOVSAC Acc,Wx,Wxd,Wy,Wyd,AWB Prefetch and store accumulator 1 1 None

TABLE 24-2: INSTRUCTION SET OVERVIEW (CONTINUED)
Base
Instr

#
Assembly
Mnemonic Assembly Syntax Description # of

Words
of

Cycles
Status Flags

Affected
DS70287C-page 266 © 2009 Microchip Technology Inc.

dsPIC33FJXXXMCX06/X08/X10

25.2 MPASM Assembler
The MPASM Assembler is a full-featured, universal
macro assembler for all PIC MCUs.

The MPASM Assembler generates relocatable object
files for the MPLINK Object Linker, Intel® standard HEX
files, MAP files to detail memory usage and symbol
reference, absolute LST files that contain source lines
and generated machine code and COFF files for
debugging.

The MPASM Assembler features include:

• Integration into MPLAB IDE projects
• User-defined macros to streamline

assembly code
• Conditional assembly for multi-purpose

source files
• Directives that allow complete control over the

assembly process

25.3 MPLAB C18 and MPLAB C30
C Compilers

The MPLAB C18 and MPLAB C30 Code Development
Systems are complete ANSI C compilers for
Microchip’s PIC18 and PIC24 families of microcon-
trollers and the dsPIC30 and dsPIC33 family of digital
signal controllers. These compilers provide powerful
integration capabilities, superior code optimization and
ease of use not found with other compilers.

For easy source level debugging, the compilers provide
symbol information that is optimized to the MPLAB IDE
debugger.

25.4 MPLINK Object Linker/
MPLIB Object Librarian

The MPLINK Object Linker combines relocatable
objects created by the MPASM Assembler and the
MPLAB C18 C Compiler. It can link relocatable objects
from precompiled libraries, using directives from a
linker script.

The MPLIB Object Librarian manages the creation and
modification of library files of precompiled code. When
a routine from a library is called from a source file, only
the modules that contain that routine will be linked in
with the application. This allows large libraries to be
used efficiently in many different applications.

The object linker/library features include:

• Efficient linking of single libraries instead of many
smaller files

• Enhanced code maintainability by grouping
related modules together

• Flexible creation of libraries with easy module
listing, replacement, deletion and extraction

25.5 MPLAB ASM30 Assembler, Linker
and Librarian

MPLAB ASM30 Assembler produces relocatable
machine code from symbolic assembly language for
dsPIC30F devices. MPLAB C30 C Compiler uses the
assembler to produce its object file. The assembler
generates relocatable object files that can then be
archived or linked with other relocatable object files and
archives to create an executable file. Notable features
of the assembler include:

• Support for the entire dsPIC30F instruction set
• Support for fixed-point and floating-point data
• Command line interface
• Rich directive set
• Flexible macro language
• MPLAB IDE compatibility

25.6 MPLAB SIM Software Simulator
The MPLAB SIM Software Simulator allows code
development in a PC-hosted environment by simulat-
ing the PIC MCUs and dsPIC® DSCs on an instruction
level. On any given instruction, the data areas can be
examined or modified and stimuli can be applied from
a comprehensive stimulus controller. Registers can be
logged to files for further run-time analysis. The trace
buffer and logic analyzer display extend the power of
the simulator to record and track program execution,
actions on I/O, most peripherals and internal registers.

The MPLAB SIM Software Simulator fully supports
symbolic debugging using the MPLAB C18 and
MPLAB C30 C Compilers, and the MPASM and
MPLAB ASM30 Assemblers. The software simulator
offers the flexibility to develop and debug code outside
of the hardware laboratory environment, making it an
excellent, economical software development tool.
DS70287C-page 270 © 2009 Microchip Technology Inc.

dsPIC33FJXXXMCX06/X08/X10

FIGURE 26-5: TIMER1, 2, 3, 4, 5, 6, 7, 8 AND 9 EXTERNAL CLOCK TIMING CHARACTERISTICS

Note: Refer to Figure 26-1 for load conditions.

Tx11

Tx15

Tx10

Tx20

TMRx
OS60

TxCK

TABLE 26-22: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS(1)

AC CHARACTERISTICS
Standard Operating Conditions: 3.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C ≤ TA ≤ +85°C for Industrial

Param
No. Symbol Characteristic Min Typ Max Units Conditions

TA10 TTXH TxCK High Time Synchronous,
no prescaler

0.5 TCY + 20 — — ns Must also meet
parameter TA15

Synchronous,
with prescaler

10 — — ns

Asynchronous 10 — — ns
TA11 TTXL TxCK Low Time Synchronous,

no prescaler
0.5 TCY + 20 — — ns Must also meet

parameter TA15
Synchronous,
with prescaler

10 — — ns

Asynchronous 10 — — ns
TA15 TTXP TxCK Input Period Synchronous,

no prescaler
TCY + 40 — — ns —

Synchronous,
with prescaler

Greater of:
20 ns or

(TCY + 40)/N

— — — N = prescale
value
(1, 8, 64, 256)

Asynchronous 20 — — ns —
OS60 Ft1 SOSC1/T1CK Oscillator Input

frequency Range (oscillator enabled
by setting bit TCS (T1CON<1>))

DC — 50 kHz —

TA20 TCKEXTMRL Delay from External TxCK Clock
Edge to Timer Increment

0.5 TCY — 1.5 TCY — —

Note 1: Timer1 is a Type A.
DS70287C-page 288 © 2009 Microchip Technology Inc.

dsPIC33FJXXXMCX06/X08/X10

Table Read Instructions

TBLRDH ... 70
TBLRDL .. 70

Visibility Operation .. 71
Program Memory

Interrupt Vector ... 36
Organization.. 36
Reset Vector ... 36

Q
Quadrature Encoder Interface (QEI) 191
Quadrature Encoder Interface (QEI) Module

Register Map... 50

R
Reader Response ... 336
Registers

ADxCHS0 (ADCx Input Channel 0 Select................. 250
ADxCHS123 (ADCx Input Channel 1, 2, 3 Select) ... 249
ADxCON1 (ADCx Control 1)..................................... 244
ADxCON2 (ADCx Control 2)..................................... 246
ADxCON3 (ADCx Control 3)..................................... 247
ADxCON4 (ADCx Control 4)..................................... 248
ADxCSSH (ADCx Input Scan Select High)............... 251
ADxCSSL (ADCx Input Scan Select Low) 251
ADxPCFGH (ADCx Port Configuration High) 252
ADxPCFGL (ADCx Port Configuration Low)............. 252
CiBUFPNT1 (ECAN Filter 0-3 Buffer Pointer)........... 228
CiBUFPNT2 (ECAN Filter 4-7 Buffer Pointer)........... 229
CiBUFPNT3 (ECAN Filter 8-11 Buffer Pointer)......... 229
CiBUFPNT4 (ECAN Filter 12-15 Buffer Pointer)....... 230
CiCFG1 (ECAN Baud Rate Configuration 1) 226
CiCFG2 (ECAN Baud Rate Configuration 2) 227
CiCTRL1 (ECAN Control 1) 218
CiCTRL2 (ECAN Control 2) 219
CiEC (ECAN Transmit/Receive Error Count)............ 225
CiFCTRL (ECAN FIFO Control)................................ 221
CiFEN1 (ECAN Acceptance Filter Enable) 228
CiFIFO (ECAN FIFO Status)..................................... 222
CiFMSKSEL1 (ECAN Filter 7-0 Mask Selection)..... 232,

233
CiINTE (ECAN Interrupt Enable) 224
CiINTF (ECAN Interrupt Flag)................................... 223
CiRXFnEID (ECAN Acceptance Filter n Extended Identi-

fier).. 231
CiRXFnSID (ECAN Acceptance Filter n Standard Identi-

fier).. 231
CiRXFUL1 (ECAN Receive Buffer Full 1) 235
CiRXFUL2 (ECAN Receive Buffer Full 2) 235
CiRXMnEID (ECAN Acceptance Filter Mask n Extended

Identifier) ... 234
CiRXMnSID (ECAN Acceptance Filter Mask n Standard

Identifier) ... 234
CiRXOVF1 (ECAN Receive Buffer Overflow 1) 236
CiRXOVF2 (ECAN Receive Buffer Overflow 2) 236
CiTRBnDLC (ECAN Buffer n Data Length Control) .. 239
CiTRBnDm (ECAN Buffer n Data Field Byte m) 239
CiTRBnEID (ECAN Buffer n Extended Identifier) 238
CiTRBnSID (ECAN Buffer n Standard Identifier) 238
CiTRBnSTAT (ECAN Receive Buffer n Status) 240
CiTRmnCON (ECAN TX/RX Buffer m Control)......... 237
CiVEC (ECAN Interrupt Code).................................. 220
CLKDIV (Clock Divisor)... 148
CORCON (Core Control) 28, 90
DFLTCON (QEI Control)... 194
DMACS0 (DMA Controller Status 0)......................... 139

DMACS1 (DMA Controller Status 1) 141
DMAxCNT (DMA Channel x Transfer Count)........... 138
DMAxCON (DMA Channel x Control)....................... 135
DMAxPAD (DMA Channel x Peripheral Address) 138
DMAxREQ (DMA Channel x IRQ Select) 136
DMAxSTA (DMA Channel x RAM Start Address A) . 137
DMAxSTB (DMA Channel x RAM Start Address B) . 137
DSADR (Most Recent DMA RAM Address) 142
DTCON1 (Dead-Time Control 1) 184
DTCON2 (Dead-Time Control 2) 185
FLTACON (Fault A Control) 186
FLTBCON (Fault B Control) 187
I2CxCON (I2Cx Control)... 203
I2CxMSK (I2Cx Slave Mode Address Mask)............ 207
I2CxSTAT (I2Cx Status) ... 205
ICxCON (Input Capture x Control)............................ 172
IEC0 (Interrupt Enable Control 0) 103
IEC1 (Interrupt Enable Control 1) 105
IEC2 (Interrupt Enable Control 2) 107
IEC3 (Interrupt Enable Control 3) 109
IEC4 (Interrupt Enable Control 4) 111
IFS0 (Interrupt Flag Status 0) 94
IFS1 (Interrupt Flag Status 1) 96
IFS2 (Interrupt Flag Status 2) 98
IFS3 (Interrupt Flag Status 3) 100
IFS4 (Interrupt Flag Status 4) 102
INTCON1 (Interrupt Control 1) 91
INTCON2 (Interrupt Control 2) 93
INTTREG Interrupt Control and Status Register 130
IPC0 (Interrupt Priority Control 0) 112
IPC1 (Interrupt Priority Control 1) 113
IPC10 (Interrupt Priority Control 10) 122
IPC11 (Interrupt Priority Control 11) 123
IPC12 (Interrupt Priority Control 12) 124
IPC13 (Interrupt Priority Control 13) 125
IPC14 (Interrupt Priority Control 14) 126
IPC15 (Interrupt Priority Control 15) 127
IPC16 (Interrupt Priority Control 16) 128
IPC17 (Interrupt Priority Control 17) 129
IPC2 (Interrupt Priority Control 2) 114
IPC3 (Interrupt Priority Control 3) 115
IPC4 (Interrupt Priority Control 4) 116
IPC5 (Interrupt Priority Control 5) 117
IPC6 (Interrupt Priority Control 6) 118
IPC7 (Interrupt Priority Control 7) 119
IPC8 (Interrupt Priority Control 8) 120
IPC9 (Interrupt Priority Control 9) 121
NVMCOM (Flash Memory Control) 75
OCxCON (Output Compare x Control) 175
OSCCON (Oscillator Control) 146
OSCTUN (FRC Oscillator Tuning)............................ 150
OVDCON (Override Control) 188
PDC1 (PWM Duty Cycle 1) 189
PDC2 (PWM Duty Cycle 2) 189
PDC3 (PWM Duty Cycle 3) 190
PDC4 (PWM Duty Cycle 4) 190
PLLFBD (PLL Feedback Divisor) 149
PMD1 (Peripheral Module Disable Control Register 1) ..

155
PMD2 (Peripheral Module Disable Control Register 2) ..

157
PMD3 (Peripheral Module Disable Control Register 3) ..

159
PTCON (PWM Time Base Control) 179
PTMR (PWM Timer Count Value) 180
© 2009 Microchip Technology Inc. DS70287C-page 333

