

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

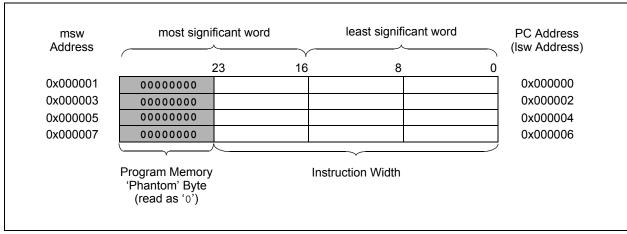
E·XFI

Detuns	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	53
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	· ·
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64mc506t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.1.1 PROGRAM MEMORY ORGANIZATION


The program memory space is organized in word-addressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-2).

Program memory addresses are always word-aligned on the lower word, and addresses are incremented or decremented by two during code execution. This arrangement also provides compatibility with data memory space addressing and makes it possible to access data in the program memory space.

4.1.2 INTERRUPT AND TRAP VECTORS

All dsPIC33FJXXXMCX06/X08/X10 devices reserve the addresses between 0x00000 and 0x000200 for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user at 0x000000, with the actual address for the start of code at 0x000002.

dsPIC33FJXXXMCX06/X08/X10 devices also have two interrupt vector tables located from 0x000004 to 0x0000FF and 0x000100 to 0x0001FF. These vector tables allow each of the many device interrupt sources to be handled by separate Interrupt Service Routines (ISRs). A more detailed discussion of the interrupt vector tables is provided in **Section 7.1 "Interrupt Vector Table"**.

FIGURE 4-2: PROGRAM MEMORY ORGANIZATION

4.2.5 X AND Y DATA SPACES

The core has two data spaces, X and Y. These data spaces can be considered either separate (for some DSP instructions) or as one unified linear address range (for MCU instructions). The data spaces are accessed using two Address Generation Units (AGUs) and separate data paths. This feature allows certain instructions to concurrently fetch two words from RAM, thereby enabling efficient execution of DSP algorithms such as Finite Impulse Response (FIR) filtering and Fast Fourier Transform (FFT).

The X data space is used by all instructions and supports all addressing modes. There are separate read and write data buses for X data space. The X read data bus is the read data path for all instructions that view data space as combined X and Y address space. It is also the X data prefetch path for the dual operand DSP instructions (MAC class).

The Y data space is used in concert with the X data space by the MAC class of instructions (CLR, ED, EDAC, MAC, MOVSAC, MPY, MPY.N and MSC) to provide two concurrent data read paths.

Both the X and Y data spaces support Modulo Addressing mode for all instructions, subject to addressing mode restrictions. Bit-Reversed Addressing mode is only supported for writes to X data space.

All data memory writes, including in DSP instructions, view data space as combined X and Y address space. The boundary between the X and Y data spaces is device-dependent and is not user-programmable.

All effective addresses are 16 bits wide and point to bytes within the data space. Therefore, the data space address range is 64 Kbytes, or 32K words, though the implemented memory locations vary by device.

4.2.6 DMA RAM

Every dsPIC33FJXXXMCX06/X08/X10 device contains 2 Kbytes of dual ported DMA RAM located at the end of Y data space. Memory locations is part of Y data RAM and is in the DMA RAM space are accessible simultaneously by the CPU and the DMA controller module. DMA RAM is utilized by the DMA controller to store data to be transferred to various peripherals using DMA, as well as data transferred from various peripherals using DMA. The DMA RAM can be accessed by the DMA controller without having to steal cycles from the CPU.

When the CPU and the DMA controller attempt to concurrently write to the same DMA RAM location, the hardware ensures that the CPU is given precedence in accessing the DMA RAM location. Therefore, the DMA RAM provides a reliable means of transferring DMA data without ever having to stall the CPU.

TABLE 4-22: ECAN1 REGISTER MAP WHEN C1CTRL1.WIN = 1

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0400- 041E		-	-	-				See definit	ion when V	VIN = x		·			-	-	
C1BUFPNT1	0420		F3BF	P<3:0>			F2BF	P<3:0>		F1BP<3:0> F0BP<3:0>						0000		
C1BUFPNT2	0422		F7BF	P<3:0>			F6BF	P<3:0>			F5BP	<3:0>			F4BP	<3:0>		0000
C1BUFPNT3	0424		F11B	P<3:0>			F10B	P<3:0>			F9BP	<3:0>			F8BP	<3:0>		0000
C1BUFPNT4	0426		F15BP<3:0> F14BP<3:0>				F13BF	P<3:0>			F12BF	P<3:0>		0000				
C1RXM0SID	0430				SID<	10:3>					SID<2:0>		—	MIDE	_	EID<'	17:16>	xxxx
C1RXM0EID	0432				EID<	15:8>							EID<	7:0>	_	-		xxxx
C1RXM1SID	0434	SID<10:3>					SID<2:0>		—	MIDE	_	EID<	17:16>	xxxx				
C1RXM1EID	0436		EID<15:8>							EID<	7:0>				xxxx			
C1RXM2SID	0438		SID<10:3>					SID<2:0>		—	MIDE	_	EID<	17:16>	xxxx			
C1RXM2EID	043A		EID<15:8>							EID<	7:0>	_	-		xxxx			
C1RXF0SID	0440	SID<10:3>					SID<2:0>		—	EXIDE	_	EID<	17:16>	xxxx				
C1RXF0EID	0442	EID<15:8>				EID<7:0>						xxxx						
C1RXF1SID	0444	SID<10:3>					SID<2:0>		—	EXIDE	_	EID<	17:16>	xxxx				
C1RXF1EID	0446	EID<15:8>							EID<	7:0>	_	-		xxxx				
C1RXF2SID	0448	SID<10:3>					SID<2:0>		—	EXIDE	_	EID<	17:16>	xxxx				
C1RXF2EID	044A				EID<	15:8>				EID<7:0>						xxxx		
C1RXF3SID	044C				SID<	:10:3>				SID<2:0> — EXIDE — EID<17:16>					17:16>	xxxx		
C1RXF3EID	044E				EID<	15:8>				EID<7:0>						xxxx		
C1RXF4SID	0450				SID<	:10:3>				SID<2:0> — EXIDE — EID<1				17:16>	xxxx			
C1RXF4EID	0452				EID<	15:8>				EID<7:0>						xxxx		
C1RXF5SID	0454				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF5EID	0456				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF6SID	0458				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF6EID	045A				EID<	15:8>							EID<	7:0>				xxxx
C1RXF7SID	045C				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF7EID	045E				EID<	15:8>							EID<	7:0>				xxxx
C1RXF8SID	0460				SID<	10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF8EID	0462				EID<	15:8>							EID<	7:0>				xxxx
C1RXF9SID	0464				SID<	10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF9EID	0466				EID<	15:8>				EID<7:0>						xxxx		
C1RXF10SID	0468				SID<	10:3>					SID<2:0>		-	EXIDE	_	EID<'	17:16>	xxxx
C1RXF10EID	046A				EID<	15:8>							EID<	7:0>				xxxx

dsPIC33FJXXXMCX06/X08/X10

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE				
bit 15		·			•	÷	bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INTOIE				
bit 7	UC2IE	ICZIE	DIVIAULE		OCTIE	ICTIE	bit 0				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'					
-n = Value at		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	iown				
iii valao at		1 Bitle co	•	o Dicio dia							
bit 15	Unimplemen	ted: Read as '	0'								
bit 14	DMA1IE: DM	A Channel 1 D	ata Transfer C	Complete Interi	rupt Enable bit						
		equest enable									
		equest not en									
bit 13				rupt Enable bit							
		equest enable equest not ena									
bit 12	•	RT1 Transmitte		able bit							
	1 = Interrupt request enabled										
	0 = Interrupt r	equest not en	abled								
bit 11	U1RXIE: UART1 Receiver Interrupt Enable bit										
		equest enable equest not ena									
bit 10	-	Event Interrup									
		equest enable									
		equest not en									
bit 9	SPI1EIE: SPI	1 Error Interru	pt Enable bit								
		equest enable									
	•	equest not en									
bit 8		Interrupt Enab									
	 1 = Interrupt request enabled 0 = Interrupt request not enabled 										
bit 7	-	Interrupt Enab									
		equest enable									
	0 = Interrupt r	equest not en	abled								
bit 6	•	ut Compare Ch		upt Enable bit							
		equest enable									
bit 5	•	equest not en Capture Chann		Enabla bit							
DIL 5	•	equest enable	•								
		request not en									
bit 4	DMA0IE: DM	A Channel 0 D	ata Transfer C	Complete Interi	rupt Enable bit						
		equest enable									
		equest not en									
bit 3		Interrupt Enab									
		equest enable equest not en									

REGISTER 7-13: IEC3: INTERRUPT ENABLE CONTROL REGISTER 3 (CONTINUED)

- bit 1 SI2C2IE: I2C2 Slave Events Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled
- bit 0 T7IE: Timer7 Interrupt Enable bit
 - 1 = Interrupt request enabled
 - 0 = Interrupt request not enabled

REGISTER 9-1:	OSCCON: OSCILLATOR CONTROL REGISTER ⁽¹⁾

U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-y	R/W-y				
		COSC<2:0>		<u> </u>		NOSC<2:0> ⁽²⁾					
bit 15							bit				
R/W-0	U-0	R-0	U-0	R/C-0	U-0	R/W-0	R/W-0				
CLKLOCK		LOCK	—	CF	—	LPOSCEN	OSWEN				
bit 7							bit				
Legend:		y = Value set	from Configur	ation bits on P	OR						
R = Readable I	oit	W = Writable	bit	U = Unimpler	mented bit, rea	id as '0'					
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkne	own				
bit 15	Unimplemen	ted: Read as '	∩'								
bit 14-12	-	Current Oscilla		hits (read-only)						
51(17-12		C oscillator (FF)						
		C oscillator (FF	,								
		y oscillator (XT									
		y oscillator (XT		PLL							
		dary oscillator (
		ower RC oscilla	,								
	110 = Fast RC oscillator (FRC) with Divide-by-16										
	111 = Fast R	C oscillator (FF	RC) with Divide	e-by-n							
bit 11	Unimplemented: Read as '0'										
bit 10-8	NOSC<2:0>:	New Oscillator	Selection bits	_; (2)							
		C oscillator (FF									
		C oscillator (FF	,								
		y oscillator (XT									
		y oscillator (XT		PLL							
		dary oscillator (
		ower RC oscilla		by 16							
		C oscillator (FF C oscillator (FF									
bit 7		Clock Lock Ena	-	5-Dy-11							
		M0 = 1), then c		configurations	are locked						
		M0 = 0), then c				ied					
	0 = Clock and	d PLL selection	ns are not lock	ed; configurat	ions may be m	odified					
bit 6	Unimplemen	ted: Read as '	0'								
bit 5		ock Status bit	• • •								
		that PLL is in that PLL is ou				L is disabled					
bit 4	Unimplemen	ted: Read as '	0'		-						
bit 3	CF: Clock Fai	il Detect bit (re	ad/clear by ap	plication)							
		as detected clo as not detected									
bit 2	Unimplemen		CIUCK IAIIUIE								

Note 1: Writes to this register require an unlock sequence. Refer to **Section 7. "Oscillator**" (DS70186) in the *"dsPIC33F Family Reference Manual"* (available from the Microchip website) for details.

2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.

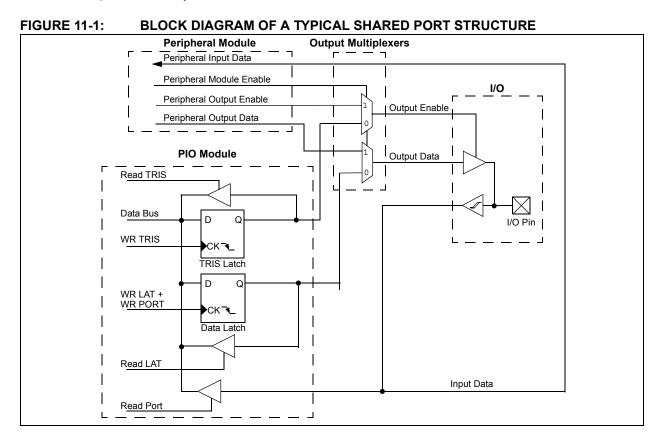
NOTES:

11.0 I/O PORTS

Note: This data sheet summarizes the features of the dsPIC33FJXXXMCX06/X08/X10 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 10. "I/O Ports" (DS70193) in the "dsPIC33F Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

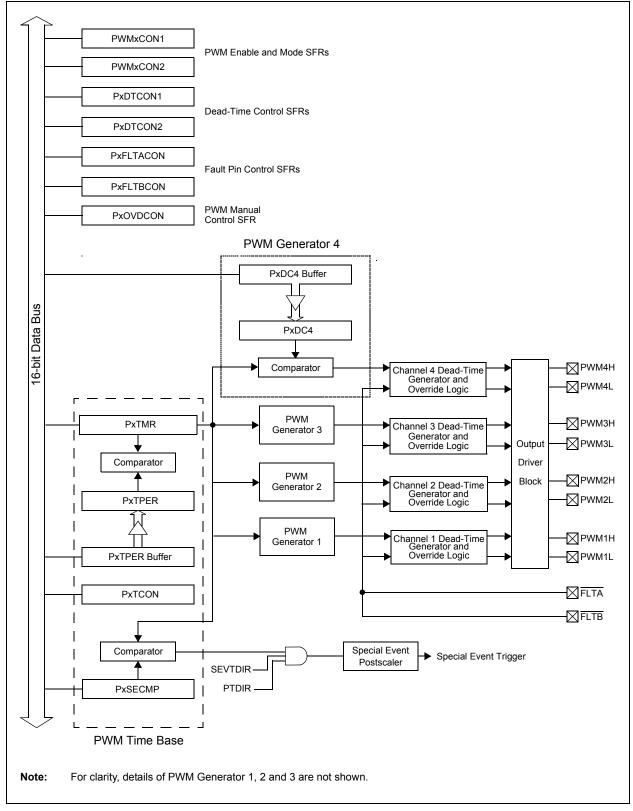
All of the device pins (except VDD, VSS, MCLR and OSC1/CLKIN) are shared between the peripherals and the parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

11.1 Parallel I/O (PIO) Ports


A parallel I/O port that shares a pin with a peripheral is, in general, subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through," in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 11-1 shows how ports are shared with other peripherals and the associated I/O pin to which they are connected. When a peripheral is enabled and actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin may be read, but the output driver for the parallel port bit will be disabled. If a peripheral is enabled but the peripheral is not actively driving a pin, that pin may be driven by a port.

All port pins have three registers directly associated with their operation as digital I/O. The data direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx), read the latch. Writes to the latch, write the latch. Reads from the port (PORTx), read the port pins, while writes to the port pins, write the latch.

Any bit and its associated data and control registers that are not valid for a particular device will be disabled. That means the corresponding LATx and TRISx registers and the port pins will read as zeros.

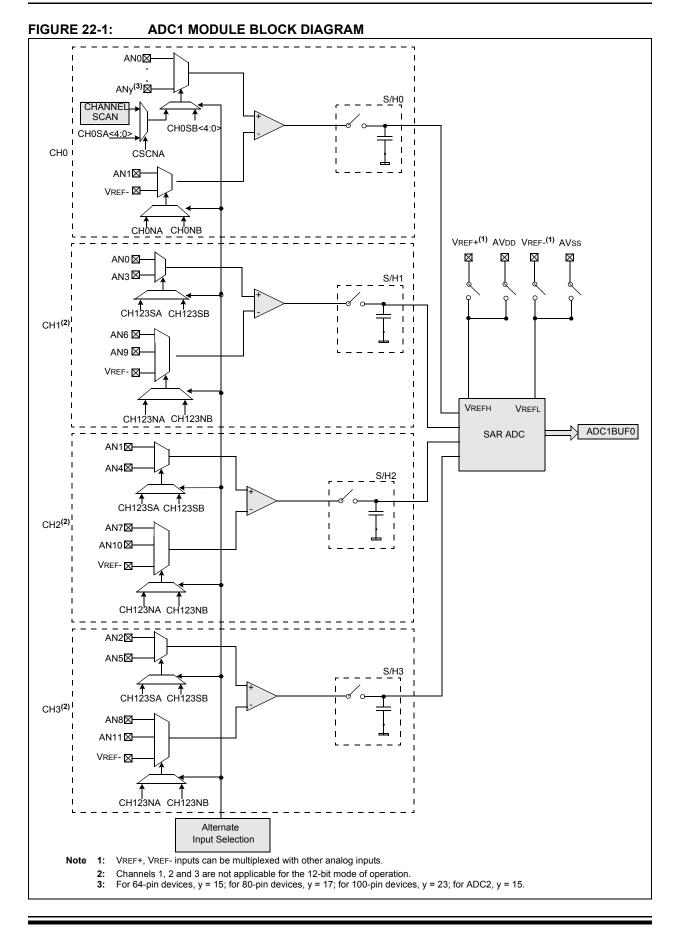

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs. An example is the INT4 pin.

Note: The voltage on a digital input pin can be between -0.3V to 5.6V.

© 2009 Microchip Technology Inc.

FIGURE 16-1: PWM MODULE BLOCK DIAGRAM

REGISTER 17-2: DFLTxCON: DIGITAL FILTER CONTROL REGISTER


U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0				
	_	_		_	IMV<	<1:0>	CEID				
bit 15							bit 8				
R/W-0		R/W-0		U-0	U-0	U-0	U-0				
QEOUT	QECK<2:0> — — — —										
bit 7							bit 0				
Levende											
R = Readable	Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'										
		W = Writable k '1' = Bit is set	Л	0 = Onimple '0' = Bit is cle		x = Bit is unkr					
-n = Value at	PUR	I = DILIS SEL			areu		IOWI				
bit 15-11	Unimplement	ted: Read as '0	,								
bit 10-9	QEBx inp In 4X Quadrat IMV1 = F IMV0 = F In 2X Quadrat IMV1 = S	but pins during a ture Count Mod Required state of Required state of ture Count Mod Selects phase in	an index puls e: of Phase B in of Phase A in e: nput signal fo	se when the PC nput signal for i nput signal for i or index state n	ne user to speci DSxCNT register match on index match on index natch (0 = Phas signal for matcl	r is to be reset pulse pulse e A, 1 = Phase	В)				
bit 8	1 = Interrupts	Error Interrupt E due to count er due to count er	rors are disa								
bit 7	1 = Digital filte	x/QEBx/INDXx er outputs enab er outputs disab	led	-	able bit						
bit 6-4 bit 3-0	111 = 1:256 C 110 = 1:128 C 101 = 1:64 Cl 100 = 1:32 Cl 011 = 1:16 Cl 010 = 1:4 Clo 001 = 1:2 Clo 000 = 1:1 Clo	Clock Divide ock Divide ock Divide ock Divide ck Divide ck Divide		Filter Clock Div	ide Select Bits						

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0					
SPIEN	—	SPISIDL		_	—	_	_					
bit 15						4	bit 8					
U-0	R/C-0	U-0	U-0	U-0	U-0	R-0	R-0					
_	SPIROV		_			SPITBF	SPIRBF					
bit 7							bit 0					
Legend:		C = Clearable										
R = Readab		W = Writable I	oit	-	mented bit, read							
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown					
hit 1E		Enchlo hit										
bit 15	SPIEN: SPIx Enable bit $1 = \text{Enables}$ module and configures SCKx, SDOx, SDIx and $\overline{\text{SSx}}$ as serial port pins											
	0 = Disables module											
bit 14	Unimplemen	Unimplemented: Read as '0'										
bit 13	SPISIDL: Sto	p in Idle Mode	bit									
		ue module opei			lle mode							
		module operati		de								
bit 12-7	-	ted: Read as 'o										
bit 6		eive Overflow I		ed and discard	ad The user s	oftware has not	read the					
		data in the SPI			ieu. The user si	Sitware has not	reau ine					
	0 = No overfl	ow has occurre	ed									
bit 5-2	Unimplemen	ted: Read as 'd)'									
bit 1	SPITBF: SPI	k Transmit Buffe	er Full Status	bit								
		not yet started;		full								
		started; SPIxTX		writes SPIvBLI	E location load	ing SPIvTXB						
		Automatically set in hardware when CPU writes SPIxBUF location, loading SPIxTXB. Automatically cleared in hardware when SPIx module transfers data from SPIxTXB to SPIxSR.										
bit 0	-	x Receive Buffe										
	1 = Receive o	complete; SPIx	RXB is full									
		s not complete;										
					from SPIxSR to BLIE location) SPIxRXB. reading SPIxRX	(B					
	Automatically			ore reaus or ix		Cauling OF IXRA	.					

REGISTER 18-1: SPIxSTAT: SPIx STATUS AND CONTROL REGISTER

R-0 HSC	R-0 HSC	U-0	U-0	U-0	R/C-0 HS	R-0 HSC	R-0 HSC			
ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT	ADD10			
bit 15							bit 8			
R/C-0 HS	R/C-0 HS	R-0 HSC	R/C-0 HSC	R/C-0 HSC	R-0 HSC	R-0 HSC	R-0 HSC			
IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF			
bit 7							bit 0			
Legend:		U = Unimpler	nented bit rea	ad as '0'						
R = Readable										
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown			
bit 15	ACKSTAT: Ac (when operation 1 = NACK rec 0 = ACK recein Hardware set	ng as I ² C mas reived from sla ived from slave	ter, applicable ve e		nsmit operation)				
bit 14				-	ster, applicable	to master trans	smit operation)			
	 1 = Master transmit is in progress (8 bits + ACK) 0 = Master transmit is not in progress Hardware set at beginning of master transmission. Hardware clear at end of slave Acknowledge. 									
bit 13-11	Unimplemented: Read as '0'									
bit 10	BCL: Master	Bus Collision [Detect bit							
	1 = A bus coll 0 = No collisio Hardware set	on		ing a master o	peration					
bit 9	GCSTAT: Ger	neral Call Statu	ıs bit							
	0 = General c	all address wa all address wa when address	s not received		ss. Hardware c	lear at Stop det	ection.			
bit 8	ADD10: 10-Bi	it Address Stat	us bit							
		ress was not r	natched	ched 10-bit ad	dress. Hardwai	re clear at Stop	detection.			
bit 7	IWCOL: Write	Collision Dete	ect bit							
	0 = No collisio	on	-		ause the I ² C mo usy (cleared by	-				
bit 6	I2COV: Recei									
	1 = A byte wa 0 = No overflo	s received whi	le the I2CxRC	-	till holding the j	-				
bit 5	D_A: Data/Ad				(,	· · · · · · · · · · · · · · · · · · ·				
	1 = Indicates 1 0 = Indicates 1	that the last by that the last by	rte received w rte received w	as data as device add	ress by reception of	slave byte.				
bit 4	P: Stop bit									
	 P: Stop bit 1 = Indicates that a Stop bit has been detected last 0 = Stop bit was not detected last Hardware set or clear when Start, Repeated Start or Stop detected. 									

REGISTER 19-2: I2CxSTAT: I2Cx STATUS REGISTER

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
ADRC	_	_			SAMC<4:0>	1)				
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
			ADCS	<7:0> ⁽²⁾						
bit 7							bit (
Legend:										
R = Readable	e bit	W = Writable b	it	U = Unimpler	mented bit, rea	ad as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown			
bit 14-13	0 = Clock der	rnal RC clock rived from syster nted: Read as 'o								
bit 14-13	Unimplemen	ited: Read as '0	3							
bit 12-8	SAMC<4:0>:	Auto Sample Ti	me bits ⁽¹⁾							
	11111 = 31	Tad								
	•									
	• 00001 = 1 TA	AD.								
	00000 = 0 TA	AD								
bit 7-0	ADCS<7:0>: ADC Conversion Clock Select bits ⁽²⁾									
	11111111 = •	Reserved								
	•									
	•									
	• 01000000 = Reserved 00111111 = Tcy · (ADCS<7:0> + 1) = 64 · Tcy = TAD									
			:0> + 1) = 64	· TCY = TAD						
			:0> + 1) = 64	• Tcy = Tad						
			:0> + 1) = 64	• • Tcy = Tad						
			:0> + 1) = 64	• • Tcy = Tad						
	00111111 = • • • 00000010 =		:0> + 1) = 3	· Tcy = Tad						

2: This bit is not used if ADxCON3<ADRC> = 1.

25.2 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for all PIC MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

25.3 MPLAB C18 and MPLAB C30 C Compilers

The MPLAB C18 and MPLAB C30 Code Development Systems are complete ANSI C compilers for Microchip's PIC18 and PIC24 families of microcontrollers and the dsPIC30 and dsPIC33 family of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use not found with other compilers.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

25.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

25.5 MPLAB ASM30 Assembler, Linker and Librarian

MPLAB ASM30 Assembler produces relocatable machine code from symbolic assembly language for dsPIC30F devices. MPLAB C30 C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire dsPIC30F instruction set
- · Support for fixed-point and floating-point data
- · Command line interface
- Rich directive set
- Flexible macro language
- · MPLAB IDE compatibility

25.6 MPLAB SIM Software Simulator

The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC[®] DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C18 and MPLAB C30 C Compilers, and the MPASM and MPLAB ASM30 Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

25.7 MPLAB ICE 2000 High-Performance In-Circuit Emulator

The MPLAB ICE 2000 In-Circuit Emulator is intended to provide the product development engineer with a complete microcontroller design tool set for PIC microcontrollers. Software control of the MPLAB ICE 2000 In-Circuit Emulator is advanced by the MPLAB Integrated Development Environment, which allows editing, building, downloading and source debugging from a single environment.

The MPLAB ICE 2000 is a full-featured emulator system with enhanced trace, trigger and data monitoring features. Interchangeable processor modules allow the system to be easily reconfigured for emulation of different processors. The architecture of the MPLAB ICE 2000 In-Circuit Emulator allows expansion to support new PIC microcontrollers.

The MPLAB ICE 2000 In-Circuit Emulator system has been designed as a real-time emulation system with advanced features that are typically found on more expensive development tools. The PC platform and Microsoft[®] Windows[®] 32-bit operating system were chosen to best make these features available in a simple, unified application.

25.8 MPLAB REAL ICE In-Circuit Emulator System

MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs PIC[®] Flash MCUs and dsPIC[®] Flash DSCs with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit.

The MPLAB REAL ICE probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with the popular MPLAB ICD 2 system (RJ11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

MPLAB REAL ICE is field upgradeable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added, such as software breakpoints and assembly code trace. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, real-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables.

25.9 MPLAB ICD 2 In-Circuit Debugger

Microchip's In-Circuit Debugger, MPLAB ICD 2, is a powerful, low-cost, run-time development tool, connecting to the host PC via an RS-232 or high-speed USB interface. This tool is based on the Flash PIC MCUs and can be used to develop for these and other PIC MCUs and dsPIC DSCs. The MPLAB ICD 2 utilizes the in-circuit debugging capability built into the Flash devices. This feature, along with Microchip's In-Circuit Serial Programming[™] (ICSP[™]) protocol, offers costeffective, in-circuit Flash debugging from the graphical user interface of the MPLAB Integrated Development Environment. This enables a designer to develop and debug source code by setting breakpoints, single stepping and watching variables, and CPU status and peripheral registers. Running at full speed enables testing hardware and applications in real time. MPLAB ICD 2 also serves as a development programmer for selected PIC devices.

25.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an SD/MMC card for file storage and secure data applications.

DC CHARACT	ERISTICS		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial								
Parameter No.	Typical ⁽¹⁾	Мах	Units	Conditions							
Idle Current (II	Idle Current (IIDLE): Core OFF Clock ON Base Current ⁽²⁾										
DC40d	3	25	mA	-40°C							
DC40a	3	25	mA	+25°C	3.3V	10 MIPS					
DC40b	3	25	mA	+85°C	5.5V						
DC41d	4	25	mA	-40°C							
DC41a	5	25	mA	+25°C	3.3V	16 MIPS					
DC41b	6	25	mA	+85°C							
DC42d	8	25	mA	-40°C							
DC42a	9	25	mA	+25°C	3.3V	20 MIPS					
DC42b	10	25	mA	+85°C							
DC43a	15	25	mA	+25°C							
DC43d	15	25	mA	-40°C	3.3V	30 MIPS					
DC43b	15	25	mA	+85°C	7						
DC44d	16	25	mA	-40°C		1					
DC44a	16	25	mA	+25°C	3.3V	40 MIPS					
DC44b	16	25	mA	+85°C	7						

TABLE 26-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated.

2: Base IIDLE current is measured with core off, clock on and all modules turned off. Peripheral Module Disable SFR registers are zeroed. All I/O pins are configured as inputs and pulled to Vss.

TABLE 26-10: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial						
Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions		
-	Vol	Output Low Voltage							
DO10		I/O ports	_	—	0.4	V	IOL = 2mA, VDD = 3.3V		
DO16		OSC2/CLKO	—	—	0.4	V	IOL = 2mA, VDD = 3.3V		
	Voн	Output High Voltage							
DO20		I/O ports	2.40	—	—	V	Iон = -2.3 mA, Vdd = 3.3V		
DO26		OSC2/CLKO	2.41	_	—	V	Iон = -1.3 mA, Vdd = 3.3V		

TABLE 26-11: ELECTRICAL CHARACTERISTICS: BOR

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param No.	Symbol	Characteristic		Min ⁽¹⁾	Тур	Max ⁽¹⁾	Units	Conditions
BO10	VBOR	BOR Event on VDD transition high-to-low BOR event is tied to VDD core voltage decrease		2.40	_	2.55	V	_

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

TABLE 26-36: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)

АС СНА	ARACTER	ISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
Param No.	Symbol	Charac	teristic	Min ⁽¹⁾	Max	Units	Conditions	
IM10	TLO:SCL	Clock Low Time	100 kHz mode	Tcy/2 (BRG + 1)	_	μs		
			400 kHz mode	Tcy/2 (BRG + 1)		μs	_	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μs		
IM11 THI:SC	THI:SCL	Clock High Time	100 kHz mode	Tcy/2 (BRG + 1)	_	μs		
			400 kHz mode	Tcy/2 (BRG + 1)	_	μs	_	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μs	_	
IM20	TF:SCL	SDAx and SCLx Fall Time	100 kHz mode		300	ns	CB is specified to be from 10 to 400 pF	
			400 kHz mode	20 + 0.1 Св	300	ns		
			1 MHz mode ⁽²⁾		100	ns		
IM21	TR:SCL	SDAx and SCLx Rise Time	100 kHz mode		1000	ns	CB is specified to be	
			400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF	
			1 MHz mode ⁽²⁾		300	ns		
IM25 TSU:DA	TSU:DAT	Data Input Setup Time	100 kHz mode	250	_	ns		
			400 kHz mode	100	_	ns		
			1 MHz mode ⁽²⁾	40	_	ns		
IM26	THD:DAT	Data Input Hold Time	100 kHz mode	0	_	μs	_	
			400 kHz mode	0	0.9	μs		
			1 MHz mode ⁽²⁾	0.2	_	μs		
IM30	Tsu:sta	Start Condition Setup Time	100 kHz mode	Tcy/2 (BRG + 1)	_	μs	Only relevant for Repeated Start condition	
			400 kHz mode	Tcy/2 (BRG + 1)	_	μs		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μs		
IM31	Thd:sta	Start Condition Hold Time	100 kHz mode	Tcy/2 (BRG + 1)	—	μs	After this period the first clock pulse is generated	
			400 kHz mode	Tcy/2 (BRG + 1)	—	μs		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μs		
IM33	Tsu:sto	Stop Condition Setup Time	100 kHz mode	Tcy/2 (BRG + 1)	—	μs	_	
			400 kHz mode	Tcy/2 (BRG + 1)	—	μs		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μs		
IM34 THD:ST	THD:STO	Stop Condition Hold Time	100 kHz mode	Tcy/2 (BRG + 1)	—	ns	_	
			400 kHz mode	Tcy/2 (BRG + 1)	—	ns		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	ns		
IM40	TAA:SCL	Output Valid From Clock	100 kHz mode		3500	μs	_	
			400 kHz mode	—	1000	μs	—	
			1 MHz mode ⁽²⁾	_	400	μs	_	
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μs	Time the bus must be	
			400 kHz mode	1.3	—	μs	free before a new	
			1 MHz mode ⁽²⁾	0.5	—	μs	transmission can start	
IM50	Св	Bus Capacitive L	oading	—	400	pF	—	

Note 1: BRG is the value of the I²C Baud Rate Generator. Refer to Section 19. "Inter-Integrated Circuit™ (I²C™)" (DS70195) in the "dsPIC33F Family Reference Manual".

2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

Section Name	Update Description
Section 21.0 "Enhanced CAN (ECAN™) Module"	Changed bit 11 in the ECAN Control Register 1 (CiCTRL1) to Reserved (see Register 21-1).
	Added the ECAN Filter 15-8 Mask Selection (CiFMSKSEL2) register (see Register 21-19).
Section 22.0 "10-Bit/12-Bit Analog-to- Digital Converter (ADC)"	Replaced the ADC Module Block Diagram (see Figure 22-1) and removed Figure 21-2.
Section 23.0 "Special Features"	Added Note 2 to the Device Configuration Register Map (see Table 23-1).
Section 26.0 "Electrical Characteristics"	Updated Typical values for Thermal Packaging Characteristics (see Table 26-3).
	Updated Min and Max values for parameter DC12 (RAM Data Retention Voltage) and added Note 4 (see Table 26-4).
	Updated Power-Down Current Max values for parameters DC60b and DC60c (see Table 26-7).
	Updated Characteristics for I/O Pin Input Specifications (see Table 26-9).
	Updated Program Memory values for parameters 136, 137 and 138 (renamed to 136a, 137a and 138a), added parameters 136b, 137b and 138b, and added Note 2 (see Table 26-12).
	Added parameter OS42 (GM) to the External Clock Timing Requirements (see Table 26-16).
	Updated Watchdog Timer Time-out Period parameter SY20 (see Table 26-21).

TABLE A-2: MAJOR SECTION UPDATES (CONTINUED)