

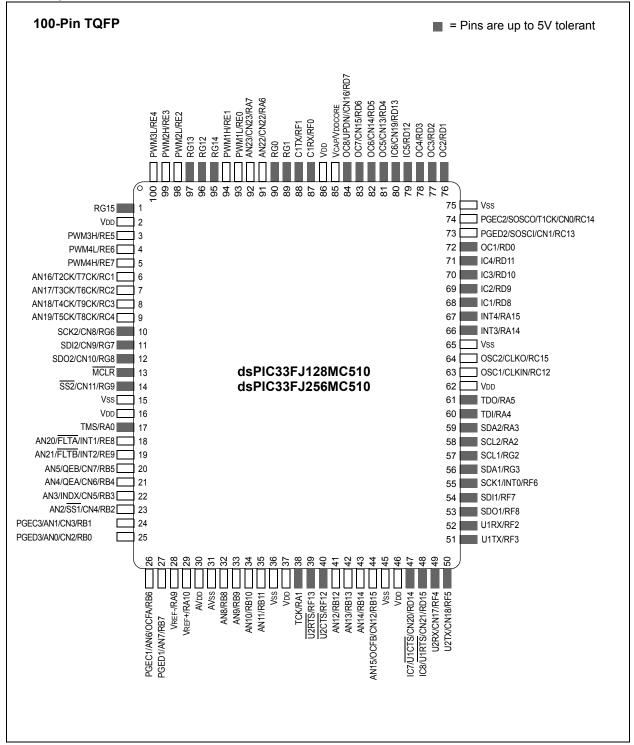
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	53
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64mc506-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

REGISTER 3-1: SR: CPU STATUS REGISTER (CONTINUED)

bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ⁽²⁾
	<pre>111 = CPU Interrupt Priority Level is 7 (15), user interrupts disabled 110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9) 000 = CPU Interrupt Priority Level is 0 (8)</pre>
bit 4	RA: REPEAT Loop Active bit
	1 = REPEAT loop in progress 0 = REPEAT loop not in progress
bit 3	N: MCU ALU Negative bit
	1 = Result was negative0 = Result was non-negative (zero or positive)
bit 2	OV: MCU ALU Overflow bit
	This bit is used for signed arithmetic (2's complement). It indicates an overflow of the magnitude that causes the sign bit to change state. 1 = Overflow occurred for signed arithmetic (in this arithmetic operation) 0 = No overflow occurred
bit 1	Z: MCU ALU Zero bit
	 1 = An operation which affects the Z bit has set it at some time in the past 0 = The most recent operation which affects the Z bit has cleared it (i.e., a non-zero result)
bit 0	C: MCU ALU Carry/Borrow bit 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred

- Note 1: This bit may be read or cleared (not set).
 - 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
 - 3: The IPL<2:0> Status bits are read only when NSTDIS = 1 (INTCON1<15>).

4.0 MEMORY ORGANIZATION

Note: This data sheet summarizes the features of the dsPIC33FJXXXMCX06/X08/X10 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 3. "Data Memory" (DS70202) and Section 4. "Program Memory" (DS70203) in the "dsPIC33F Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The dsPIC33FJXXXMCX06/X08/X10 architecture features separate program and data memory spaces and buses. This architecture also allows the direct access of program memory from the data space during code execution.

4.1 Program Address Space

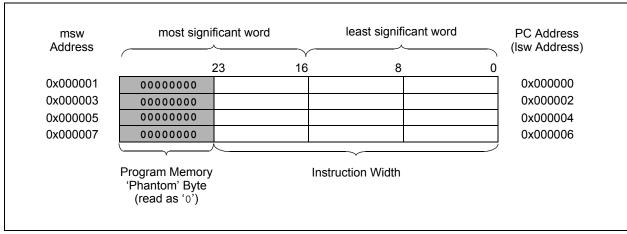
The program address memory space of the dsPIC33FJXXXMCX06/X08/X10 devices is 4M instructions. The space is addressable by a 24-bit value derived from either the 23-bit Program Counter (PC) during program execution, or from table operation or data space remapping as described in Section 4.6 "Interfacing Program and Data Memory Spaces".

User access to the program memory space is restricted to the lower half of the address range (0x000000 to 0x7FFFFF). The exception is the use of TBLRD/TBLWT operations, which use TBLPAG<7> to permit access to the Configuration bits and Device ID sections of the configuration memory space. Memory usage for the dsPIC33FJXXXMCX06/X08/X10 family of devices is shown in Figure 4-1.

	dsPIC33FJ64MCXXX	dsPIC33FJ128MCXXX	dsPIC33FJ256MCXXX	
Ā	GOTO Instruction	GOTO Instruction)x000000)x000002
	Reset Address	Reset Address	- Reset Address)x000002
	Interrupt Vector Table	Interrupt Vector Table	Interrupt Vector Table	0x0000FE
	Reserved	Reserved	Reserved	0x000100
	Alternate Vector Table	Alternate Vector Table	Alternate vector rable	0x000104 0x0001FE
pace	User Program Flash Memory (22K instructions)	User Program Flash Memory	User Program)x000200)x00ABFE
User Memory Space		(44K instructions)	(88K instructions)	0x00AC00
ser Me				0x0157FE 0x015800
Ï	Unimplemented (Read '0's)	Unimplemented		004555
		(Read 'o's)		0x02ABFE 0x02AC00
			Unimplemented	
			(Read '0's)	
•			, ,	x7FFFFE
				0x800000
	Reserved	Reserved	Reserved	
Space	Device Configuration Registers	Device Configuration Registers)xF7FFFE)xF80000)xF80017
emory ()xF80017)xF80010
Configuration Memory Space	Reserved	Reserved	Reserved	
Config	· · ·)xFEFFFE)xFF0000
₩	DEVID (2)	DEVID (2)	D = V D (2))xFFFFFE
Note:	Memory areas are not show			

FIGURE 4-1: PROGRAM MEMORY MAP FOR dsPIC33FJXXXMCX06/X08/X10 DEVICES

4.1.1 PROGRAM MEMORY ORGANIZATION


The program memory space is organized in word-addressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-2).

Program memory addresses are always word-aligned on the lower word, and addresses are incremented or decremented by two during code execution. This arrangement also provides compatibility with data memory space addressing and makes it possible to access data in the program memory space.

4.1.2 INTERRUPT AND TRAP VECTORS

All dsPIC33FJXXXMCX06/X08/X10 devices reserve the addresses between 0x00000 and 0x000200 for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user at 0x000000, with the actual address for the start of code at 0x000002.

dsPIC33FJXXXMCX06/X08/X10 devices also have two interrupt vector tables located from 0x000004 to 0x0000FF and 0x000100 to 0x0001FF. These vector tables allow each of the many device interrupt sources to be handled by separate Interrupt Service Routines (ISRs). A more detailed discussion of the interrupt vector tables is provided in **Section 7.1 "Interrupt Vector Table"**.

FIGURE 4-2: PROGRAM MEMORY ORGANIZATION

Addressing Mode	Description		
File Register Direct	The address of the file register is specified explicitly.		
Register Direct	The contents of a register are accessed directly.		
Register Indirect	The contents of Wn forms the EA.		
Register Indirect Post-Modified	The contents of Wn forms the EA. Wn is post-modified (incremented or decremented) by a constant value.		
Register Indirect Pre-Modified	Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA.		
Register Indirect with Register Offset	The sum of Wn and Wb forms the EA.		
Register Indirect with Literal Offset	The sum of Wn and a literal forms the EA.		

TABLE 4-36: FUNDAMENTAL ADDRESSING MODES SUPPORTED

4.3.3 MOVE AND ACCUMULATOR INSTRUCTIONS

Move instructions and the DSP accumulator class of instructions provide a greater degree of addressing flexibility than other instructions. In addition to the Addressing modes supported by most MCU instructions, move and accumulator instructions also support Register Indirect with Register Offset Addressing mode, also referred to as Register Indexed mode.

Note:	For the MOV instructions, the Addressing
	mode specified in the instruction can differ
	for the source and destination EA.
	However, the 4-bit Wb (Register Offset)
	field is shared between both source and
	destination (but typically only used by
	one).

In summary, the following Addressing modes are supported by move and accumulator instructions:

- Register Direct
- · Register Indirect
- Register Indirect Post-modified
- · Register Indirect Pre-modified
- Register Indirect with Register Offset (Indexed)
- Register Indirect with Literal Offset
- 8-bit Literal
- 16-bit Literal

Note:	Not	all	instructions	support	all	the
	Addr	essii	ng modes give	n above. I	ndivi	idual
	instru	uctio	ns may suppo	rt differen	t sub	sets
	of the	ese /	Addressing mo	odes.		

4.3.4 MAC INSTRUCTIONS

The dual source operand DSP instructions (CLR, ED, EDAC, MAC, MPY, MPY.N, MOVSAC and MSC), also referred to as MAC instructions, utilize a simplified set of addressing modes to allow the user to effectively manipulate the data pointers through register indirect tables.

The 2-source operand prefetch registers must be members of the set {W8, W9, W10, W11}. For data reads, W8 and W9 are always directed to the X RAGU and W10 and W11 will always be directed to the Y AGU. The effective addresses generated (before and after modification) must, therefore, be valid addresses within X data space for W8 and W9 and Y data space for W10 and W11.

Note:	Register	Indirect	with	Register	Offset
	Addressir	ng mode i	s only	available	for W9
	(in X spac	ce) and W	/11 (in	Y space).	

In summary, the following addressing modes are supported by the ${\tt MAC}$ class of instructions:

- Register Indirect
- Register Indirect Post-Modified by 2
- Register Indirect Post-Modified by 4
- Register Indirect Post-Modified by 6
- · Register Indirect with Register Offset (Indexed)

4.3.5 OTHER INSTRUCTIONS

Besides the various addressing modes outlined above, some instructions use literal constants of various sizes. For example, BRA (branch) instructions use 16-bit signed literals to specify the branch destination directly, whereas the DISI instruction uses a 14-bit unsigned literal field. In some instructions, such as ADD Acc, the source of an operand or result is implied by the opcode itself. Certain operations, such as NOP, do not have any operands.

4.4 Modulo Addressing

Modulo Addressing mode is a method of providing an automated means to support circular data buffers using hardware. The objective is to remove the need for software to perform data address boundary checks when executing tightly looped code, as is typical in many DSP algorithms.

Modulo Addressing can operate in either data or program space (since the data pointer mechanism is essentially the same for both). One circular buffer can be supported in each of the X (which also provides the pointers into program space) and Y data spaces. Modulo Addressing

FIGURE 7-1:	dsPIC33FJXXXMCX06/X08/X10 INTERRUPT VECTOR TABLE

1		-	
	Reset – GOTO Instruction	0x000000	
	Reset – GOTO Address	0x000002	
	Reserved	0x000004	
	Oscillator Fail Trap Vector		
	Address Error Trap Vector		
	Stack Error Trap Vector		
	Math Error Trap Vector		
	DMA Error Trap Vector	_	
	Reserved	_	
	Reserved		
	Interrupt Vector 0	0x000014 —	1
	Interrupt Vector 1	_	
	~	_	
	~	-	
	~		
	Interrupt Vector 52	0x00007C	Interrupt Vector Table (IVT) ⁽¹⁾
>	Interrupt Vector 53	0x00007E	
orit	Interrupt Vector 54	0x000080	
Dric	~	_	
er	~	-	
Decreasing Natural Order Priority			
a	Interrupt Vector 116	0x0000FC 0x0000FE	
tura	Interrupt Vector 117	0x0000FE	_
Nai	Reserved Reserved	0x000100 0x000102	
βĽ	Reserved	0000102	
asii	Oscillator Fail Trap Vector	-	
crea	Address Error Trap Vector	-	
Oec	Stack Error Trap Vector	-	
-	Math Error Trap Vector	-	
	DMA Error Trap Vector	-	
	Reserved	-	
	Reserved	-	
	Interrupt Vector 0	0x000114 —	-
	Interrupt Vector 1		
	~		
	~	1	
	~	1	Alternate Interrupt Vector Table (AIVT) ⁽¹⁾
	Interrupt Vector 52	0x00017C	, ,
	Interrupt Vector 53	0x00017E	
	Interrupt Vector 54	0x000180	
	~		
	~	1	
	~	1	
	Interrupt Vector 116]	
↓ U	Interrupt Vector 117	0x0001FE -	1
V	Start of Code	0x000200	
Note 1: S	ee Table 7-1 for the list of impleme	anted interrupt	(ectors
Note T: S		enteu interrupt v	

7.3 Interrupt Control and Status Registers

dsPIC33FJXXXMCX06/X08/X10 devices implement a total of 30 registers for the interrupt controller:

- INTCON1
- INTCON2
- IFS0 through IFS4
- IEC0 through IEC4
- IPC0 through IPC17
- INTTREG

Global interrupt control functions are controlled from INTCON1 and INTCON2. INTCON1 contains the Interrupt Nesting Disable (NSTDIS) bit as well as the control and status flags for the processor trap sources. The INTCON2 register controls the external interrupt request signal behavior and the use of the Alternate Interrupt Vector Table.

The IFS registers maintain all of the interrupt request flags. Each source of interrupt has a Status bit, which is set by the respective peripherals or external signal and is cleared via software.

The IEC registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals. The IPC registers are used to set the interrupt priority level for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels.

The INTTREG register contains the associated interrupt vector number and the new CPU interrupt priority level, which are latched into vector number (VECNUM<6:0>) and Interrupt level (ILR<3:0>) bit fields in the INTTREG register. The new interrupt priority level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence that they are listed in Table 7-1. For example, the INT0 (External Interrupt 0) is shown as having vector number 8 and a natural order priority of 0. Thus, the INT0IF bit is found in IFS0<0>, the INT0IE bit in IEC0<0> and the INT0IP bits in the first position of IPC0 (IPC0<2:0>).

Although they are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality. The CPU STATUS register, SR, contains the IPL<2:0> bits (SR<7:5>). These bits indicate the current CPU interrupt priority level. The user can change the current CPU priority level by writing to the IPL bits.

The CORCON register contains the IPL3 bit which, together with IPL<2:0>, also indicates the current CPU priority level. IPL3 is a read-only bit so that trap events cannot be masked by the user software.

All Interrupt registers are described in Register 7-1 through Register 7-32 in the following pages.

REGISTER 13-2: TyCON (T3CON, T5CON, T7CON OR T9CON) CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON ⁽¹⁾	—	TSIDL ⁽²⁾	_	—	—	—	—
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0
—	TGATE ⁽¹⁾	TCKPS	<1:0> ⁽¹⁾	—	—	TCS ^(1,3)	—
bit 7							bit 0

Legend:				
R = Readable bitW = Writable bit-n = Value at POR'1' = Bit is set		W = Writable bit	U = Unimplemented bit,	, read as '0'
		'0' = Bit is cleared	x = Bit is unknown	
bit 15	TON: Tim	ery On bit ⁽¹⁾		
		16-bit Timery 16-bit Timery		
bit 14	Unimpler	nented: Read as '0'		
bit 13	TSIDL: St	op in Idle Mode bit ⁽²⁾		
		ntinue module operation who	en device enters Idle mode e mode	
bit 12-7	Unimpler	nented: Read as '0'		
bit 6	TGATE: 1	imery Gated Time Accumu	lation Enable bit ⁽¹⁾	
	When TC This bit is			
	$\frac{\text{When TC}}{1 = \text{Gates}}$	<u>S = 0:</u> I time accumulation enabled	4	
		time accumulation disable		
bit 5-4	TCKPS<1	I:0>: Timer3 Input Clock Pr	escale Select bits ⁽¹⁾	
	11 = 1:25	6		
	10 = 1:64			
	01 = 1:8 00 = 1:1			
bit 3-2		nented: Read as '0'		
bit 1	•	ery Clock Source Select bit	(1.3)	
		nal clock from pin TyCK (on		
		al clock (FCY)	the hong edge	
bit 0	Unimpler			

- 2: When 32-bit timer operation is enabled (T32 = 1) in the Timer Control register (TxCON<3>), the TSIDL bit must be cleared to operate the 32-bit timer in Idle mode.
- 3: The TyCK pin is not available on all timers. Refer to the "Pin Diagrams" section for the available pins.

14.1 Input Capture Registers

REGISTER 14-1: ICxCON: INPUT CAPTURE x CONTROL REGISTER

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
—	_	ICSIDL			_	_	—
bit 15							bit
R/W-0	R/W-0	R/W-0	R-0, HC	R-0, HC	R/W-0	R/W-0	R/W-0
ICTMR ⁽¹⁾	ICI<	<1:0>	ICOV	ICBNE		ICM<2:0>	
bit 7							bit
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set	:	'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15-14	Unimplemer	nted: Read as '	0'				
bit 13	ICSIDL: Inpu	t Capture Mod	ule Stop in Idle	e Control bit			
		ture module wi					
	• •			operate in CPU	Idle mode		
bit 12-8	-	ted: Read as					
bit 7		t Capture Time					
		ntents are capt ntents are capt	•				
bit 6-5	ICI<1:0>: Se	lect Number of	Captures per	Interrupt bits			
	10 = Interrup	t on every four t on every third t on every seco	capture even	t			
		t on every capt					
bit 4	ICOV: Input (Capture Overflo	ow Status Flag	bit (read-only)			
		ture overflow c capture overflo					
bit 3	ICBNE: Input	t Capture Buffe	r Empty Statu	s bit (read-only)		
		ture buffer is n ture buffer is e		ast one more c	apture value o	an be read	
bit 2-0	ICM<2:0>: In	put Capture M	ode Select bits	6			
	(Risin, 110 = Unuse 101 = Captur 100 = Captur 011 = Captur 010 = Captur 001 = Captur	g edge detect o d (module disa re mode, every re mode, every re mode, every re mode, every re mode, every re mode, every	only, all other o bled) 16th rising edg 4th rising edge rising edge falling edge edge (rising a	control bits are lge le	not applicable	eep or Idle mode .)	•

Note 1: Timer selections may vary. Refer to the device data sheet for details.

REGISTER 16-1: PXTCON: PWM TIME BASE CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
PTEN	—	PTSIDL	—	—	—	—	—
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	PTOPS	\$<3:0>		PTCK	PS<1:0>	PTMO	D<1:0>
bit 7				<u>.</u>			bit 0

Legend:				
R = Readabl	e bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at	POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15		WM Time Base Timer Enable	e bit	
		time base is on time base is off		
bit 14	Unimpler	mented: Read as '0'		
bit 13	PTSIDL:	PWM Time Base Stop in Idle	e Mode bit	
		time base halts in CPU Idle time base runs in CPU Idle		
bit 12-8	Unimpler	mented: Read as '0'		
bit 7-4	PTOPS<3	3:0>: PWM Time Base Outp	ut Postscale Select bits	
	1111 = 1 :	:16 postscale		
	•			
	•			
	•			
		2 postscale 1 postscale		
bit 3-2	PTCKPS	<1:0>: PWM Time Base Inpu	ut Clock Prescale Select bits	
	11 = PWN	M time base input clock perio	od is 64 Tcy (1:64 prescale)	
		I time base input clock perio		
		M time base input clock period M time base input clock period		
bit 1-0		1:0>: PWM Time Base Mode		
	11 = PW		ontinuous Up/Down Count mo	de with interrupts for double
			ontinuous Up/Down Count mo	de
		I time base operates in Sing	-	
	00 = PW	I time base operates in a Fr	ee-Running mode	

REGISTER 16-2: PxTMR: PWM TIMER COUNT VALUE REGISTER

R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PTDIR				PTMR<14:8>	>		
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTM	R<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, rea	id as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknow						nown	

bit 15 **PTDIR:** PWM Time Base Count Direction Status bit (read-only)

- 1 = PWM time base is counting down
- 0 = PWM time base is counting up

bit 14-0 **PTMR <14:0>:** PWM Time Base Register Count Value bits

REGISTER 16-3: PxTPER: PWM TIME BASE PERIOD REGISTER

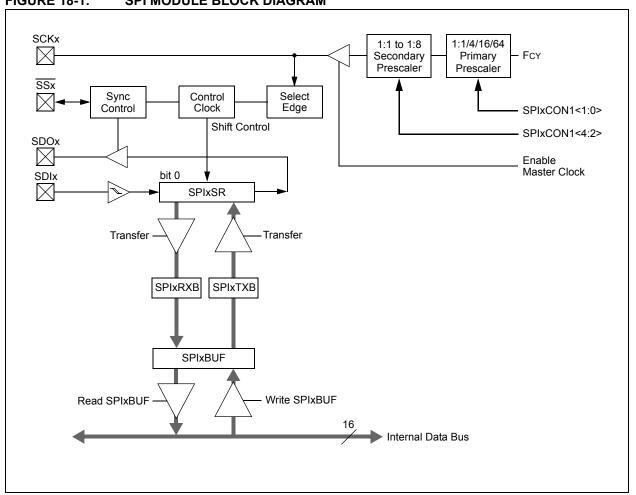
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_				PTPER<14:8>	>			
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			PTPE	R<7:0>				
bit 7							bit 0	
Legend:								
R = Readable I	bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'		
-n = Value at POR '1' = Bit is set				'0' = Bit is clea	ared	x = Bit is unknown		

bit 15 Unimplemented: Read as '0'

bit 14-0 **PTPER<14:0>:** PWM Time Base Period Value bits

18.0 SERIAL PERIPHERAL **INTERFACE (SPI)**

This data sheet summarizes the features Note: of the dsPIC33FJXXXMCX06/X08/X10 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 18. "Serial Peripheral Interface (SPI)" (DS70206) in the "dsPIC33F Family Reference Manual", which is available the from Microchip web site (www.microchip.com)


The Serial Peripheral Interface (SPI) module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, ADC, etc. The SPI module is compatible with SPI and SIOP from Motorola®.

Note: In this section, the SPI modules are referred to together as SPIx, or separately as SPI1 and SPI2. Special Function Registers will follow a similar notation. For example, SPIxCON refers to the control register for the SPI1 or SPI2 module.

Each SPI module consists of a 16-bit shift register, SPIxSR (where x = 1 or 2), used for shifting data in and out, and a buffer register, SPIxBUF. A control register, SPIxCON, configures the module. Additionally, a status register, SPIxSTAT, indicates various status conditions.

The serial interface consists of 4 pins: SDIx (serial data input), SDOx (serial data output), SCKx (shift clock input or output) and SSx (active-low slave select).

In Master mode operation, SCK is a clock output, but in Slave mode, it is a clock input.

SPI MODULE BLOCK DIAGRAM **FIGURE 18-1:**

REGISTER 21-8: CIEC: ECAN[™] TRANSMIT/RECEIVE ERROR COUNT REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			TERR	CNT<7:0>			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			RERR	RCNT<7:0>			
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable bit		U = Unimpleme	ented bit, re	ad as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clear	red	x = Bit is unkr	nown

bit 15-8 TERRCNT<7:0>: Transmit Error Count bits

bit 7-0 RERRCNT<7:0>: Receive Error Count bits

22.0 10-BIT/12-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)

Note: This data sheet summarizes the features of the dsPIC33FJXXXMCX06/X08/X10 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 16. "Analog-to-Digital Converter (ADC)" (DS70183) in the "dsPIC33F Family Reference Manual", which is available from the Microchip web site (www.microchip.com)

The dsPIC33FJXXXMCX06/X08/X10 devices have up to 32 ADC input channels. These devices also have up to 2 ADC modules (ADCx, where 'x' = 1 or 2), each with its own set of Special Function Registers.

The AD12B bit (ADxCON1<10>) allows each of the ADC modules to be configured by the user as either a 10-bit, 4-sample/hold ADC (default configuration) or a 12-bit, 1-sample/hold ADC.

Note: The ADC module needs to be disabled before modifying the AD12B bit.

22.1 Key Features

The 10-bit ADC configuration has the following key features:

- Successive Approximation (SAR) conversion
- Conversion speeds of up to 1.1 Msps
- Up to 32 analog input pins
- External voltage reference input pins
- Simultaneous sampling of up to four analog input pins
- Automatic Channel Scan mode
- Selectable conversion trigger source
- Selectable Buffer Fill modes
- Four result alignment options (signed/unsigned, fractional/integer)
- Operation during CPU Sleep and Idle modes

The 12-bit ADC configuration supports all the above features, except:

- In the 12-bit configuration, conversion speeds of up to 500 ksps are supported
- There is only 1 sample/hold amplifier in the 12-bit configuration, so simultaneous sampling of multiple channels is not supported.

Depending on the particular device pinout, the ADC can have up to 32 analog input pins, designated AN0 through AN31. In addition, there are two analog input pins for external voltage reference connections. These voltage reference inputs may be shared with other ana-

log input pins. The actual number of analog input pins and external voltage reference input configuration will depend on the specific device. Refer to the device data sheet for further details.

A block diagram of the ADC is shown in Figure 22-1.

22.2 ADC Initialization

The following configuration steps should be performed.

- 1. Configure the ADC module:
 - a) Select port pins as analog inputs (ADxPCFGH<15:0> or ADxPCFGL<15:0>)
 - b) Select voltage reference source to match expected range on analog inputs (ADxCON2<15:13>)
 - c) Select the analog conversion clock to match desired data rate with processor clock (ADxCON3<7:0>)
 - d) Determine how many S/H channels will be used (ADxCON2<9:8> and ADxPCFGH<15:0> or ADxPCFGL<15:0>)
 - e) Select the appropriate sample/conversion sequence (ADxCON1<7:5> and ADxCON3<12:8>)
 - f) Select how conversion results are presented in the buffer (ADxCON1<9:8>)
 - g) Turn on ADC module (ADxCON1<15>)
 - Configure ADC interrupt (if required):
 - a) Clear the ADxIF bit

2.

b) Select ADC interrupt priority

22.3 ADC and DMA

If more than one conversion result needs to be buffered before triggering an interrupt, DMA data transfers can be used. Both ADC1 and ADC2 can trigger a DMA data transfer. If ADC1 or ADC2 is selected as the DMA IRQ source, a DMA transfer occurs when the AD1IF or AD2IF bit gets set as a result of an ADC1 or ADC2 sample conversion sequence.

The SMPI<3:0> bits (ADxCON2<5:2>) are used to select how often the DMA RAM buffer pointer is incremented.

The ADDMABM bit (ADxCON1<12>) determines how the conversion results are filled in the DMA RAM buffer area being used for ADC. If this bit is set, DMA buffers are written in the order of conversion. The module will provide an address to the DMA channel that is the same as the address used for the non-DMA stand-alone buffer. If the ADDMABM bit is cleared, then DMA buffers are written in Scatter/Gather mode. The module will provide a scatter/gather address to the DMA channel, based on the index of the analog input and the size of the DMA buffer.

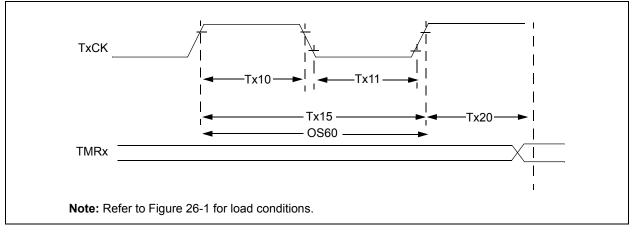

Bit Field	Register	Description
GWRP	FGS	General Segment Write-Protect bit 1 = User program memory is not write-protected 0 = User program memory is write-protected
IESO	FOSCSEL	 Two-speed Oscillator Start-up Enable bit 1 = Start-up device with FRC, then automatically switch to the user-selected oscillator source when ready 0 = Start-up device with user-selected oscillator source
FNOSC<2:0>	FOSCSEL	Initial Oscillator Source Selection bits 111 = Internal Fast RC (FRC) oscillator with postscaler 110 = Internal Fast RC (FRC) oscillator with divide-by-16 101 = LPRC oscillator 100 = Secondary (LP) oscillator 011 = Primary (XT, HS, EC) oscillator with PLL 010 = Primary (XT, HS, EC) oscillator 001 = Internal Fast RC (FRC) oscillator with PLL 000 = FRC oscillator
FCKSM<1:0>	FOSC	Clock Switching Mode bits 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
OSCIOFNC	FOSC	OSC2 Pin Function bit (except in XT and HS modes) 1 = OSC2 is clock output 0 = OSC2 is general purpose digital I/O pin
POSCMD<1:0>	FOSC	Primary Oscillator Mode Select bits 11 = Primary oscillator disabled 10 = HS Crystal Oscillator mode 01 = XT Crystal Oscillator mode 00 = EC (External Clock) mode
FWDTEN	FWDT	 Watchdog Timer Enable bit 1 = Watchdog Timer always enabled (LPRC oscillator cannot be disabled. Clearing the SWDTEN bit in the RCON register will have no effect.) 0 = Watchdog Timer enabled/disabled by user software (LPRC can be disabled by clearing the SWDTEN bit in the RCON register)
WINDIS	FWDT	Watchdog Timer Window Enable bit 1 = Watchdog Timer in Non-Window mode 0 = Watchdog Timer in Window mode
WDTPRE	FWDT	Watchdog Timer Prescaler bit 1 = 1:128 0 = 1:32
WDTPOST	FWDT	Watchdog Timer Postscaler bits 1111 = 1:32,768 1110 = 1:16,384
PWMPIN	FPOR	 Motor Control PWM Module Pin Mode bit 1 = PWM module pins controlled by PORT register at device Reset (tri-stated) 0 = PWM module pins controlled by PWM module at device Reset (configured as output pins)

TABLE 23-2: dsPIC33FJXXXMCX06/X08/X10 CONFIGURATION BITS DESCRIPTION (CONTINUED)

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
48	MPY	MPY Wm*Wn,Acc,Wx,Wxd,Wy,Wyd		Multiply Wm by Wn to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		MPY Wm*Wm,Ac	cc,Wx,Wxd,Wy,Wyd	Square Wm to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
49	MPY.N	MPY.N Wm*Wn,Ac	cc,Wx,Wxd,Wy,Wyd	-(Multiply Wm by Wn) to Accumulator	1	1	None
50	MSC	MSC	Wm*Wm, Acc, Wx, Wxd, Wy, Wyd , AWB	Multiply and Subtract from Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
51	MUL	MUL.SS	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * signed(Ws)	1	1	None
		MUL.SU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.US	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.UU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL	f	W3:W2 = f * WREG	1	1	None
52	NEG	NEG	Acc	Negate Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		NEG	f	$f = \overline{f} + 1$	1	1	C,DC,N,OV,Z
		NEG	f,WREG	WREG = \overline{f} + 1	1	1	C,DC,N,OV,Z
		NEG	Ws,Wd	$Wd = \overline{Ws} + 1$	1	1	C,DC,N,OV,Z
53	NOP	NOP		No Operation	1	1	None
		NOPR No Operation		1	1	None	
54	POP	POP f Pop f from Top-of-Stack (TOS)		1	1	None	
		POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
		POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1)	1	2	None
		POP.S		Pop Shadow Registers	1	1	All
55	PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
		PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
		PUSH.D	Wns	Push W(ns):W(ns + 1) to Top-of-Stack (TOS)	1	2	None
		PUSH.S		Push Shadow Registers	1	1	None
56	PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO,Sleep
57	RCALL	RCALL	Expr	Relative Call	1	2	None
		RCALL	Wn	Computed Call	1	2	None
58	REPEAT	REPEAT	#lit14	Repeat Next Instruction lit14 + 1 times	1	1	None
		REPEAT	Wn	Repeat Next Instruction (Wn) + 1 times	1	1	None
59	RESET	RESET		Software device Reset	1	1	None
60	RETFIE	RETFIE	117 1 4 6 F	Return from interrupt	1	3 (2)	None
61	RETLW	RETLW	#lit10,Wn	Return with literal in Wn	1	3 (2)	None
62	RETURN	RETURN	£	Return from Subroutine	1	3 (2) 1	None
63	RLC	RLC	f f,WREG	f = Rotate Left through Carry f WREG = Rotate Left through Carry f	1	1	C,N,Z C,N,Z
		RLC	Ws,Wd	Weeg = Rotate Left through Carry Ws	1	1	C,N,Z
64	RLNC	RLNC	f	f = Rotate Left (No Carry) f	1	1	N,Z
51	1.1110	RLNC	f,WREG	WREG = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	Ws,Wd	Wd = Rotate Left (No Carry) Ws	1	1	N,Z
65	RRC	RRC	f	f = Rotate Right through Carry f	1	1	C,N,Z
		RRC	f,WREG	WREG = Rotate Right through Carry f	1	1	C,N,Z
		RRC	Ws,Wd	Wd = Rotate Right through Carry Ws	1	1	C,N,Z

TABLE 24-2: INSTRUCTION SET OVERVIEW (CONTINUED)

FIGURE 26-5: TIMER1, 2, 3, 4, 5, 6, 7, 8 AND 9 EXTERNAL CLOCK TIMING CHARACTERISTICS

AC CHA	RACTERIST	ICS		(unless	dard Operating Conditions: 3.0V to 3.6V so therwise stated) ating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param No.	Symbol	Charact	eristic		Min	Тур	Max	Units	Conditions	
TA10	ТтхН	TxCK High Time	Synchronous, no prescaler		0.5 Tcy + 20	_	—	ns	Must also meet parameter TA15	
			Synchron with prese		10			ns		
			Asynchro	nous	10	_	_	ns		
TA11	TTXL	TxCK Low Time	Synchronous, no prescaler Synchronous, with prescaler		0.5 TCY + 20	_	—	ns	Must also meet parameter TA15	
					10	_	—	ns		
			Asynchro	nous	10	—		ns		
TA15	ΤτχΡ	TxCK Input Period	Synchron no presca		Тсү + 40	_	_	ns	—	
			Synchron with prese		Greater of: 20 ns or (Tcy + 40)/N	—	_	—	N = prescale value (1, 8, 64, 256)	
			Asynchro	nous	20	_		ns	—	
OS60	Ft1	SOSC1/T1CK Osci frequency Range (c by setting bit TCS (e (oscillator enabled		DC	_	50	kHz	—	
TA20	TCKEXTMRL	Delay from Externa Edge to Timer Incre		ock	0.5 TCY		1.5 TCY	—	—	

TABLE 26-22: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS⁽¹⁾

Note 1: Timer1 is a Type A.

		IX MODULE SLAVE MODE (, Standard Op	erating	Conditio		
AC CHA	RACTERIS	TICS	(unless othe Operating ter			C≤ TA≤	+85°C for Industrial
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SP70	TscL	SCKx Input Low Time	30	_	_	ns	_
SP71	TscH	SCKx Input High Time	30	_	_	ns	—
SP72	TscF	SCKx Input Fall Time ⁽³⁾		10	25	ns	_
SP73	TscR	SCKx Input Rise Time ⁽³⁾		10	25	ns	_
SP30	TdoF	SDOx Data Output Fall Time ⁽³⁾	_	_		ns	See parameter D032
SP31	TdoR	SDOx Data Output Rise Time ⁽³⁾		_	_	ns	See parameter D031
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—		30	ns	—
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20			ns	_
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20			ns	_
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow to \ SCKx \downarrow or \ SCKx \uparrow \\ Input$	120			ns	_
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance ⁽⁴⁾	10		50	ns	_
SP52	TscH2ssH TscL2ssH	SSx ↑ after SCKx Edge	1.5 TCY + 40	_	_	ns	—
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	—		50	ns	_

TABLE 26-35: SPIX MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 100 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

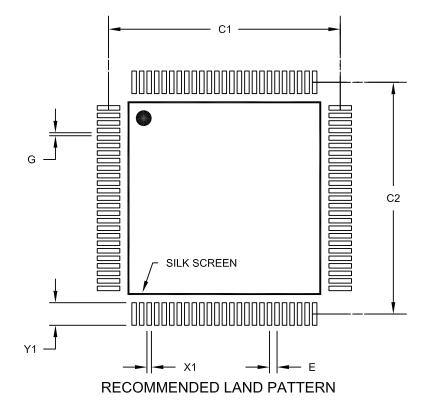

AC CHA		STICS		(unless othe	rwise sta	ated)	ns: 3.0V to 3.6V $C \le TA \le +85^{\circ}C$ for Industrial
Param No.	Symbol	Charact	eristic	Min	Max	Units	Conditions
IS10	TLO:SCL	Clock Low Time	100 kHz mode	4.7	—	μs	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3	—	μs	Device must operate at a minimum of 10 MHz
			1 MHz mode ⁽¹⁾	0.5	—	μs	—
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	—	μs	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	—	μs	Device must operate at a minimum of 10 MHz
			1 MHz mode ⁽¹⁾	0.5	—	μs	_
IS20	TF:SCL	SDAx and SCLx	100 kHz mode		300	ns	CB is specified to be from
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF
			1 MHz mode ⁽¹⁾		100	ns	
IS21	TR:SCL	SDAx and SCLx	100 kHz mode	_	1000	ns	CB is specified to be from
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF
			1 MHz mode ⁽¹⁾		300	ns	
IS25	TSU:DAT	Data Input	100 kHz mode	250	—	ns	—
		Setup Time	400 kHz mode	100	—	ns	
			1 MHz mode ⁽¹⁾	100	—	ns	
IS26	THD:DAT	Data Input	100 kHz mode	0	—	μs	—
		Hold Time	400 kHz mode	0	0.9	μs	
			1 MHz mode ⁽¹⁾	0	0.3	μs	
IS30	TSU:STA	Start Condition	100 kHz mode	4.7	—	μs	Only relevant for Repeated
		Setup Time	400 kHz mode	0.6	—	μs	Start condition
			1 MHz mode ⁽¹⁾	0.25	_	μs	
IS31	THD:STA	Start Condition	100 kHz mode	4.0		μs	After this period, the first
		Hold Time	400 kHz mode	0.6	—	μs	clock pulse is generated
			1 MHz mode ⁽¹⁾	0.25	—	μs	
IS33	Tsu:sto	Stop Condition	100 kHz mode	4.7	—	μs	
		Setup Time	400 kHz mode	0.6	—	μs	
			1 MHz mode ⁽¹⁾	0.6	—	μs	
IS34	THD:STO	Stop Condition	100 kHz mode	4000	—	ns	
		Hold Time	400 kHz mode	600	—	ns	
			1 MHz mode ⁽¹⁾	250		ns	
IS40	TAA:SCL	Output Valid	100 kHz mode	0	3500	ns	
		From Clock	400 kHz mode	0	1000	ns	
			1 MHz mode ⁽¹⁾	0	350	ns	
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7		μs	Time the bus must be free
			400 kHz mode	1.3		μs	before a new transmission
			1 MHz mode ⁽¹⁾	0.5		μs	can start
IS50	Св	Bus Capacitive Lo	ading		400	pF	

TABLE 26-37: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

100-Lead Plastic Thin Quad Flatpack (PF) – 14x14x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.50 BSC		
Contact Pad Spacing	C1		15.40	
Contact Pad Spacing	C2		15.40	
Contact Pad Width (X100)	X1			0.30
Contact Pad Length (X100)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2110A