

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Details	
Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	69
Program Memory Size	64KB (64K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 18x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64mc508t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

High-Performance, 16-Bit Digital Signal Controllers

Operating Range:

- Up to 40 MIPS operation (at 3.0-3.6V):
 - Industrial temperature range (-40°C to +85°C)

High-Performance DSC CPU:

- · Modified Harvard architecture
- C compiler optimized instruction set
- · 16-bit wide data path
- 24-bit wide instructions
- Linear program memory addressing up to 4M instruction words
- · Linear data memory addressing up to 64 Kbytes
- 83 base instructions: mostly 1 word/1 cycle
- Two 40-bit accumulators:
 - With rounding and saturation options
- · Flexible and powerful addressing modes:
 - Indirect, Modulo and Bit-Reversed
- Software stack
- 16 x 16 fractional/integer multiply operations
- · 32/16 and 16/16 divide operations
- · Single-cycle multiply and accumulate:
- Accumulator write back for DSP operations
- Dual data fetch
- Up to ±16-bit shifts for up to 40-bit data

Direct Memory Access (DMA):

- 8-channel hardware DMA
- 2 Kbytes dual ported DMA buffer area (DMA RAM) to store data transferred via DMA:
 - Allows data transfer between RAM and a peripheral while CPU is executing code (no cycle stealing)
- Most peripherals support DMA

Interrupt Controller:

- 5-cycle latency
- · Up to 67 available interrupt sources
- · Up to five external interrupts
- · Seven programmable priority levels
- · Five processor exceptions

Digital I/O:

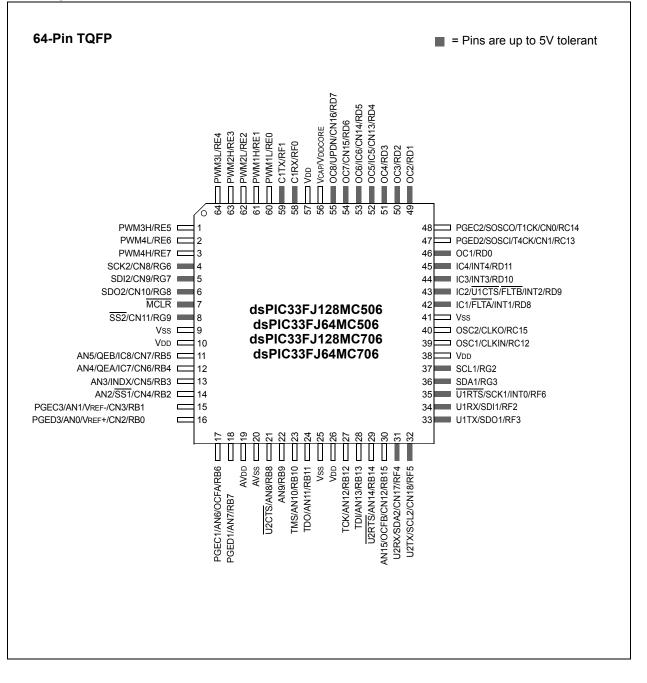
- · Up to 85 programmable digital I/O pins
- · Wake-up/Interrupt-on-Change on up to 24 pins
- · Output pins can drive from 3.0V to 3.6V
- All digital input pins are 5V tolerant
- 4 mA sink on all I/O pins

On-Chip Flash and SRAM:

- · Flash program memory, up to 256 Kbytes
- Data SRAM, up to 30 Kbytes (includes 2 Kbytes of DMA RAM)

System Management:

- Flexible clock options:
 - External, crystal, resonator, internal RC
 - Fully integrated PLL
 - Extremely low jitter PLL
- Power-up Timer
- Oscillator Start-up Timer/Stabilizer
- · Watchdog Timer with its own RC oscillator
- · Fail-Safe Clock Monitor
- · Reset by multiple sources


Power Management:

- On-chip 2.5V voltage regulator
- · Switch between clock sources in real time
- · Idle, Sleep and Doze modes with fast wake-up

Timers/Capture/Compare/PWM:

- Timer/Counters, up to nine 16-bit timers:
 - Can pair up to make four 32-bit timers
 - 1 timer runs as Real-Time Clock with external 32.768 kHz oscillator
 - Programmable prescaler
- Input Capture (up to eight channels):
 - Capture on up, down or both edges
 - 16-bit capture input functions
 - 4-deep FIFO on each capture
- Output Compare (up to eight channels):
 - Single or Dual 16-Bit Compare mode
 - 16-bit Glitchless PWM mode

Pin Diagrams

2.5 ICSP Pins

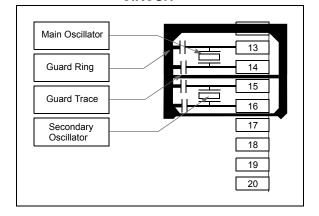
The PGECx and PGEDx pins are used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

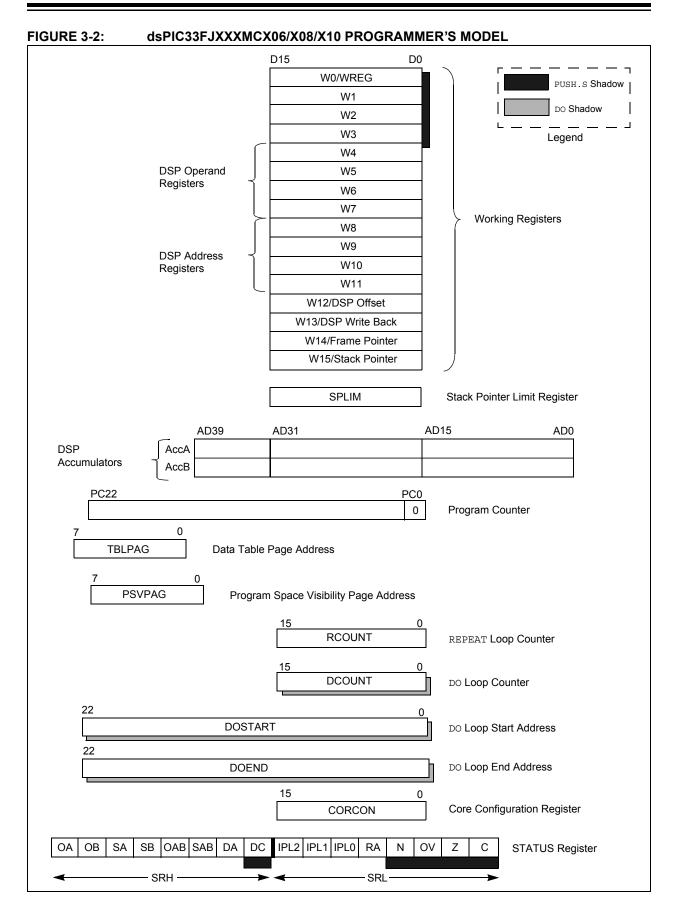
Pull-up resistors, series diodes, and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements.

Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB[®] ICD 2, MPLAB ICD 3 or MPLAB REAL ICE[™].

For more information on ICD 2, ICD 3 and REAL ICE connection requirements, refer to the following documents that are available on the Microchip website.

- *"MPLAB[®] ICD 2 In-Circuit Debugger User's Guide"* DS51331
- *"Using MPLAB[®] ICD 2"* (poster) DS51265
- "MPLAB[®] ICD 2 Design Advisory" DS51566
- "Using MPLAB[®] ICD 3 In-Circuit Debugger" (poster) DS51765
- "MPLAB[®] ICD 3 Design Advisory" DS51764
- "MPLAB[®] REAL ICE™ In-Circuit Emulator User's Guide" DS51616
- "Using MPLAB[®] REAL ICE™" (poster) DS51749


2.6 External Oscillator Pins


Many DSCs have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to **Section 9.0 "Oscillator Configuration"** for details).

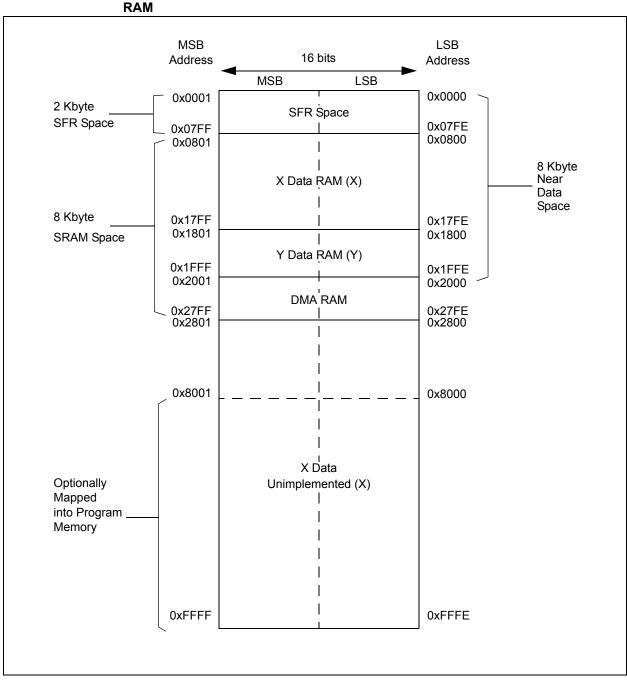

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is shown in Figure 2-3.

FIGURE 2-3: SU OF

SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT

FIGURE 4-3: DATA MEMORY MAP FOR dsPIC33FJXXXMCX06/X08/X10 DEVICES WITH 8 KBS RAM

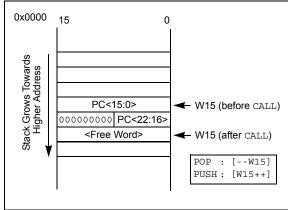
TABLE 4-5: INTERRUPT CONTROLLER REGISTER MAP

IADLE 4	4-J.		.NNUF I		NOLLLI	KEGISI		AF										
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	0080	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	_	0000
INTCON2	0082	ALTIVT	DISI	_	_	_	_	_	_	—	_	_	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	0000
IFS0	0084	—	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INT0IF	0000
IFS1	0086	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	IC8IF	IC7IF	AD2IF	INT1IF	CNIF	_	MI2C1IF	SI2C1IF	0000
IFS2	0088	T6IF	DMA4IF	_	OC8IF	OC7IF	OC6IF	OC5IF	IC6IF	IC5IF	IC4IF	IC3IF	DMA3IF	C1IF	C1RXIF	SPI2IF	SPI2EIF	0000
IFS3	008A	FLTAIF	—	DMA5IF	_	_	QEIIF	PWMIF	C2IF	C2RXIF	INT4IF	INT3IF	T9IF	T8IF	MI2C2IF	SI2C2IF	T7IF	0000
IFS4	008C	—	—	_	_	_	_	_	—	C2TXIF	C1TXIF	DMA7IF	DMA6IF	—	U2EIF	U1EIF	FLTBIF	0000
IEC0	0094	—	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0096	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	IC8IE	IC7IE	AD2IE	INT1IE	CNIE	_	MI2C1IE	SI2C1IE	0000
IEC2	0098	T6IE	DMA4IE	_	OC8IE	OC7IE	OC6IE	OC5IE	IC6IE	IC5IE	IC4IE	IC3IE	DMA3IE	C1IE	C1RXIE	SPI2IE	SPI2EIE	0000
IEC3	009A	FLTAIE	_	DMA5IE	_	_	QEIIE	PWMIE	C2IE	C2RXIE	INT4IE	INT3IE	T9IE	T8IE	MI2C2IE	SI2C2IE	T7IE	0000
IEC4	009C	_	_	_	_	_	_	_	_	C2TXIE	C1TXIE	DMA7IE	DMA6IE	_	U2EIE	U1EIE	FLTBIE	0000
IPC0	00A4	_		T1IP<2:0>	>	_	(OC1IP<2:0)>	_		IC1IP<2:0>		_	INT0IP<2:0>		•	4444
IPC1	00A6	_		T2IP<2:0>	>	—	(OC2IP<2:0)>	—		IC2IP<2:0>		—	DMA0IP<2:0>		>	4444
IPC2	00A8		J	J1RXIP<2:	0>	_	— SPI1IP<2:0> — SPI		SPI1EIP<2:0)>	—		T3IP<2:0>		4444			
IPC3	00AA				—	_	D	MA1IP<2:	0>	—	AD1IP<2:0>		—	U1TXIP<2:0>		>	0444	
IPC4	00AC			CNIP<2:02	>	_		_	—	—	MI2C1IP<2:0>		—	SI2C1IP<2:0>		>	4044	
IPC5	00AE			IC8IP<2:0	>	_	IC7IP<2:0>		—		AD2IP<2:0>	>	—	I	NT1IP<2:0>	•	4444	
IPC6	00B0			T4IP<2:0>	>	_	(OC4IP<2:()>	OC3IP<2:0>		—	D	MA2IP<2:0	>	4444		
IPC7	00B2		ι	J2TXIP<2:()>	_	L	J2RXIP<2:	0>	-		INT2IP<2:0	>	—		T5IP<2:0>		4444
IPC8	00B4			C1IP<2:0>	>	_	C	C1RXIP<2:	0>	-		SPI2IP<2:0	>	—	SI	PI2EIP<2:0	>	4444
IPC9	00B6			IC5IP<2:0	>	_		IC4IP<2:0	>	-		IC3IP<2:0>		—	D	MA3IP<2:0	>	4444
IPC10	00B8			OC7IP<2:0	>	_	(OC6IP<2:0)>	-		OC5IP<2:0	>	—	-	C6IP<2:0>		4444
IPC11	00BA	—		T6IP<2:0>	>	—	D	MA4IP<2:	0>	—	—	—	—	—	C)C8IP<2:0>		4404
IPC12	00BC	—		T8IP<2:0>	>	—	N	112C21P<2	:0>	—		SI2C2IP<2:0	>	—		T7IP<2:0>		4444
IPC13	00BE	—	C	2RXIP<2:	0>	_	I	NT4IP<2:0)>	_		INT3IP<2:0	>	_		T9IP<2:0>		4444
IPC14	00C0	—	_	_	_	_		QEIIP<2:0	>	_		PWMIP<2:0	>	—		C2IP<2:0>		0444
IPC15	00C2	—	I	FLTAIP<2:()>	_		—	_	—		DMA5IP<2:0	>	—	—	—		4040
IPC16	00C4	_		—	—	—		U2EIP<2:0)>	—		U1EIP<2:0>	>	—	F	LTBIP<2:0	>	0444
IPC17	00C6	—	(C2TXIP<2:)>	—	C	C1TXIP<2:	0>	—		DMA7IP<2:0	>	—	D	MA6IP<2:0	>	4444
INTTREG	00E0	—	—	—	_		ILR<	3:0>		—			VE	CNUM<6:0>				0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.2.7 SOFTWARE STACK

In addition to its use as a working register, the W15 register in the dsPIC33FJXXXMCX06/X08/X10 devices is also used as a software Stack Pointer. The Stack Pointer always points to the first available free word and grows from lower to higher addresses. It pre-decrements for stack pops and post-increments for stack pushes, as shown in Figure 4-6. For a PC push during any CALL instruction, the MSb of the PC is zero-extended before the push, ensuring that the MSb is always clear.


Note:	A PC push during exception processing
	concatenates the SRL register to the MSb
	of the PC prior to the push.

The Stack Pointer Limit register (SPLIM) associated with the Stack Pointer sets an upper address boundary for the stack. SPLIM is uninitialized at Reset. As is the case for the Stack Pointer, SPLIM<0> is forced to '0' because all stack operations must be word-aligned. Whenever an EA is generated using W15 as a source or destination pointer, the resulting address is compared with the value in SPLIM. If the contents of the Stack Pointer (W15) and the SPLIM register are equal and a push operation is performed, a stack error trap will not occur. The stack error trap will occur on a subsequent push operation. Thus, for example, if it is desirable to cause a stack error trap when the stack grows beyond address 0x2000 in RAM, initialize the SPLIM with the value 0x1FFE.

Similarly, a Stack Pointer underflow (stack error) trap is generated when the Stack Pointer address is found to be less than 0x0800. This prevents the stack from interfering with the Special Function Register (SFR) space.

A write to the SPLIM register should not be immediately followed by an indirect read operation using W15.

FIGURE 4-6: CALL STACK FRAME

4.2.8 DATA RAM PROTECTION FEATURE

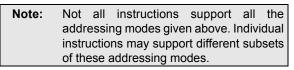
The dsPIC33FJXXXMCX06/X08/X10 devices supports Data RAM protection features which enable segments of RAM to be protected when used in conjunction with Boot and Secure Code Segment Security. BSRAM (Secure RAM segment for BS) is accessible only from the Boot Segment Flash code when enabled. SSRAM (Secure RAM segment for RAM) is accessible only from the Secure Segment Flash code when enabled. See Table 4-1 for an overview of the BSRAM and SSRAM SFRs.

4.3 Instruction Addressing Modes

The addressing modes in Table 4-36 form the basis of the addressing modes optimized to support the specific features of individual instructions. The addressing modes provided in the MAC class of instructions are somewhat different from those in the other instruction types.

4.3.1 FILE REGISTER INSTRUCTIONS

Most file register instructions use a 13-bit address field (f) to directly address data present in the first 8192 bytes of data memory (Near Data Space). Most file register instructions employ a working register, W0, which is denoted as WREG in these instructions. The destination is typically either the same file register or WREG (with the exception of the MUL instruction), which writes the result to a register or register pair. The MOV instruction allows additional flexibility and can access the entire data space.


4.3.2 MCU INSTRUCTIONS

The 3-operand MCU instructions are of the following form:

Operand 3 = Operand 1 < function> Operand 2

where Operand 1 is always a working register (i.e., the addressing mode can only be register direct) which is referred to as Wb. Operand 2 can be a W register fetched from data memory or a 5-bit literal. The result location can be either a W register or a data memory location. The following addressing modes are supported by MCU instructions:

- Register Direct
- · Register Indirect
- Register Indirect Post-Modified
- Register Indirect Pre-Modified
- 5-bit or 10-bit Literal

can operate on any W register pointer. However, it is not advisable to use W14 or W15 for Modulo Addressing, since these two registers are used as the Stack Frame Pointer and Stack Pointer, respectively.

In general, any particular circular buffer can only be configured to operate in one direction, as there are certain restrictions on the buffer start address (for incrementing buffers) or end address (for decrementing buffers), based upon the direction of the buffer.

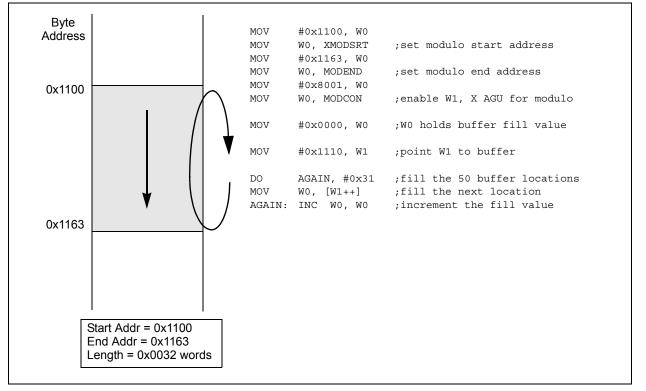
The only exception to the usage restrictions is for buffers which have a power-of-2 length. As these buffers satisfy the start and end address criteria, they may operate in a bidirectional mode (i.e., address boundary checks will be performed on both the lower and upper address boundaries).

4.4.1 START AND END ADDRESS

The Modulo Addressing scheme requires that a starting and ending address be specified and loaded into the 16-bit Modulo Buffer Address registers: XMODSRT, XMODEND, YMODSRT and YMODEND (see Table 4-1).

Note:	Y space Modulo Addressing EA calcula-
	tions assume word sized data (LSb of
	every EA is always clear).

The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32K words (64 Kbytes).


4.4.2 W ADDRESS REGISTER SELECTION

The Modulo and Bit-Reversed Addressing Control register, MODCON<15:0>, contains enable flags as well as a W register field to specify the W Address registers. The XWM and YWM fields select which registers will operate with Modulo Addressing. If XWM = 15, X RAGU and X WAGU Modulo Addressing is disabled. Similarly, if YWM = 15, Y AGU Modulo Addressing is disabled.

The X Address Space Pointer W register (XWM) to which Modulo Addressing is to be applied is stored in MODCON<3:0> (see Table 4-1). Modulo Addressing is enabled for X data space when XWM is set to any value other than '15' and the XMODEN bit is set at MODCON<15>.

The Y Address Space Pointer W register (YWM) to which Modulo Addressing is to be applied is stored in MODCON<7:4>. Modulo Addressing is enabled for Y data space when YWM is set to any value other than '15' and the YMODEN bit is set at MODCON<14>.

FIGURE 4-7: MODULO ADDRESSING OPERATION EXAMPLE

REGISTER 7-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2 (CONTINUED)

bit 2	C1RXIF: ECAN1 Receive Data Ready Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 1	SPI2IF: SPI2 Event Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 0	SPI2EIF: SPI2 Error Interrupt Flag Status bit

- SPI2EIF: SPI2 Error Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred

REGISTER 7-8: IFS3: INTERRUPT FLAG STATUS REGISTER 3 (CONTINUED)

- bit 1 SI2C2IF: I2C2 Slave Events Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 0 T7IF: Timer7 Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE				
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0				
IC8IE	IC7IE	AD2IE	INT1IE	CNIE	_	MI2C1IE	SI2C1IE				
bit 7						_	bit 0				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, read	d as '0'					
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15	U2TXIE: UAF	RT2 Transmitte	r Interrupt Ena	able bit							
		request enable									
bit 14	-	request not ena		la hit							
DIL 14	U2RXIE: UART2 Receiver Interrupt Enable bit 1 = Interrupt request enabled										
		request not ena									
bit 13	INT2IE: External Interrupt 2 Enable bit										
	 1 = Interrupt request enabled 0 = Interrupt request not enabled 										
bit 12	T5IE: Timer5 Interrupt Enable bit										
	1 = Interrupt request enabled										
	0 = Interrupt request not enabled										
bit 11	T4IE: Timer4 Interrupt Enable bit										
	 1 = Interrupt request enabled 0 = Interrupt request not enabled 										
bit 10	OC4IE: Output Compare Channel 4 Interrupt Enable bit										
	 1 = Interrupt request enabled 0 = Interrupt request not enabled 										
bit 9	-	•		upt Enable bit							
	OC3IE: Output Compare Channel 3 Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled										
bit 8	-	•		Complete Inter	rupt Enable bit						
	 1 = Interrupt request enabled 0 = Interrupt request not enabled 										
bit 7	IC8IE: Input (Capture Chann	el 8 Interrupt I	Enable bit							
	 1 = Interrupt request enabled 0 = Interrupt request not enabled 										
bit 6	-	•		Enchlo hit							
	IC7IE: Input Capture Channel 7 Interrupt Enable bit 1 = Interrupt request enabled										
	0 = Interrupt request not enabled										
bit 5		2 Conversion C	-	rupt Enable bit	t						
		request enable									
bit 4	•	request not ena rnal Interrupt 1									
		mai interiupt T									
	1 = Interrupt i	request enable	d								

REGISTER 7-22: IPC7: INTERRUPT PRIORITY CONTROL REGISTER 7

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
_		U2TXIP<2:0>		_		U2RXIP<2:0>						
bit 15							bit 8					
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
		INT2IP<2:0>		_		T5IP<2:0>	L :4					
bit 7							bit					
Legend:												
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown					
bit 15	Unimpleme	ented: Read as ')'									
bit 14-12)>: UART2 Trans										
	111 = Interr	upt is priority 7 (I	nighest priorit	y interrupt)								
	•	•										
	•	•										
		001 = Interrupt is priority 1 000 = Interrupt source is disabled										
bit 11		-										
bit 10-8	Unimplemented: Read as '0' U2RXIP<2:0>: UART2 Receiver Interrupt Priority bits											
	111 = Interrupt is priority 7 (highest priority interrupt)											
	•											
	•											
	• 001 = Interr	• 001 = Interrupt is priority 1										
	000 = Interrupt source is disabled											
bit 7	Unimpleme	nted: Read as 'o)'									
bit 6-4	INT2IP<2:0	>: External Interr	upt 2 Priority	bits								
	111 = Interr	111 = Interrupt is priority 7 (highest priority interrupt)										
	•											
	•											
	001 = Interrupt is priority 1											
	000 = Interr	upt source is dis	abled									
bit 3	Unimpleme	ented: Read as 'o)'									
bit 2-0	T5IP<2:0>:	Timer5 Interrupt	Priority bits									
	111 = Interr	upt is priority 7 (I	nighest priorit	y interrupt)								
	•											
	•											
		upt is priority 1										
	a a a lusta un	upt source is dis										

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
_		T6IP<2:0>		—		DMA4IP<2:0>					
bit 15							bit				
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0				
_	_	_	_	_		OC8IP<2:0>					
bit 7							bit				
Legend:											
R = Readab		W = Writable	bit	-	nented bit, read						
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own				
bit 15	-	nted: Read as '									
bit 14-12		T6IP<2:0>: Timer6 Interrupt Priority bits									
	<pre>111 = Interrupt is priority 7 (highest priority interrupt)</pre>										
	•										
	001 = Interr	001 = Interrupt is priority 1									
		upt source is dis	abled								
bit 11	Unimpleme	nted: Read as 'o	י)								
	DMA4IP<2:0>: DMA Channel 4 Data Transfer Complete Interrupt Priority bits										
bit 10-8		111 = Interrupt is priority 7 (highest priority interrupt)									
bit 10-8				•	Interrupt Priori						
dit 10-8				•	Interrupt Priori						
dit 10-8				•	Interrupt Priori						
dit 10-8	111 = Intern • •	upt is priority 7 (l		•	Interrupt Priori	ly bits					
dit 10-8	111 = Intern • • • • • •	upt is priority 7 (l upt is priority 1	nighest priority	•	Interrupt Priori						
	111 = Intern • • • • • • • • • • • • • • • • • • •	upt is priority 7 (l upt is priority 1 upt source is dis	nighest priority abled	•	Interrupt Priori						
bit 7-3	111 = Intern • • • • • • • • • • • • • • • • • • •	upt is priority 7 (l upt is priority 1 upt source is dis nted: Read as 'd	nighest priority abled	y interrupt)							
bit 7-3	111 = Intern • • 001 = Intern 000 = Intern Unimpleme OC8IP<2:0>	upt is priority 7 (I upt is priority 1 upt source is dis nted: Read as 'o •: Output Compa	abled o [']	y interrupt) Interrupt Prior							
bit 7-3	111 = Intern • • 001 = Intern 000 = Intern Unimpleme OC8IP<2:0>	upt is priority 7 (l upt is priority 1 upt source is dis nted: Read as 'd	abled o [']	y interrupt) Interrupt Prior		LY DILS					
bit 7-3	111 = Intern • • 001 = Intern 000 = Intern Unimpleme OC8IP<2:0>	upt is priority 7 (I upt is priority 1 upt source is dis nted: Read as 'o •: Output Compa	abled o [']	y interrupt) Interrupt Prior		LY DILS					
bit 7-3	111 = Intern 001 = Intern 000 = Intern Unimpleme OC8IP<2:0> 111 = Intern	upt is priority 7 (l upt is priority 1 upt source is dis nted: Read as 'd •: Output Compa upt is priority 7 (l	abled o [']	y interrupt) Interrupt Prior		LY DILS					
bit 10-8 bit 7-3 bit 2-0	<pre>111 = Intern</pre>	upt is priority 7 (I upt is priority 1 upt source is dis nted: Read as 'o •: Output Compa	nighest priority abled o' ire Channel 8 nighest priority	y interrupt) Interrupt Prior		LY DILS					

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER⁽¹⁾ (CONTINUED)

bit 1	LPOSCEN: Secondary (LP) Oscillator Enable bit
	 1 = Enable secondary oscillator
	0 = Disable secondary oscillator

bit 0 OSWEN: Oscillator Switch Enable bit

- 1 = Request oscillator switch to selection specified by NOSC<2:0> bits
- 0 = Oscillator switch is complete
- **Note 1:** Writes to this register require an unlock sequence. Refer to **Section 7. "Oscillator"** (DS70186) in the *"dsPIC33F Family Reference Manual"* (available from the Microchip website) for details.
 - 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.

14.0 INPUT CAPTURE

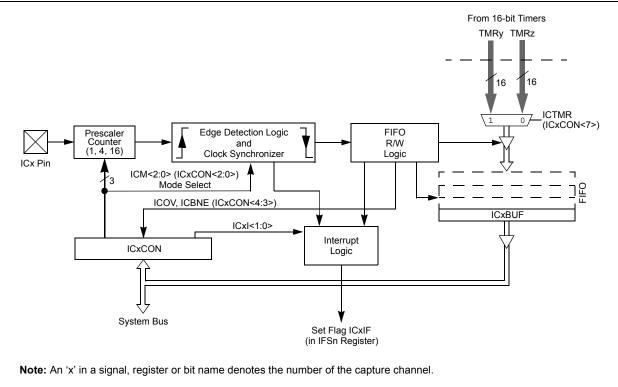
Note: This data sheet summarizes the features of the dsPIC33FJXXXMCX06/X08/X10 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 12. "Input Capture" (DS70198) in the "dsPIC33F Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The input capture module is useful in applications requiring frequency (period) and pulse measurement. The dsPIC33FJXXXMCX06/X08/X10 devices support up to eight input capture channels.

The input capture module captures the 16-bit value of the selected Time Base register when an event occurs at the ICx pin. The events that cause a capture event are listed below in three categories:

- Simple Capture Event modes

 Capture timer value on every falling edge of
 input at ICx pin
 - -Capture timer value on every rising edge of input at ICx pin


- 2. Capture timer value on every edge (rising and falling) of input at ICx pin
- 3. Prescaler Capture Event modes
 - Capture timer value on every 4th rising edge of input at ICx pin
 - -Capture timer value on every 16th rising edge of input at ICx pin

Each input capture channel can select between one of two 16-bit timers (Timer2 or Timer3) for the time base. The selected timer can use either an internal or external clock.

Other operational features include the following:

- Device wake-up from capture pin during CPU Sleep and Idle modes
- Interrupt on input capture event
- · 4-word FIFO buffer for capture values
 - Interrupt optionally generated after 1, 2, 3 or 4 buffer locations are filled
- Input capture can also be used to provide additional sources of external interrupts

Note: Only IC1 and IC2 can trigger a DMA data transfer. If DMA data transfers are required, the FIFO buffer size must be set to '1' (ICI<1:0> = 00).

FIGURE 14-1: INPUT CAPTURE BLOCK DIAGRAM

REGISTER 20-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

bit 5	ADDEN: Address Character Detect bit (bit 8 of received data = 1)
	 1 = Address Detect mode enabled. If 9-bit mode is not selected, this does not take effect 0 = Address Detect mode disabled
bit 4	RIDLE: Receiver Idle bit (read-only)
	1 = Receiver is Idle0 = Receiver is active
bit 3	PERR: Parity Error Status bit (read-only)
	 1 = Parity error has been detected for the current character (character at the top of the receive FIFO) 0 = Parity error has not been detected
bit 2	FERR: Framing Error Status bit (read-only)
	1 = Framing error has been detected for the current character (character at the top of the receive FIFO)
	0 = Framing error has not been detected
bit 1	OERR: Receive Buffer Overrun Error Status bit (read/clear only)
	 1 = Receive buffer has overflowed 0 = Receive buffer has not overflowed. Clearing a previously set OERR bit (1 → 0 transition) will reset the receiver buffer and the UxRSR to the empty state
bit 0	URXDA: Receive Buffer Data Available bit (read-only)
	 1 = Receive buffer has data, at least one more character can be read 0 = Receive buffer is empty

Note 1: Refer to **Section 17. "UART"** (DS70188) in the *"dsPIC33F Family Reference Manual"* for information on enabling the UART module for transmit operation.

REGISTER 21-3: CiVEC: ECAN[™] INTERRUPT CODE REGISTER

U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0			
	—	—			FILHIT<4:()>				
bit 15							bit 8			
U-0	R-1	R-0	R-0	R-0	R-0	R-0	R-0			
				ICODE<6:0>						
bit 7							bit (
Legend:										
R = Readab	le bit	W = Writable b	bit	U = Unimplen	nented bit, re	ad as '0'				
-n = Value a	t POR	R '1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 15-13	Unimplement	ed: Read as 'o	,							
bit 12-8	FILHIT<4:0>:	Filter Hit Numb	er bits							
	10000-11111 01111 = Filte r									
	00001 = Filter 00000 = Filter									
bit 7	Unimplement	ed: Read as 'o	,							
bit 6-0	ICODE<6:0>: Interrupt Flag Code bits									
		11111 = Reser								
		FO almost full i	-							
		eceiver overflov ake-up interrup								
	1000001 = Er									
	1000000 = No	o interrupt								
		11111 = Reser								
		B15 buffer Inter	rupt							
	 0001001 = R	39 buffer interr	upt							
		38 buffer interr								
		RB7 buffer inter								
		RB6 buffer inter RB5 buffer inter								
		RB4 buffer inter								
		RB3 buffer inter								
	0000010 = TF	RB2 buffer inter	rupt							
		RB1 buffer inter								
	$0000000 = \mathbf{IF}$	RB0 Buffer inte	nupt							

DS70287C-page 220

R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
ADON —		ADSIDL ADDMABM		— AD12B		FORM<1:0>	
bit 15							bit 8
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0 HC,HS	R/C-0 HC, HS
	SSRC<2:0>			SIMSAM	ASAM	SAMP	DONE
bit 7							bit C
Legend:		HC = Cleared	by hardware	HS = Set by	hardware		
R = Readabl	le bit	W = Writable	bit	U = Unimple	mented bit, rea	ıd as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown
bit 15	ADON: ADC (1 = ADC mod 0 = ADC is of	lule is operatir					
bit 14	Unimplement	ted: Read as '	0'				
bit 13	ADSIDL: Stop	in Idle Mode	bit				
			eration when de tion in Idle mod		lle mode		
bit 12	ADDMABM:	-					
		ers are written	in the order of c	conversion. Th	e module will p	rovide an addre	ess to the DMA
	0 = DMA buff	ers are written	e as the addres in Scatter/Gath	ss used for the ner mode. The	non-DMA star module will pro	nd-alone buffer ovide a scatter/g	
hit 11	0 = DMA buff to the DM	ers are written IA channel, ba	e as the addres in Scatter/Gath sed on the inde	ss used for the ner mode. The	non-DMA star module will pro	nd-alone buffer	
bit 11	0 = DMA buff to the DM Unimplement	ers are written IA channel, ba ted: Read as '	e as the addres in Scatter/Gath sed on the inde o'	ss used for the her mode. The ex of the analo	non-DMA star module will pro	nd-alone buffer ovide a scatter/g	
bit 11 bit 10	0 = DMA buff to the DM Unimplement AD12B: 10-Bi 1 = 12-bit, 1-	ers are written IA channel, ba ted: Read as ' it or 12-Bit Ope channel ADC o	e as the addres in Scatter/Gath sed on the inde o' eration Mode bi operation	ss used for the her mode. The ex of the analo	non-DMA star module will pro	nd-alone buffer ovide a scatter/g	
	 0 = DMA buff to the DM Unimplement AD12B: 10-Bi 1 = 12-bit, 1- 0 = 10-bit, 4-0 	ers are written IA channel, ba ted: Read as ' it or 12-Bit Ope channel ADC o channel ADC o	e as the addres in Scatter/Gath sed on the inde o' eration Mode bi operation operation	ss used for the her mode. The ex of the analo	non-DMA star module will pro	nd-alone buffer ovide a scatter/g	
bit 10	 0 = DMA buff to the DM Unimplement AD12B: 10-Bit 1 = 12-bit, 1- 0 = 10-bit, 4- FORM<1:0>: FORM<1:0>: For 10-bit ope 11 = Signed fi 10 = Fractiona 01 = Signed fi 00 = Integer (ers are written IA channel, ba ted: Read as ' it or 12-Bit Ope channel ADC o Data Output F ration: ractional (Dour al (Dour = ddo nteger (Dour = Dour = 0000 ration: ractional (Dour al (Dour = ddo nteger (Dour = Dour = 0000	e as the address in Scatter/Gath sed on the inde o' eration Mode bi operation format bits T = sddd dddd dddd dddd T = sddd dddd dddd dddd ddd dddd dddd d	ss used for the her mode. The ex of the analo it d dd00 0000 dddd dddd, v dddd dddd, v dddd 0000 dddd dddd, v dddd dddd, v dddd dddd, v dddd	non-DMA star module will pro- ig input and the o, where $s = .No^{-1}$ where $s = .No^{-1}$ o, where $s = .No^{-1}$	nd-alone buffer ovide a scatter/g e size of the DM IOT.d<9>) T.d<9>)	
bit 10	 0 = DMA buff to the DM Unimplement AD12B: 10-Bit 1 = 12-bit, 1- 0 = 10-bit, 4- FORM<1:0>: For 10-bit ope 11 = Signed fi 10 = Fractiona 01 = Signed ii 00 = Integer (For 12-bit ope 11 = Signed fi 10 = Fractiona 01 = Signed fi 10 = Fractiona 01 = Signed fi 00 = Integer (SSRC<2:0>: 5 	ers are written IA channel, ba ted: Read as ' it or 12-Bit Ope channel ADC of Channel ADC of Data Output F ractional (Dour al (Dour = data nteger (Dour = Dour = 0000 ration: ractional (Dour = data nteger (Dour = Dour = 0000 Sample Clock	e as the address in Scatter/Gath sed on the inde o' eration Mode bio operation format bits T = sddd dddd dd dddd dddd ssss sddd dd ddda dddd dddd dddd	ss used for the her mode. The ex of the analo it d dd00 0000 dddd dddd, v dddd) d dddd 0000 d dddd 0000 dddd dddd, v dddd dddd, v dddd dddd, v dddd dddd, v dddd dddd, v dddd dddd, v dddd dddd, v	non-DMA star module will pro- g input and the , where $s = .NO$ where $s = .NO$, where $s = .NO$ where $s = .NO$	nd-alone buffer ovide a scatter/g e size of the DM IOT.d<9>) T.d<9>) IOT.d<11>) T.d<11>)	
bit 10 bit 9-8	0 = DMA buff to the DM Unimplement AD12B: 10-Bi 1 = 12-bit, 1- 0 = 10-bit, 4-0 FORM<1:0>: For 10-bit ope 11 = Signed fi 10 = Fractiona 01 = Signed fi 10 = Reserv 111 = Interna 110 = Reserv 101 = Reserv 011 = MPWM 010 = GP time 001 = Active fi	ers are written IA channel, ba ted: Read as ' it or 12-Bit Ope channel ADC of channel ADC of Data Output F ration: ractional (Dout = dout = 0000 ration: ractional (Dout = dout = 0000 sample Clock I counter ends ed ed interval ends er (Timer3 for J ransition on IN	e as the address in Scatter/Gath sed on the inde o' eration Mode bio operation format bits T = sddd dddd dddd dddd dd ssss ssdd dddd dddd ddd Source Select sampling and s sampling and s	ss used for the her mode. The ex of the analo it d ddoo 0000 00000) dddd dddd, w dddd) d dddd dddd, w dddd) bits starts conversi for ADC2) con ampling and st	non-DMA star module will pro- ig input and the g input and the however $s = .NO$ where $s = .NO$ where $s = .NO$ on (auto-conver- on apare ends sar arts conversion	nd-alone buffer ovide a scatter/g e size of the DM IOT.d<9>) T.d<9>) T.d<11>) T.d<11>) ert)	/A buffer

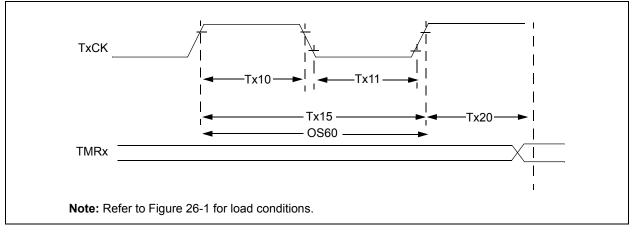
TABLE 26-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

DC CHARACT	ERISTICS		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial						
Parameter No. Typical ⁽¹⁾ Max Units						Conditions			
Power-Down Current (IPD) ⁽²⁾									
DC60d	55	500	μΑ	-40°C					
DC60a	211	500	μΑ	+25°C	3.3V	Base Power-Down Current ^(3,4)			
DC60b	244	500	μΑ	+85°C					
DC61d	8	13	μΑ	-40°C					
DC61a	10	15	μΑ	+25°C	3.3V	Watchdog Timer Current: ΔIWDT ⁽³⁾			
DC61b	12	20	μA	+85°C	1				

Note 1: Data in the Typical column is at 3.3V, 25°C unless otherwise stated.

2: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and pulled to Vss. WDT, etc., are all switched off and VREGS (RCON<8>) = 1.

3: The Δ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.


4: These currents are measured on the device containing the most memory in this family.

DC CHARACT	TERISTICS		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Parameter Typical ⁽¹⁾ Max			Doze Ratio	Units	Conditions			
DC73a	11	35	1:2	mA				
DC73f	11	30	1:64	mA	-40°C	3.3V	40 MIPS	
DC73g	11	30	1:128	mA				
DC70a	42	50	1:2	mA				
DC70f	26	30	1:64	mA	+25°C	3.3V	40 MIPS	
DC70g	25	30	1:128	mA				
DC71a	41	50	1:2	mA				
DC71f	25	30	1:64	mA	+85°C	3.3V	40 MIPS	
DC71g	DC71g 24 30 1:1		1:128	mA				

TABLE 26-8: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)

Note 1: Data in the Typical column is at 3.3V, 25°C unless otherwise stated.

FIGURE 26-5: TIMER1, 2, 3, 4, 5, 6, 7, 8 AND 9 EXTERNAL CLOCK TIMING CHARACTERISTICS

AC CHA	RACTERIST	ard Operating Conditions: 3.0V to 3.6V so otherwise stated) ting temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial							
Param No.	Symbol	Charact		Min	Тур	Max	Units	Conditions	
TA10	ТтхН	TxCK High Time	Synchronous, no prescaler		0.5 Tcy + 20	_	—	ns	Must also meet parameter TA15
			Synchron with prese		10			ns	
			Asynchronous		10	_	_	ns	
TA11	ΤτχL	TxCK Low Time	Synchronous, no prescaler		0.5 TCY + 20	_	—	ns	Must also meet parameter TA15
			Synchronous, with prescaler		10	_	—	ns	
			Asynchronous		10	—		ns	
TA15	ΤτχΡ	TxCK Input Period	out Period Synchrono no prescal		Тсү + 40	_	_	ns	—
			Synchron with prese		Greater of: 20 ns or (Tcy + 40)/N	—	_	—	N = prescale value (1, 8, 64, 256)
		Asynchronous		20	_		ns	—	
OS60	Ft1	SOSC1/T1CK Oscillator Input frequency Range (oscillator enabled by setting bit TCS (T1CON<1>))		nabled	DC	_	50	kHz	—
TA20	TCKEXTMRL	Delay from Externa Edge to Timer Incre	0.5 TCY	_	1.5 TCY	—	—		

TABLE 26-22: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS⁽¹⁾

Note 1: Timer1 is a Type A.