

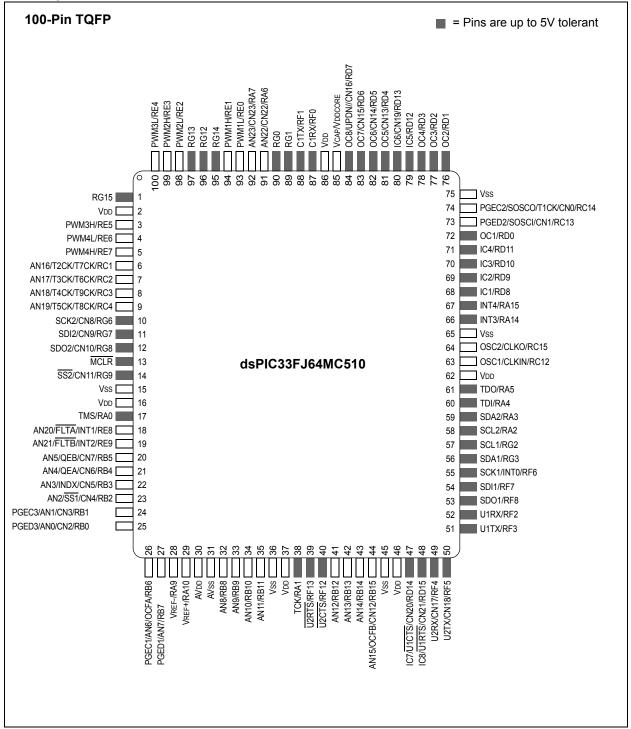
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	85
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	30K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 24x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj256mc710-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

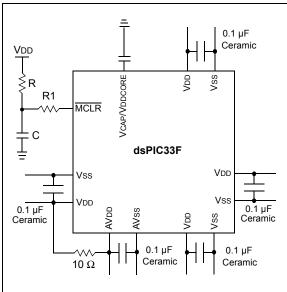

Pin Diagrams (Continued)

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)					
Pin Name	Pin Type	Buffer Type	Description		
RA0-RA7	I/O	ST	PORTA is a bidirectional I/O port.		
RA9-RA10	I/O	ST			
RA12-RA15	I/O	ST			
RB0-RB15	I/O	ST	PORTB is a bidirectional I/O port.		
RC1-RC4	I/O	ST	PORTC is a bidirectional I/O port.		
RC12-RC15	I/O	ST			
RD0-RD15	I/O	ST	PORTD is a bidirectional I/O port.		
RE0-RE9	I/O	ST	PORTE is a bidirectional I/O port.		
RF0-RF8	I/O	ST	PORTF is a bidirectional I/O port.		
RF12-RF13		_			
RG0-RG3	I/O	ST	PORTG is a bidirectional I/O port.		
RG6-RG9	I/O	ST			
RG12-RG15	I/O	ST			
SCK1	I/O	ST	Synchronous serial clock input/output for SPI1.		
SDI1	I	ST	SPI1 data in.		
SDO1	0	_	SPI1 data out.		
SS1	I/O	ST	SPI1 slave synchronization or frame pulse I/O.		
SCK2	I/O	ST	Synchronous serial clock input/output for SPI2.		
SDI2	I	ST	SPI2 data in.		
SDO2	0	-	SPI2 data out.		
SS2	I/O	ST	SPI2 slave synchronization or frame pulse I/O.		
SCL1	I/O	ST	Synchronous serial clock input/output for I2C1.		
SDA1	I/O	ST	Synchronous serial data input/output for I2C1.		
SCL2	I/O	ST	Synchronous serial clock input/output for I2C2.		
SDA2	I/O	ST	Synchronous serial data input/output for I2C2.		
SOSCI		ST/CMOS	32.768 kHz low-power oscillator crystal input; CMOS otherwise.		
SOSCO	0		32.768 kHz low-power oscillator crystal output.		
TMS	I	ST	JTAG Test mode select pin.		
TCK	I	ST	JTAG test clock input pin.		
TDI		ST	JTAG test data input pin.		
TDO	0	—	JTAG test data output pin.		
T1CK					
	I	ST	Timer1 external clock input.		
T2CK		ST	Timer2 external clock input.		
T2CK T3CK		ST ST	Timer2 external clock input. Timer3 external clock input.		
T2CK T3CK T4CK		ST ST ST	Timer2 external clock input. Timer3 external clock input. Timer4 external clock input.		
T2CK T3CK T4CK T5CK		ST ST ST ST	Timer2 external clock input. Timer3 external clock input. Timer4 external clock input. Timer5 external clock input.		
T2CK T3CK T4CK T5CK T6CK		ST ST ST ST ST	Timer2 external clock input. Timer3 external clock input. Timer4 external clock input. Timer5 external clock input. Timer6 external clock input.		
T2CK T3CK T4CK T5CK T6CK T7CK		ST ST ST ST ST ST	Timer2 external clock input. Timer3 external clock input. Timer4 external clock input. Timer5 external clock input. Timer6 external clock input. Timer7 external clock input.		
T2CK T3CK T4CK T5CK T6CK T7CK T8CK		ST ST ST ST ST ST	Timer2 external clock input. Timer3 external clock input. Timer4 external clock input. Timer5 external clock input. Timer6 external clock input. Timer7 external clock input. Timer8 external clock input.		
T2CK T3CK T4CK T5CK T6CK T7CK T8CK T9CK		ST ST ST ST ST ST ST	Timer2 external clock input. Timer3 external clock input. Timer4 external clock input. Timer5 external clock input. Timer6 external clock input. Timer7 external clock input. Timer8 external clock input. Timer9 external clock input.		
T2CK T3CK T4CK T5CK T6CK T7CK T8CK T9CK <u>U1CTS</u>		ST ST ST ST ST ST	Timer2 external clock input. Timer3 external clock input. Timer4 external clock input. Timer5 external clock input. Timer6 external clock input. Timer7 external clock input. Timer8 external clock input. Timer9 external clock input. UART1 clear to send.		
T2CK T3CK T4CK T5CK T6CK T7CK T8CK T9CK <u>U1CTS</u> U1RTS		ST ST ST ST ST ST ST ST 	Timer2 external clock input. Timer3 external clock input. Timer4 external clock input. Timer5 external clock input. Timer6 external clock input. Timer7 external clock input. Timer8 external clock input. Timer9 external clock input.		
T2CK T3CK T4CK T5CK T6CK T7CK T8CK T9CK U1CTS U1RTS U1RTS U1RX	 	ST ST ST ST ST ST ST	Timer2 external clock input. Timer3 external clock input. Timer4 external clock input. Timer5 external clock input. Timer6 external clock input. Timer7 external clock input. Timer8 external clock input. Timer9 external clock input. UART1 clear to send. UART1 ready to send.		
T2CK T3CK T4CK T5CK T6CK T7CK T8CK T9CK U1CTS U1RTS U1RTS U1RX U1TX	 	ST ST ST ST ST ST ST ST 	Timer2 external clock input. Timer3 external clock input. Timer4 external clock input. Timer5 external clock input. Timer6 external clock input. Timer7 external clock input. Timer8 external clock input. Timer9 external clock input. UART1 clear to send. UART1 ready to send. UART1 receive.		
T2CK T3CK T4CK T5CK T6CK T7CK T8CK T9CK U1CTS U1RTS U1RTS U1RX U1TX U2CTS	 	ST ST ST ST ST ST ST ST ST 	Timer2 external clock input. Timer3 external clock input. Timer4 external clock input. Timer5 external clock input. Timer6 external clock input. Timer7 external clock input. Timer8 external clock input. Timer9 external clock input. UART1 clear to send. UART1 ready to send. UART1 receive. UART1 transmit.		
T2CK T3CK T4CK T5CK T6CK T7CK T8CK T9CK U1CTS U1RTS U1RX U1TX U2CTS U2RTS U2RX	 	ST ST ST ST ST ST ST ST ST 	Timer2 external clock input. Timer3 external clock input. Timer5 external clock input. Timer6 external clock input. Timer7 external clock input. Timer8 external clock input. Timer9 external clock input. UART1 clear to send. UART1 ready to send. UART1 transmit. UART2 clear to send. UART2 ready to send. UART2 ready to send. UART2 receive.		
T2CK T3CK T4CK T5CK T6CK T7CK T8CK T9CK U1CTS U1RTS U1RX U1TX U2CTS U2RTS U2RX		ST ST ST ST ST ST ST ST ST ST 	Timer2 external clock input. Timer3 external clock input. Timer5 external clock input. Timer6 external clock input. Timer7 external clock input. Timer8 external clock input. Timer9 external clock input. UART1 clear to send. UART1 receive. UART1 receive. UART1 transmit. UART2 clear to send. UART2 ready to send. UART2 ready to send.		
T2CK T2CK T3CK T4CK T5CK T6CK T7CK T8CK T9CK U1CTS U1RTS U1RX U1TX U2CTS U2RTS U2RX U2TX VDD		ST ST ST ST ST ST ST ST ST ST 	Timer2 external clock input. Timer3 external clock input. Timer5 external clock input. Timer6 external clock input. Timer7 external clock input. Timer8 external clock input. Timer9 external clock input. UART1 clear to send. UART1 ready to send. UART1 transmit. UART2 clear to send. UART2 ready to send. UART2 ready to send. UART2 ready to send. UART2 receive.		
T2CK T3CK T4CK T5CK T6CK T7CK T8CK T9CK U1CTS U1RX U1RX U1TX U2CTS U2RTS U2RX U2TX		ST ST ST ST ST ST ST ST ST ST 	Timer2 external clock input. Timer3 external clock input. Timer4 external clock input. Timer5 external clock input. Timer6 external clock input. Timer7 external clock input. Timer8 external clock input. Timer9 external clock input. UART1 clear to send. UART1 receive. UART1 receive. UART1 transmit. UART2 clear to send. UART2 receive. UART2 receive. UART2 transmit.		

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

FIGURE 2-1: RECOMMENDED MINIMUM CONNECTION

2.2.1 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits including DSCs to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μ F to 47 μ F.

2.3 Capacitor on Internal Voltage Regulator (VCAP/VDDCORE)

A low-ESR (< 5 Ohms) capacitor is required on the VCAP/VDDCORE pin, which is used to stabilize the voltage regulator output voltage. The VCAP/VDDCORE pin must not be connected to VDD, and must have a capacitor between 4.7 μ F and 10 μ F, 16V connected to ground. The type can be ceramic or tantalum. Refer to **Section 26.0** "Electrical Characteristics" for additional information.

The placement of this capacitor should be close to the VCAP/VDDCORE. It is recommended that the trace length not exceed one-quarter inch (6 mm). Refer to **Section 23.2** "**On-Chip Voltage Regulator**" for details.

2.4 Master Clear (MCLR) Pin

The $\overline{\text{MCLR}}$ pin provides for two specific device functions:

- Device Reset
- Device programming and debugging

During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as shown in Figure 2-2, it is recommended that the capacitor C, be isolated from the $\overline{\text{MCLR}}$ pin during programming and debugging operations.

Place the components shown in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.

ote 1: $R \le 10 \text{ k}\Omega$ is recommended. A suggested starting value is $10 \text{ k}\Omega$. Ensure that the MCLR pin VIH and VIL specifications are met.

4.0 MEMORY ORGANIZATION

Note: This data sheet summarizes the features of the dsPIC33FJXXXMCX06/X08/X10 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 3. "Data Memory" (DS70202) and Section 4. "Program Memory" (DS70203) in the "dsPIC33F Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The dsPIC33FJXXXMCX06/X08/X10 architecture features separate program and data memory spaces and buses. This architecture also allows the direct access of program memory from the data space during code execution.

4.1 Program Address Space

The program address memory space of the dsPIC33FJXXXMCX06/X08/X10 devices is 4M instructions. The space is addressable by a 24-bit value derived from either the 23-bit Program Counter (PC) during program execution, or from table operation or data space remapping as described in Section 4.6 "Interfacing Program and Data Memory Spaces".

User access to the program memory space is restricted to the lower half of the address range (0x000000 to 0x7FFFFF). The exception is the use of TBLRD/TBLWT operations, which use TBLPAG<7> to permit access to the Configuration bits and Device ID sections of the configuration memory space. Memory usage for the dsPIC33FJXXXMCX06/X08/X10 family of devices is shown in Figure 4-1.

	dsPIC33FJ64MCXXX	dsPIC33FJ128MCXXX	dsPIC33FJ256MCXXX	
Ā	GOTO Instruction	GOTO Instruction)x000000)x000002
	Reset Address	Reset Address	- Reset Address)x000002
	Interrupt Vector Table	Interrupt Vector Table	Interrupt Vector Table	0x0000FE
	Reserved	Reserved	Reserved	0x000100
	Alternate Vector Table	Alternate Vector Table	Alternate vector rable	0x000104 0x0001FE
pace	User Program Flash Memory (22K instructions)	User Program Flash Memory	User Program)x000200)x00ABFE
User Memory Space		(44K instructions)	(88K instructions)	0x00AC00
ser Me				0x0157FE 0x015800
Ï	Unimplemented (Read '0's)	Unimplemented		004555
		(Read 'o's)		0x02ABFE 0x02AC00
			Unimplemented	
			(Read '0's)	
•			, ,	x7FFFFE
				0x800000
	Reserved	Reserved	Reserved	
Space	Device Configuration Registers	Device Configuration Registers)xF7FFFE)xF80000)xF80017
emory ()xF80017)xF80010
Configuration Memory Space	Reserved	Reserved	Reserved	
Config	· · ·)xFEFFFE)xFF0000
¥	DEVID (2)	DEVID (2)	D = V D (2))xFFFFFE
Note:	Memory areas are not show			

FIGURE 4-1: PROGRAM MEMORY MAP FOR dsPIC33FJXXXMCX06/X08/X10 DEVICES

4.6.3 READING DATA FROM PROGRAM MEMORY USING PROGRAM SPACE VISIBILITY

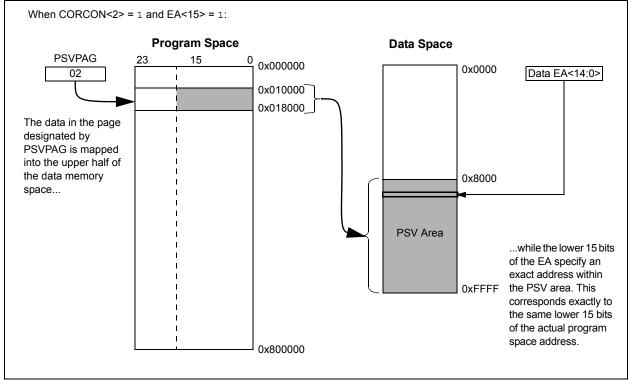
The upper 32 Kbytes of data space may optionally be mapped into any 16K word page of the program space. This option provides transparent access of stored constant data from the data space without the need to use special instructions (i.e., TBLRDL/H).

Program space access through the data space occurs if the Most Significant bit of the data space EA is '1' and program space visibility is enabled by setting the PSV bit in the Core Control register (CORCON<2>). The location of the program memory space to be mapped into the data space is determined by the Program Space Visibility Page register (PSVPAG). This 8-bit register defines any one of 256 possible pages of 16K words in program space. In effect, PSVPAG functions as the upper 8 bits of the program memory address, with the 15 bits of the EA functioning as the lower bits. Note that by incrementing the PC by 2 for each program memory word, the lower 15 bits of data space addresses directly map to the lower 15 bits in the corresponding program space addresses.

Data reads to this area add an additional cycle to the instruction being executed, since two program memory fetches are required.

Although each data space address, 8000h and higher, maps directly into a corresponding program memory address (see Figure 4-11), only the lower 16 bits of the 24-bit program word are used to contain the data. The upper 8 bits of any program space location used as data should be programmed with '1111 1111' or '0000 0000' to force a NOP. This prevents possible issues should the area of code ever be accidentally executed.

Note: PSV access is temporarily disabled during table reads/writes.


For operations that use PSV and are executed outside a REPEAT loop, the MOV and MOV.D instructions require one instruction cycle in addition to the specified execution time. All other instructions require two instruction cycles in addition to the specified execution time.

For operations that use PSV and are executed inside a REPEAT loop, there will be some instances that require two instruction cycles in addition to the specified execution time of the instruction:

- · Execution in the first iteration
- · Execution in the last iteration
- Execution prior to exiting the loop due to an interrupt
- Execution upon re-entering the loop after an interrupt is serviced

Any other iteration of the REPEAT loop will allow the instruction accessing data using PSV to execute in a single cycle.

FIGURE 4-11: PROGRAM SPACE VISIBILITY OPERATION

R/SO-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	U-0	U-0	U-0	U-0	U-0				
WR	WREN	WRERR	_	—	—	—	_				
bit 15							bit 8				
U-0	R/W-0 ⁽¹⁾	U-0	U-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾				
_	ERASE	_	_			<3:0> ⁽²⁾					
bit 7							bit				
Legend:		SO = Settable	only bit								
R = Readable I	bit	W = Writable	-	U = Unimpler	mented bit, read	l as '0'					
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	iown				
bit 15	WR: Write Co	ontrol bit									
	cleared b	y hardware on	ce operation	is complete	on. The operation	on is self-timed	and the bit i				
bit 14	0 = Program WREN: Write	•	tion is compl	ete and inactive	2						
bit 14	1 = Enable F	lash program/e ash program/er									
bit 13		te Sequence E	•	15							
bit 13	1 = An impro automatio	per program or cally on any se	erase seque		termination has	s occurred (bit i	s set				
bit 12-7			-	pieted normally	·						
bit 6	Unimplemented: Read as '0' ERASE: Erase/Program Enable bit										
bit o	1 = Perform t	the erase opera	ation specifie		3:0> on the next P<3:0> on the n						
bit 5-4		ted: Read as '	•		010 011 110 11						
bit 3-0	-			_S (2)							
	NVMOP<3:0>: NVM Operation Select bits ⁽²⁾ If ERASE = 1:										
	1111 = Memory bulk erase operation										
	1110 = Reserved										
	1101 = Erase General Segment										
	1100 = Erase Secure Segment										
	1011 = Reserved										
	0011 = No operation 0010 = Memory page erase operation										
	0010 = Memory page erase operation 0001 = No operation										
	0000 = Erase a single Configuration register byte										
	If ERASE = 0:										
	1111 = No operation										
	1110 = Reserved 1101 = No operation										
	1101 = NO Op 1100 = No op										
	1011 = Rese										
	0011 = Memo	ory word progra	m operation								
	0010 = No op	peration									
		ory row prograr am a single Co		egister byte							
		ly be reset on I									

NVMCON: FLASH MEMORY CONTROL REGISTER

2: All other combinations of NVMOP<3:0> are unimplemented.

REGISTER 5-1:

Reset Type	Clock Source	SYSRST Delay	System Clock Delay	FSCM Delay	Notes
POR	EC, FRC, LPRC	TPOR + TSTARTUP + TRST	—	_	1, 2, 3
	ECPLL, FRCPLL	TPOR + TSTARTUP + TRST	TLOCK	TFSCM	1, 2, 3, 5, 6
	XT, HS, SOSC	Tpor + Tstartup + Trst	Tost	TFSCM	1, 2, 3, 4, 6
	XTPLL, HSPLL	Tpor + Tstartup + Trst	Tost + Tlock	TFSCM	1, 2, 3, 4, 5, 6
BOR	EC, FRC, LPRC	TSTARTUP + TRST		_	3
	ECPLL, FRCPLL	TSTARTUP + TRST	TLOCK	TFSCM	3, 5, 6
	XT, HS, SOSC	TSTARTUP + TRST	Tost	TFSCM	3, 4, 6
	XTPLL, HSPLL	TSTARTUP + TRST	Tost + Tlock	TFSCM	3, 4, 5, 6
MCLR	Any Clock	TRST	_	_	3
WDT	Any Clock	Trst	—		3
Software	Any Clock	Trst	—	_	3
Illegal Opcode	Any Clock	Trst	—	_	3
Uninitialized W	Any Clock	TRST	—	_	3
Trap Conflict	Any Clock	Trst	—	_	3

TABLE 6-3: RESET DELAY TIMES FOR VARIOUS DEVICE RESETS

Note 1: TPOR = Power-on Reset delay (10 μ s nominal).

- **2:** TSTARTUP = Conditional POR delay of 20 μs nominal (if on-chip regulator is enabled) or 64 ms nominal Power-up Timer delay (if regulator is disabled). TSTARTUP is also applied to all returns from powered-down states, including waking from Sleep mode, if the regulator is enabled.
- 3: TRST = Internal state Reset time (20 µs nominal).
- **4:** Tos⊤ = Oscillator Start-up Timer. A 10-bit counter counts 1024 oscillator periods before releasing the oscillator clock to the system.
- **5**: TLOCK = PLL lock time (20 μ s nominal).
- **6**: TFSCM = Fail-Safe Clock Monitor delay (100 μs nominal).

6.2.1 POR AND LONG OSCILLATOR START-UP TIMES

The oscillator start-up circuitry and its associated delay timers are not linked to the device Reset delays that occur at power-up. Some crystal circuits (especially low-frequency crystals) have a relatively long start-up time. Therefore, <u>one or more of the following conditions</u> is possible after SYSRST is released:

- The oscillator circuit has not begun to oscillate.
- The Oscillator Start-up Timer has not expired (if a crystal oscillator is used).
- The PLL has not achieved a lock (if PLL is used).

The device will not begin to execute code until a valid clock source has been released to the system. Therefore, the oscillator and PLL start-up delays must be considered when the Reset delay time must be known.

6.2.2 FAIL-SAFE CLOCK MONITOR (FSCM) AND DEVICE RESETS

If the FSCM is enabled, it begins to monitor the system clock source when SYSRST is released. If a valid clock source is not available at this time, the device automatically switches to the FRC oscillator and the user can switch to the desired crystal oscillator in the Trap Service Routine.

6.2.2.1 FSCM Delay for Crystal and PLL Clock Sources

When the system clock source is provided by a crystal oscillator and/or the PLL, a small delay, TFSCM, is automatically inserted after the POR and PWRT delay times. The FSCM does not begin to monitor the system clock source until this delay expires. The FSCM delay time is nominally 500 μ s and provides additional time for the oscillator and/or PLL to stabilize. In most cases, the FSCM delay prevents an oscillator failure trap at a device Reset when the PWRT is disabled.

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
—	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF					
bit 15							bit 8					
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
T2IF	OC2IF	IC2IF	DMA01IF	T1IF	OC1IF	IC1IF	INTOIF					
bit 7		1	1				bit C					
Legend:												
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'						
-n = Value at I	POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkn	iown					
bit 15	Unimplemen	ted: Read as	ʻ0'									
bit 14	DMA1IF: DM	A Channel 1 D	ata Transfer C	omplete Interr	upt Flag Status	bit						
	1 = Interrupt	request has oc	curred	•								
		request has no										
bit 13			Complete Interr	upt Flag Statu	s bit							
	 1 = Interrupt request has occurred 0 = Interrupt request has not occurred 											
bit 12	0 = Interrupt request has not occurred U1TXIF: UART1 Transmitter Interrupt Flag Status bit											
	1 = Interrupt request has occurred											
	0 = Interrupt request has not occurred											
bit 11	U1RXIF: UART1 Receiver Interrupt Flag Status bit											
		 1 = Interrupt request has occurred 0 = Interrupt request has not occurred 										
bit 10	SPI1IF: SPI1 Event Interrupt Flag Status bit											
	1 = Interrupt request has occurred											
	•	request has no										
bit 9		SPI1EIF: SPI1 Fault Interrupt Flag Status bit										
	 I = Interrupt request has occurred Interrupt request has not occurred 											
bit 8	•	•										
bit 0	T3IF: Timer3 Interrupt Flag Status bit 1 = Interrupt request has occurred											
	0 = Interrupt request has not occurred											
bit 7	T2IF: Timer2 Interrupt Flag Status bit											
	1 = Interrupt request has occurred											
bit 6	 Interrupt request has not occurred OC2IF: Output Compare Channel 2 Interrupt Flag Status bit 											
	-	request has oc		ipi riay Sialus	S DIL							
		request has no										
bit 5	IC2IF: Input Capture Channel 2 Interrupt Flag Status bit											
		request has oc request has no										
bit 4	•	•		Complete Inte	rrupt Flag Statu	s bit						
		request has oc										
		request has no										
bit 3		Interrupt Flag										
	1 = Interrupt		· · · · · · · · · · · · · · · · · · ·									

REGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0

REGISTER 7-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2 (CONTINUED)

bit 2	C1RXIF: ECAN1 Receive Data Ready Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 1	SPI2IF: SPI2 Event Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 0	SPI2EIF: SPI2 Error Interrupt Flag Status bit

- SPI2EIF: SPI2 Error Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
—		T4IP<2:0>				OC4IP<2:0>						
bit 15							bit					
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
_		OC3IP<2:0>	-	_		DMA2IP<2:0>	-					
bit 7							bit					
Legend:												
R = Readabl	e bit	W = Writable I	oit	U = Unimple	mented bit, rea	ad as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	own					
bit 15	Unimpleme	nted: Read as 'o)'									
bit 14-12	T4IP<2:0>:	Timer4 Interrupt	Priority bits									
	111 = Interrupt is priority 7 (highest priority interrupt)											
	•											
	•											
	001 = Interrupt is priority 1 000 = Interrupt source is disabled											
		-										
bit 11	Unimplemented: Read as '0'											
bit 10-8	OC4IP<2:0 : Output Compare Channel 4 Interrupt Priority bits											
	 111 = Interrupt is priority 7 (highest priority interrupt) • 											
	•											
	•											
	001 = Interrupt is priority 1 000 = Interrupt source is disabled											
bit 7		nted: Read as 'o										
bit 6-4	OC3IP<2:0>	Output Compa	re Channel 3	3 Interrupt Prior	rity bits							
	111 = Interrupt is priority 7 (highest priority interrupt)											
	•											
	001 = Interrupt is priority 1											
		upt source is disa										
bit 3	Unimplemented: Read as '0'											
bit 2-0		0>: DMA Channe		-	e Interrupt Pric	ority bits						
	•	upt is priority 7 (h	lignest priori	ty interrupt)								
	•											
	•											
	0.01 - 1-4	upt is priority 1										

REGISTER 7-21: IPC6: INTERRUPT PRIORITY CONTROL REGISTER 6

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0	
	—				R<3:0>			
oit 15							bit 8	
U-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
_				VECNUM<6:0				
oit 7							bit (
Legend:								
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, re	ad as '0'		
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unkr	nown	
bit 11-8	ILR<3:0>: Nev 1111 = CPU I • • 0001 = CPU I 0000 = CPU I	nterrupt Priorit nterrupt Priorit	y Level is 15 y Level is 1					
bit 7	Unimplement	ed: Read as '	0'					
bit 6-0	<pre>VECNUM<6:0>: Vector Number of Pending Interrupt bits 0111111 = Interrupt Vector pending is number 135</pre>							

REGISTER 7-33: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

REGISTER 8-7: DMACS0: DMA CONTROLLER STATUS REGISTER 0 (CONTINUED)

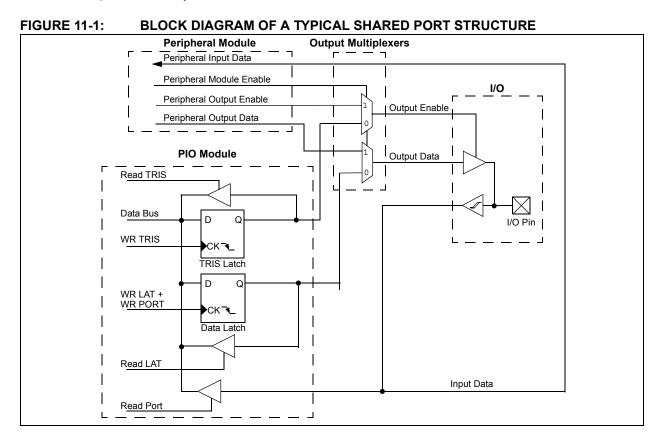
bit 3	XWCOL3: Channel 3 DMA RAM Write Collision Flag bit 1 = Write collision detected 0 = No write collision detected
bit 2	XWCOL2: Channel 2 DMA RAM Write Collision Flag bit 1 = Write collision detected 0 = No write collision detected
bit 1	XWCOL1: Channel 1 DMA RAM Write Collision Flag bit 1 = Write collision detected 0 = No write collision detected
bit 0	XWCOL0: Channel 0 DMA RAM Write Collision Flag bit 1 = Write collision detected 0 = No write collision detected

11.0 I/O PORTS

Note: This data sheet summarizes the features of the dsPIC33FJXXXMCX06/X08/X10 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 10. "I/O Ports" (DS70193) in the "dsPIC33F Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

All of the device pins (except VDD, VSS, MCLR and OSC1/CLKIN) are shared between the peripherals and the parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

11.1 Parallel I/O (PIO) Ports


A parallel I/O port that shares a pin with a peripheral is, in general, subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through," in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 11-1 shows how ports are shared with other peripherals and the associated I/O pin to which they are connected. When a peripheral is enabled and actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin may be read, but the output driver for the parallel port bit will be disabled. If a peripheral is enabled but the peripheral is not actively driving a pin, that pin may be driven by a port.

All port pins have three registers directly associated with their operation as digital I/O. The data direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx), read the latch. Writes to the latch, write the latch. Reads from the port (PORTx), read the port pins, while writes to the port pins, write the latch.

Any bit and its associated data and control registers that are not valid for a particular device will be disabled. That means the corresponding LATx and TRISx registers and the port pins will read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs. An example is the INT4 pin.

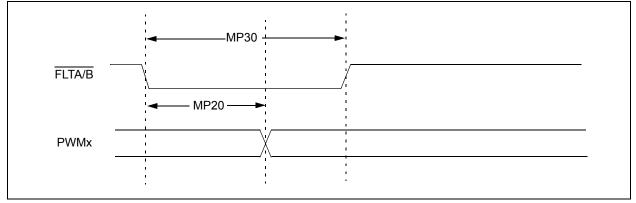
Note: The voltage on a digital input pin can be between -0.3V to 5.6V.

14.1 Input Capture Registers

REGISTER 14-1: ICxCON: INPUT CAPTURE x CONTROL REGISTER

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
_	_	ICSIDL			_						
bit 15				1			bit				
R/W-0	R/W-0	R/W-0	R-0, HC	R-0, HC	R/W-0	R/W-0	R/W-0				
ICTMR ⁽¹⁾	ICI<	<1:0>	ICOV	ICBNE		ICM<2:0>					
bit 7							bit				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own				
bit 15-14	Unimplemen	ted: Read as '	0'								
bit 13	ICSIDL: Inpu	t Capture Mod	ule Stop in Idle	e Control bit							
	1 = Input capture module will halt in CPU Idle mode										
				operate in CPU	Idle mode						
bit 12-8	-	ted: Read as '									
bit 7	ICTMR: Input Capture Timer Select bits ⁽¹⁾										
	 1 = TMR2 contents are captured on capture event 0 = TMR3 contents are captured on capture event 										
bit 6-5	ICI<1:0>: Select Number of Captures per Interrupt bits										
	11 = Interrupt on every fourth capture event										
	 10 = Interrupt on every third capture event 01 = Interrupt on every second capture event 										
	00 = Interrupt on every capture event										
bit 4	ICOV: Input Capture Overflow Status Flag bit (read-only)										
	1 = Input cap	ture overflow o capture overflo	ccurred								
bit 3	ICBNE: Input Capture Buffer Empty Status bit (read-only)										
	1 = Input capture buffer is not empty; at least one more capture value can be read										
	0 = Input capture buffer is empty										
bit 2-0		put Capture M									
	111 = Input capture functions as interrupt pin only when device is in Sleep or Idle mode										
	(Rising edge detect only, all other control bits are not applicable.) 110 = Unused (module disabled)										
		e mode, every		ge							
		e mode, every		е							
		e mode, every									
		e mode, every e mode, every		nd falling)							
				ind familie) ipt generation fo	or this mode.)						
		apture module									

Note 1: Timer selections may vary. Refer to the device data sheet for details.


REGISTER 21-5: CIFIFO: ECAN™ FIFO STATUS REGISTER

U-0					R-0	R-0				
		R-0 R-0 R-0 R-0 FBP<5:0>								
						bit 8				
U-0	R-0	R-0	R-0	R-0	R-0	R-0				
_			FNRE	3<5:0>						
						bit 0				
		.,								
		Dit	•							
OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	IOWN				
	anta da Da a da a (a	. 1								
-										
		r Pointer bits								
000001 = TRB1 buffer										
000000 = TRB0 buffer										
Unimpleme	ented: Read as 'o)'								
FNRB<5:0>	FNRB<5:0>: FIFO Next Read Buffer Pointer bits									
011111 = RB31 buffer										
011110 = F	RB30 buffer									
· · · ·	DD1 huffor									
	RB0 buffer									
	bit POR Unimpleme FBP<5:0>: 01111 = F 01110 = F 000001 = T 000000 = T Unimpleme FNRB<5:0> 01111 = F 01110 = F 	bit W = Writable to POR '1' = Bit is set Unimplemented: Read as '0 FBP<5:0>: FIFO Write Buffer 01111 = RB31 buffer 01110 = RB30 buffer 00000 = TRB1 buffer 00000 = TRB0 buffer Unimplemented: Read as '0 FNRB<5:0>: FIFO Next Rea 01111 = RB31 buffer 01111 = RB31 buffer	bit W = Writable bit POR '1' = Bit is set Unimplemented: Read as '0' FBP<5:0>: FIFO Write Buffer Pointer bits 011111 = RB31 buffer 011110 = RB30 buffer 000001 = TRB1 buffer 000000 = TRB0 buffer Unimplemented: Read as '0' FNRB<5:0>: FIFO Next Read Buffer Point 01111 = RB31 buffer 011110 = RB30 buffer 	U-0 R-0 R-0 R-0 — FNRI bit W = Writable bit U = Unimplem POR '1' = Bit is set '0' = Bit is clear Unimplemented: Read as '0' FBP<5:0>: FIFO Write Buffer Pointer bits 01111 = RB31 buffer 011110 = RB30 buffer 000001 = TRB1 buffer 00000 = TRB0 buffer Unimplemented: Read as '0' FNRB<5:0>: FIFO Next Read Buffer Pointer bits 01111 = RB31 buffer 01111 = RB31 buffer 01111 = RB31 buffer 01111 = RB31 buffer 01111 = RB31 buffer 01111 = RB31 buffer	U-0 R-0 R-0 R-0 — FNRB<5:0> bit W = Writable bit U = Unimplemented bit, rea POR '1' = Bit is set '0' = Bit is cleared Unimplemented: Read as '0' FBP<5:0>: FIFO Write Buffer Pointer bits 01111 = RB31 buffer 01111 = RB30 buffer 000001 = TRB1 buffer 00000 = TRB0 buffer Unimplemented: Read as '0' FNRB<5:0>: FIFO Next Read Buffer Pointer bits 01111 = RB31 buffer 01111 = RB31 buffer 01110 = RB30 buffer 01110 = RB30 buffer	U-0 R-0 R-0 R-0 R-0 - FNRB<5:0>				

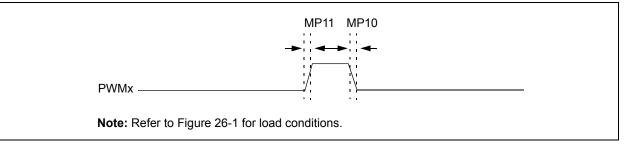

IABL	E 24-2:	INSTRUCTION SET OVERVIEW (CONTINUED)							
Base Instr #	Assembly Mnemonic			# of Words	# of Cycles	Status Flags Affected			
10	BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None		
		BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None		
11	BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None		
		BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None		
12	BTST	BTST	f,#bit4	Bit Test f	1	1	Z		
		BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С		
		BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z		
		BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С		
		BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z		
13	BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z		
		BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С		
14		BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z		
14	CALL	CALL	lit23	Call subroutine	2	2	None		
		CALL	Wn	Call indirect subroutine	1	2	None		
15	CLR	CLR	f	f = 0x0000	1	1	None		
		CLR	WREG	WREG = 0x0000	1	1	None		
		CLR	Ws	Ws = 0x0000	1	1	None		
		CLR	Acc,Wx,Wxd,Wy,Wyd,AWB	Clear Accumulator	1	1	OA,OB,SA,SB		
16	CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO,Sleep		
17	COM	СОМ	f	f = f	1	1	N,Z		
		СОМ	f,WREG	WREG = f	1	1	N,Z		
		СОМ		$Wd = \overline{Ws}$	1	1	N,Z		
18	CP	CP	Ws,Wd f	Compare f with WREG	1	1	C,DC,N,OV,Z		
10	CP	CP		Compare Wb with lit5	1	1			
			Wb,#lit5		1	1	C,DC,N,OV,Z		
19	CD0	CP	Wb,Ws f	Compare Wb with Ws (Wb – Ws)	1	1	C,DC,N,OV,Z		
19	CP0	CP0		Compare f with 0x0000	1		C,DC,N,OV,Z		
20	6777	CP0	Ws	Compare Ws with 0x0000	-	1	C,DC,N,OV,Z		
	CPB	CPB	f	Compare f with WREG, with Borrow	1	1	C,DC,N,OV,Z		
		CPB CPB	Wb,#lit5 Wb,Ws	Compare Wb with lit5, with Borrow Compare Wb with Ws, with Borrow (Wb – Ws – C)	1	1 1	C,DC,N,OV,Z C,DC,N,OV,Z		
21	CPSEQ	CPSEQ	Wb, Wn	Compare Wb with Wn, skip if =	1	1 (2 or 3)	None		
22	CPSGT	CPSGT	Wb, Wn	Compare Wb with Wn, skip if >	1	(2 or 3)	None		
23	CPSLT	CPSLT	Wb, Wn	Compare Wb with Wn, skip if <	1	1 (2 or 3)	None		
24	CPSNE	CPSNE	Wb, Wn	Compare Wb with Wn, skip if ≠	1	1 (2 or 3)	None		
25	DAW	DAW	Wn	Wn = decimal adjust Wn	1	1	С		
26	DEC	DEC	f	f = f - 1	1	1	C,DC,N,OV,Z		
		DEC	f,WREG	WREG = f – 1	1	1	C,DC,N,OV,Z		
		DEC	Ws,Wd	Wd = Ws - 1	1	1	C,DC,N,OV,Z		
27	DEC2	DEC2	f	f = f - 2	1	1	C,DC,N,OV,Z		
		DEC2	f,WREG	WREG = f – 2	1	1	C,DC,N,OV,Z		
		DEC2	Ws,Wd	Wd = Ws - 2	1	1	C,DC,N,OV,Z		
28	DISI	DISI	#lit14	Disable Interrupts for k instruction cycles	1	1	None		

TABLE 24-2: INSTRUCTION SET OVERVIEW (CONTINUED)

FIGURE 26-9: MOTOR CONTROL PWM MODULE FAULT TIMING CHARACTERISTICS

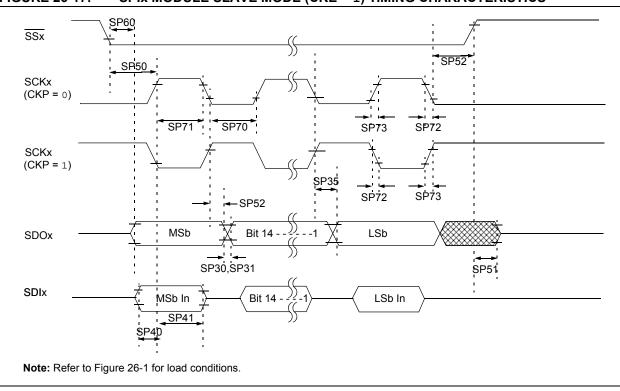

FIGURE 26-10: MOTOR CONTROL PWM MODULE TIMING CHARACTERISTICS

TABLE 26-28: MOTOR CONTROL PWM MODULE TIMING REQUIREMENTS

			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Мах	Units	Conditions
MP10	TFPWM	PWM Output Fall Time	_	_	—	ns	See parameter D032
MP11	TRPWM	PWM Output Rise Time	—	-	—	ns	See parameter D031
MP20	Tfd	Fault Input ↓ to PWM I/O Change	—	_	50	ns	_
MP30	Тғн	Minimum Pulse-Width	50	_	—	ns	—

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 26-17: SPIX MODULE SLAVE MODE (CKE = 1) TIMING CHARACTERISTICS

		, , , , , , , , , , , , , , , , , , ,	CKE = 1) TIMING REQUIREMENTS Standard Operating Conditions: 3.0V to 3.6V						
AC CHARACTERISTICS			(unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial						
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions		
SP70	TscL	SCKx Input Low Time	30	_	_	ns	_		
SP71	TscH	SCKx Input High Time	30	_	_	ns	—		
SP72	TscF	SCKx Input Fall Time ⁽³⁾		10	25	ns	—		
SP73	TscR	SCKx Input Rise Time ⁽³⁾		10	25	ns	—		
SP30	TdoF	SDOx Data Output Fall Time ⁽³⁾	_	_	_	ns	See parameter D032		
SP31	TdoR	SDOx Data Output Rise Time ⁽³⁾		_	_	ns	See parameter D031		
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—		30	ns	—		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20			ns	_		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20			ns	_		
SP50	TssL2scH, TssL2scL	SSx ↓ to SCKx ↓ or SCKx ↑ Input	120			ns	_		
SP51	TssH2doZ	SSx	10		50	ns	_		
SP52	TscH2ssH TscL2ssH	SSx ↑ after SCKx Edge	1.5 TCY + 40	_	_	ns	—		
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	—		50	ns	_		

TABLE 26-35: SPIX MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 100 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

NOTES: