

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	53
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64mc706-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

dsPIC33FJXXXMCX06/X08/X10

TABLE 4-1: CPU CORE REGISTERS MAP(CONTINUED)

					· ·	-	- ,											
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
YMODSRT	004C		YS<15:1> 0											xxxx				
YMODEND	004E		YE<15:1> 1										xxxx					
XBREV	0050	BREN	BREN XB<14:0> x										xxxx					
DISICNT	0052	_	_						Disabl	e Interrupts	Counter R	legister						xxxx
BSRAM	0750	_									RL_BSR	0000						
SSRAM	0752	_	_	_	_	_	_	_	_	_	_	_		—	IW_SSR	IR_SSR	RL_SSR	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-23: ECAN2 REGISTER MAP WHEN C2CTRL1.WIN = 0 OR 1 FOR dsPIC33FJXXXMC708/710 DEVICES

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C2CTRL1	0500	_	_	CSIDL	ABAT	_	RI	EQOP<2:0	>	OPN	/ODE<2:0)>	_	CANCAP	_	_	WIN	0480
C2CTRL2	0502	_	_	_	_	_		—		_	—	_			NCNT<4:0)>		0000
C2VEC	0504	_	_	_		FI	LHIT<4:0>	•	•			•	•	ICODE<6:)>			0000
C2FCTRL	0506	Γ	MABS<2:0	>	—	_	_	—	—	_	—	— FSA<4:0>				0000		
C2FIFO	0508	_	_		•	FBP<5	5:0>	•	•		—	— FNRB<5:0>				0000		
C2INTF	050A	_	_	ТХВО	TXBP	RXBP	TXWAR	RXWAR	EWARN	IVRIF	WAKIF	ERRIF	_	FIFOIF	RBOVIF	RBIF	TBIF	0000
C2INTE	050C	_	_	_	_	_	_	_	_	IVRIE	WAKIE	ERRIE	_	FIFOIE	RBOVIE	RBIE	TBIE	0000
C2EC	050E				TERRCN	T<7:0>							RERRCI	NT<7:0>				0000
C2CFG1	0510	_	_	_	_	_	_	_	_	SJW<	1:0>			BRP	<5:0>			0000
C2CFG2	0512	_	WAKFIL	_	_	_	SE	G2PH<2:0)>	SEG2PHTS	SAM	S	EG1PH<2	:0>	P	RSEG<2:0)>	0000
C2FEN1	0514	FLTEN15	FLTEN14	FLTEN13	FLTEN12	FLTEN11	FLTEN10	FLTEN9	FLTEN8	FLTEN7	FLTEN6	FLTEN5	FLTEN4	FLTEN3	FLTEN2	FLTEN1	FLTEN0	FFFF
C2FMSKSEL1	0518	F7MSł	< <1:0>	F6MS	K<1:0>	F5MSI	5MSK<1:0> F4MSK<1:0>			F3MSK<1:0> F2MSK<1:0>			K<1:0>	F1MS	< <1:0>	F0MS	K<1:0>	0000
C2FMSKSEL2	051A	F15MS	K<1:0>	F14MS	SK<1:0>	F13MS	K<1:0>	F12MS	K<1:0>	F11MSK<1:0> F10MSK<1:0> F9MSK<1:0> F8MSK<1:0>			K<1:0>	0000				

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-24: ECAN2 REGISTER MAP WHEN C2CTRL1.WIN = 0 FOR dsPIC33FJXXXMC708/710 DEVICES

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0500- 051E							See	e definition	when WIN	= x							
C2RXFUL1	0520	RXFUL15	RXFUL14	RXFUL13	RXFUL12	RXFUL11	RXFUL10	RXFUL9	RXFUL8	RXFUL7	RXFUL6	RXFUL5	RXFUL4	RXFUL3	RXFUL2	RXFUL1	RXFUL0	0000
C2RXFUL2	0522	RXFUL31	RXFUL30	RXFUL29	RXFUL28	RXFUL27	RXFUL26	RXFUL25	RXFUL24	RXFUL23	RXFUL22	RXFUL21	RXFUL20	RXFUL19	RXFUL18	RXFUL17	RXFUL16	0000
C2RXOVF1	0528	RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF09	RXOVF08	RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVF0	0000
C2RXOVF2	052A	RXOVF31	RXOVF30	RXOVF29	RXOVF28	RXOVF27	RXOVF26	RXOVF25	RXOVF24	RXOVF23	RXOVF22	RXOVF21	RXOVF20	RXOVF19	RXOVF18	RXOVF17	RXOVF16	0000
C2TR01CON	0530	TXEN1	TX ABAT1	TX LARB1	TX ERR1	TX REQ1	RTREN1	TX1PF	RI<1:0>	TXEN0	TX ABAT0	TX LARB0	TX ERR0	TX REQ0	RTREN0	TX0PF	RI<1:0>	0000
C2TR23CON	0532	TXEN3	TX ABAT3	TX LARB3	TX ERR3	TX REQ3	RTREN3	TX3PF	RI<1:0>	TXEN2	TX ABAT2	TX LARB2	TX ERR2	TX REQ2	RTREN2	TX2PF	RI<1:0>	0000
C2TR45CON	0534	TXEN5	TX ABAT5	TX LARB5	TX ERR5	TX REQ5	RTREN5	TX5PF	RI<1:0>	TXEN4	TX ABAT4	TX LARB4	TX ERR4	TX REQ4	RTREN4	TX4PF	RI<1:0>	0000
C2TR67CON	0536	TXEN7	TX ABAT7	TX LARB7	TX ERR7	TX REQ7	RTREN7	TX7PRI<1:0>		TXEN6	TX ABAT6	TX LARB6	TX ERR6	TX REQ6	RTREN6	TX6PF	RI<1:0>	xxxx
C2RXD	0540	Recieved Data Word xxx											xxxx					
C2TXD	0542								Transmit I	Data Word								xxxx

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

can operate on any W register pointer. However, it is not advisable to use W14 or W15 for Modulo Addressing, since these two registers are used as the Stack Frame Pointer and Stack Pointer, respectively.

In general, any particular circular buffer can only be configured to operate in one direction, as there are certain restrictions on the buffer start address (for incrementing buffers) or end address (for decrementing buffers), based upon the direction of the buffer.

The only exception to the usage restrictions is for buffers which have a power-of-2 length. As these buffers satisfy the start and end address criteria, they may operate in a bidirectional mode (i.e., address boundary checks will be performed on both the lower and upper address boundaries).

4.4.1 START AND END ADDRESS

The Modulo Addressing scheme requires that a starting and ending address be specified and loaded into the 16-bit Modulo Buffer Address registers: XMODSRT, XMODEND, YMODSRT and YMODEND (see Table 4-1).

Note:	Y space Modulo Addressing EA calcula-								
	tions assume word sized data (LSb of								
	every EA is always clear).								

The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32K words (64 Kbytes).

4.4.2 W ADDRESS REGISTER SELECTION

The Modulo and Bit-Reversed Addressing Control register, MODCON<15:0>, contains enable flags as well as a W register field to specify the W Address registers. The XWM and YWM fields select which registers will operate with Modulo Addressing. If XWM = 15, X RAGU and X WAGU Modulo Addressing is disabled. Similarly, if YWM = 15, Y AGU Modulo Addressing is disabled.

The X Address Space Pointer W register (XWM) to which Modulo Addressing is to be applied is stored in MODCON<3:0> (see Table 4-1). Modulo Addressing is enabled for X data space when XWM is set to any value other than '15' and the XMODEN bit is set at MODCON<15>.

The Y Address Space Pointer W register (YWM) to which Modulo Addressing is to be applied is stored in MODCON<7:4>. Modulo Addressing is enabled for Y data space when YWM is set to any value other than '15' and the YMODEN bit is set at MODCON<14>.

FIGURE 4-7: MODULO ADDRESSING OPERATION EXAMPLE

dsPIC33FJXXXMCX06/X08/X10

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
							_					
bit 15	-				-		bit 8					
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0					
C2TXIF	C1TXIF	DMA7IF	DMA6IF		U2EIF	U1EIF	FLTBIF					
bit 7							bit 0					
Legend:												
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, read	l as '0'						
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown					
bit 15-8	Unimplemen	ted: Read as '	0'									
bit 7	LE Interrupt request has occurred											
	1 = Interrupt r 0 = Interrupt r	request has occ request has not	currea t occurred									
bit 6	C1TXIE: ECAN1 Transmit Data Request Interrupt Flag Status bit											
5.00	1 = Interrupt r	request has oc	curred									
	0 = Interrupt r	request has not	t occurred									
bit 5	DMA7IF: DM	A Channel 7 D	ata Transfer (Complete Interr	rupt Flag Status	bit						
	1 = Interrupt r	request has oc	curred									
	0 = Interrupt r	request has not		~								
bit 4	DMAGIF: DM	A Channel 6 D	ata Transfer (Complete Interi	rupt Flag Status	bit						
	1 = Interrupt r 0 = Interrupt r	request has occurreduest has not	t occurred									
bit 3	Unimplemen	ted: Read as '	0'									
bit 2	U2EIF: UART	2 Error Interru	pt Flag Status	s bit								
	1 = Interrupt r	request has oc	curred									
	0 = Interrupt r	request has no	t occurred									
bit 1	U1EIF: UART	1 Error Interru	pt Flag Status	s bit								
	1 = Interrupt r	request has oc	curred									
		request has not	t occurred									
U JIC	TLIBIF: PWN	vi Fault B Interr	upt Flag Stati	us dit								
	1 = Interrupt 0 = Interrupt r	request has not	t occurred									

REGISTER 7-9: IFS4: INTERRUPT FLAG STATUS REGISTER 4

REGISTER 7-13: IEC3: INTERRUPT ENABLE CONTROL REGISTER 3 (CONTINUED)

- bit 1 SI2C2IE: I2C2 Slave Events Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled
- bit 0 T7IE: Timer7 Interrupt Enable bit
 - 1 = Interrupt request enabled
 - 0 = Interrupt request not enabled

REGISTER 7-14: IEC4: INTERRUPT ENABLE CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	_	—	—	—
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
C2TXIE	C1TXIE	DMA7IE	DMA6IE	—	U2EIE	U1EIE	FLTBIE
bit 7							bit 0

Legend:											
R = Readable	e bit	W = Writable bit	U = Unimplemented bit,	read as '0'							
-n = Value at	POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown							
bit 15-8	Unimpleme	nted: Read as '0'									
bit 7	C2TXIE: EC	AN2 Transmit Data Requ	est Interrupt Enable bit								
	1 = Interrupt	request enabled									
	0 = Interrupt	request not enabled									
bit 6	C1TXIE: ECAN1 Transmit Data Request Interrupt Enable bit										
	1 = Interrupt request enabled										
	0 = Interrupt	request not enabled									
bit 5	DMA7IE: DN	/A Channel 7 Data Trans	fer Complete Enable Status bi	t							
	1 = Interrupt	request enabled									
	0 = Interrupt	request not enabled									
bit 4	DMA6IE: DN	/A Channel 6 Data Trans	fer Complete Enable Status bi	t							
	1 = Interrupt	request enabled									
		request not enabled									
bit 3	Unimpleme	nted: Read as '0'									
bit 2	U2EIE: UAR	T2 Error Interrupt Enable	bit								
	1 = Interrupt	request enabled									
	0 = Interrupt	request not enabled									
bit 1	U1EIE: UAR	T1 Error Interrupt Enable	bit								
	1 = Interrupt	request enabled									
		request not enabled									
bit 0	FLTBIE: PW	M Fault B Interrupt Enabl	e bit								
	1 = Interrupt	request enabled									
		request not enabled									

REGISTER 7-16: IPC1: INTERRUPT PRIORITY CONTROL REGISTER 1

U-0 R/W-1 R/W-0 R	2/W-0	U-0	R/W-1	R/W-0	R/W-0								
— T2IP<2:0>		_		OC2IP<2:0>									
bit 15					bit 8								
U-0 R/W-1 R/W-0 R	2/W-0	U-0	R/W-1	R/W-0	R/W-0								
— IC2IP<2:0>				DMA0IP<2:0>									
bit 7					bit 0								
Lagandi													
R = Readable bit W = Writable bit		II = I Inimpler	nented hit re	ad as 'O'									
n = Value at POR (1' = Bit is set		$0^{\circ} = \text{Bit is classical}$	ared	x = Bit is unkno	מאאי								
			arcu										
bit 15 Unimplemented: Read as '0'													
bit 14-12 T2IP<2:0>: Timer2 Interrupt Prior	ity bits												
111 = Interrupt is priority 7 (highe	st priority	interrupt)											
•													
•													
001 = Interrupt is priority 1													
000 = Interrupt source is disabled	000 = Interrupt source is disabled												
bit 11 Unimplemented: Read as '0'	Unimplemented: Read as '0'												
bit 10-8 OC2IP<2:0>: Output Compare Ch	nannel 2 l	Interrupt Prior	ity bits										
111 = Interrupt is priority 7 (higher	st priority	interrupt)											
•													
•													
001 = Interrupt is priority 1 000 = Interrupt source is disabled	l												
bit 7 Unimplemented: Read as '0'													
bit 6-4 IC2IP<2:0>: Input Capture Chann	el 2 Inter	rupt Priority bi	its										
111 = Interrupt is priority 7 (highe	st priority	interrupt)											
•													
•													
001 = Interrupt is priority 1													
000 = Interrupt source is disabled													
bit 3 Unimplemented: Read as '0'	.			10 I.1.									
bit 2-0 DMA0IP<2:0>: DMA Channel 0 D	ata Iran:	ster Complete	Interrupt Pric	ority bits									
•	st phonty	interrupt)											
•													
•													
001 = interrupt is priority 1 000 = Interrupt source is disabled													

REGISTER 8-5: DMAxPAD: DMA CHANNEL x PERIPHERAL ADDRESS REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PAD	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PAD	/<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, rea	id as '0'	
-n = Value at F	' OR	'1' = Bit is set	•	'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 PAD<15:0>: Peripheral Address Register bits

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

REGISTER 8-6: DMAxCNT: DMA CHANNEL x TRANSFER COUNT REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	—	—	CNT<	9:8> ⁽²⁾
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
CNT<7:0> ⁽²⁾									
bit 7							bit 0		

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-10 Unimplemented: Read as '0'

bit 9-0 CNT<9:0>: DMA Transfer Count Register bits⁽²⁾

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

2: Number of DMA transfers = CNT<9:0> + 1.

9.0 OSCILLATOR CONFIGURATION

Note: This data sheet summarizes the features of the dsPIC33FJXXXMCX06/X08/X10 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 7. "Oscillator" (DS70186) in the "dsPIC33F Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The dsPIC33FJXXXMCX06/X08/X10 oscillator system provides the following:

 Various external and internal oscillator options as clock sources

- An on-chip PLL to scale the internal operating frequency to the required system clock frequency
- The internal FRC oscillator can also be used with the PLL, thereby allowing full-speed operation without any external clock generation hardware
- Clock switching between various clock sources
- Programmable clock postscaler for system power savings
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and takes fail-safe measures
- A Clock Control register (OSCCON)
- Nonvolatile Configuration bits for main oscillator selection
- A simplified diagram of the oscillator system is shown in Figure 9-1.

R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
ROI		DOZE<2:0>		DOZEN ⁽¹⁾		FRCDIV<2:0>	
bit 15							bit 8
							
R/W-0	R/W-1	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PLLPO	ST<1:0>			F	PLLPRE<4:0)>	
bit 7							bit 0
Lenende					~		
Legena:	hit	y = value set	nom Conligu	ration bits on POI	て Inted hit rea	vd oo 'O'	
		'1' = Bit is set	JIL	$0^{\circ} = \text{Bit is clear}$		v - Bitis unkn	
	FOR	I – Dit is set			eu		JWII
bit 15	ROI: Recover	on Interrupt bi	t				
bit fo	1 = Interrupts	s will clear the [DOZEN bit ar	nd the processor	clock/periph	eral clock ratio is	set to 1:1
	0 = Interrupts	s have no effect	t on the DOZ	EN bit			
bit 14-12	DOZE<2:0>:	Processor Cloc	k Reduction	Select bits			
	000 = Fcy/1						
	001 = FCY/2 010 = FCY/4						
	011 = FCY/8 ((default)					
	100 = Fcy/16						
	101 = FCY/32 110 = FCY/64						
	111 = FCY/12	8					
bit 11	DOZEN: DOZ	E Mode Enabl	e bit ⁽¹⁾				
	1 = DOZE<2:	:0> field specifi	es the ratio b	etween the perip	heral clocks	and the processo	or clocks
	0 = Processo	or clock/periphe	ral clock ratio	o forced to 1:1			
bit 10-8	FRCDIV<2:0>	>: Internal Fast	RC Oscillato	r Postscaler bits			
	000 = FRC di	ivide by 1 (deta	uit)				
	010 = FRC di	vide by 4					
	011 = FRC di	vide by 8					
	100 = FRC di 101 = FRC di	vide by 16 vide by 32					
	110 = FRC di	vide by 64					
	111 = FRC d i	vide by 256					
bit 7-6	PLLPOST<1:	0>: PLL VCO (Dutput Divide	er Select bits (also	denoted as	s 'N2', PLL postso	aler)
	00 = Output/2	<u>/</u> L (default)					
	10 = Reserve	d					
	11 = Output/8	3					
bit 5	Unimplemen	ted: Read as 'o)'				
bit 4-0	PLLPRE<4:0	>: PLL Phase [Detector Inpu	t Divider bits (also	o denoted as	s 'N1', PLL presc	aler)
	00000 = Inpu	it/2 (default)					
	•						
	•						
	•						
	11111 = Inpu	it/33					

REGISTER 9-2: CLKDIV: CLOCK DIVISOR REGISTER

Note 1: This bit is cleared when the ROI bit is set and an interrupt occurs.

dsPIC33FJXXXMCX06/X08/X10

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
TON	_	TSIDL	_	—		_	_				
bit 15							bit 8				
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0				
	TGATE	TCKPS	S<1:0>		TSYNC	TCS	_				
bit 7							bit 0				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, read	l as '0'					
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	iown				
bit 15	TON: Timer1	On bit									
	1 = Starts 16-	1 = Starts 16-bit Timer1									
hit 14		ted: Read as '	ר י								
bit 13	TSIDI · Ston i	n Idle Mode bit									
bit 10	1 = Discontinue module operation when device enters Idle mode										
	0 = Continue	module operat	ion in Idle mo	de							
bit 12-7	Unimplemented: Read as '0'										
bit 6	TGATE: Timer1 Gated Time Accumulation Enable bit										
	When T1CS = 1:										
	This bit is ignored.										
	When I1CS = 0:										
	0 = Gated time accumulation disabled										
bit 5-4	TCKPS<1:0>	: Timer1 Input	Clock Presca	le Select bits							
	11 = 1:256										
	10 = 1:64										
	01 = 1:8										
hit 3		tod: Pead as '	ר י								
bit 2		r1 Extornal Clo) ock Input Svn	chronization S	plact hit						
DIL Z	When TCS =		JCK IIIput Syli	chionization 36							
	1 = Synchron	<u>±:</u> ize external clo	ck input								
	0 = Do not sy	nchronize exte	rnal clock inp	ut							
	When TCS =	<u>0:</u>									
	This bit is igno	ored.									
bit 1	TCS: Timer1	Clock Source S	Select bit	• • • • • • •							
	1 = External of	CIOCK from pin 1 lock (Ec⊻)	TCK (on the	rising edge)							
bit 0	Unimplemen	ted: Read as '	ר י								
Situ	Cimplement		5								

REGISTER 16-1: PXTCON: PWM TIME BASE CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
PTEN	—	PTSIDL	—	—	—	—	—
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	PTOPS	<3:0>		PTCKPS<1:0>		PTMOD<1:0>	
bit 7							bit 0

Legend:	Legend:									
R = Readable	bit	W = Writable bit	U = Unimplemented bit, read	as '0'						
-n = Value at P	OR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown						
bit 15	PTEN: PWM	Time Base Timer Enable bit								
	1 = PWM time	e base is on								
		e base is off								
bit 14	Unimplemen	nimplemented: Read as '0'								
bit 13	PTSIDL: PWN	M Time Base Stop in Idle Mo	de bit							
	1 = PWM time	e base halts in CPU Idle mod	le							
		e base runs in CPU idie mod	e							
Dit 12-8	Unimplemen	ted: Read as '0'								
bit 7-4	PTOPS<3:0>: PWM Time Base Output Postscale Select bits									
	1111 = 1:16 p	postscale								
	•									
	•									
	•									
	0001 = 1:2 pc	ostscale								
h it 0 0			aali Draaaala Calaat hita							
DIL 3-2		>: PVVIVI Time Base input Ci								
	11 = PWW UT	he base input clock period is	16 Toy (1:16 prescale)							
	01 = PWM tin	he base input clock period is	4 TCY (1:4 prescale)							
	00 = PWM tim	ne base input clock period is	Tcy (1:1 prescale)							
bit 1-0	PTMOD<1:0>	·: PWM Time Base Mode Se	lect bits							
	11 = PWM tin PWM u	ne base operates in a Contin odates	uous Up/Down Count mode w	vith interrupts for double						
	10 = PWM tin	ne base operates in a Contin	uous Up/Down Count mode							
	01 = PWM tim	ne base operates in Single P	ulse mode							
	00 = PWM tin	ne base operates in a Free-F	Running mode							

21.3 Modes of Operation

The CAN module can operate in one of several operation modes selected by the user. These modes include:

- Initialization Mode
- Disable Mode
- Normal Operation Mode
- Listen Only Mode
- Listen All Messages Mode
- Loopback Mode

Modes are requested by setting the REQOP<2:0> bits (CiCTRL1<10:8>). Entry into a mode is Acknowledged by monitoring the OPMODE<2:0> bits (CiCTRL1<7:5>). The module will not change the mode and the OPMODE bits until a change in mode is acceptable, generally during bus Idle time, which is defined as at least 11 consecutive recessive bits.

21.3.1 INITIALIZATION MODE

In the Initialization mode, the module will not transmit or receive. The error counters are cleared and the interrupt flags remain unchanged. The programmer will have access to Configuration registers that are access restricted in other modes. The module will protect the user from accidentally violating the CAN protocol through programming errors. All registers which control the configuration of the module can not be modified while the module is on-line. The CAN module will not be allowed to enter the Configuration mode while a transmission is taking place. The Configuration mode serves as a lock to protect the following registers:

- All Module Control Registers
- Baud Rate and Interrupt Configuration Registers
- Bus Timing Registers
- Identifier Acceptance Filter Registers
- Identifier Acceptance Mask Registers

21.3.2 DISABLE MODE

In Disable mode, the module will not transmit or receive. The module has the ability to set the WAKIF bit due to bus activity, however, any pending interrupts will remain and the error counters will retain their value.

If the REQOP<2:0> bits (CiCTRL1<10:8>) = 001, the module will enter the Module Disable mode. If the module is active, the module will wait for 11 recessive bits on the CAN bus, detect that condition as an Idle bus, then accept the module disable command. When the OPMODE<2:0> bits (CiCTRL1<7:5>) = 001, that indicates whether the module successfully went into Module Disable mode. The I/O pins will revert to normal I/O function when the module is in the Module Disable mode.

The module can be programmed to apply a low-pass filter function to the CiRX input line while the module or the CPU is in Sleep mode. The WAKFIL bit (CiCFG2<14>) enables or disables the filter.

Note: Typically, if the CAN module is allowed to transmit in a particular mode of operation and a transmission is requested immediately after the CAN module has been placed in that mode of operation, the module waits for 11 consecutive recessive bits on the bus before starting transmission. If the user switches to Disable mode within this 11-bit period, then this transmission is aborted and the corresponding TXABT bit is set and TXREQ bit is cleared.

21.3.3 NORMAL OPERATION MODE

Normal Operation mode is selected when REQOP<2:0> = 000. In this mode, the module is activated and the I/O pins will assume the CAN bus functions. The module will transmit and receive CAN bus messages via the CiTX and CiRX pins.

21.3.4 LISTEN ONLY MODE

If the Listen Only mode is activated, the module on the CAN bus is passive. The transmitter buffers revert to the port I/O function. The receive pins remain inputs. For the receiver, no error flags or Acknowledge signals are sent. The error counters are deactivated in this state. The Listen Only mode can be used for detecting the baud rate on the CAN bus. To use this, it is necessary that there are at least two further nodes that communicate with each other.

21.3.5 LISTEN ALL MESSAGES MODE

The module can be set to ignore all errors and receive any message. The Listen All Messages mode is activated by setting REQOP<2:0> = '111'. In this mode, the data which is in the message assembly buffer, until the time an error occurred, is copied in the receive buffer and can be read via the CPU interface.

21.3.6 LOOPBACK MODE

If the Loopback mode is activated, the module will connect the internal transmit signal to the internal receive signal at the module boundary. The transmit and receive pins revert to their port I/O function.

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0				
_	—	—		—	CH123I	NB<1:0>	CH123SB				
bit 15							bit 8				
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0				
					CH123	NA<1:0>	CH123SA				
bit 7							bit 0				
Legend:											
R = Readab	R = Readable bit W = Writable bit		oit	U = Unimple	emented bit, rea	d as '0'					
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cl	eared	x = Bit is unk	known				
bit 15-11	Unimplement	ted: Read as 'o)'								
bit 10-9	CH123NB<1:	CH123NB<1:0>: Channel 1, 2, 3 Negative Input Select for Sample B bits									
	When AD12B	When AD12B = 1, CHxNB is: U-0, Unimplemented, Read as '0'									
	11 = CH1 neg	11 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11									
	0x = CH1, CH	I2, CH3 negativ	/e input is VR	EF-	in, cho nega		10				
bit 8	CH123SB: Ch	CH123SB: Channel 1, 2, 3 Positive Input Select for Sample B bit									
	When AD12B	When AD12B = 1, CHxSB is: U-0, Unimplemented, Read as '0'									
	1 = CH1 posit	1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5									
	0 = CH1 posit	ive input is AN	0, CH2 positiv	ve input is AN1	, CH3 positive i	nput is AN2					
bit 7-3	Unimplement	ted: Read as 'o)'								
bit 2-1	CH123NA<1:	0>: Channel 1,	2, 3 Negative	e Input Select f	or Sample A bit	S					
	When AD12B	b = 1, CHXNA is	s: U-0, Unim	plemented, Re		ativo input io A	N144				
	11 = CH1 neg 10 = CH1 neg	ative input is A	N9, CH2 neg	ative input is A	NTU, CH3 nega	ive input is A	IN I I 18				
	0x = CH1, CH	I2, CH3 negativ	/e input is VR	EF-	arr, ene nega						
bit 0	CH123SA : Ch	nannel 1, 2, 3 F	ositive Input	Select for Sam	ple A bit						
	When AD12B	s = 1, CHxSA is	s: U-0, Unim	plemented, Re	ead as '0'						
	1 = CH1 posit	ive input is AN	3, CH2 positiv	ve input is AN4	, CH3 positive i	nput is AN5					
	0 = CH1 posit	ive input is AN	0, CH2 positiv	ve input is AN1	, CH3 positive i	nput is AN2					

REGISTER 22-5: ADxCHS123: ADCx INPUT CHANNEL 1, 2, 3 SELECT REGISTER

REGISTER 22-9: AD1PCFGH: ADC1 PORT CONFIGURATION REGISTER HIGH^(1,2,3)

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| PCFG31 | PCFG30 | PCFG29 | PCFG28 | PCFG27 | PCFG26 | PCFG25 | PCFG24 |
| bit 15 | | | | | | | bit 8 |
| | | | | | | | |
| | | | | | | | |

bit 7							bit 0
PCFG23	PCFG22	PCFG21	PCFG20	PCFG19	PCFG18	PCFG17	PCFG16
R/W-0							

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-0

PCFG<31:16>: ADC Port Configuration Control bits

1 = Port pin in Digital mode, port read input enabled, ADC input multiplexer connected to AVss

- 0 = Port pin in Analog mode, port read input disabled, ADC samples pin voltage
- **Note 1:** On devices without 32 analog inputs, all PCFG bits are R/W by user. However, PCFG bits are ignored on ports without a corresponding input on device.
 - 2: ADC2 only supports analog inputs AN0-AN15; therefore, no ADC2 port Configuration register exists.
 - **3:** PCFGx = ANx, where x = 16 through 31.

REGISTER 22-10: ADxPCFGL: ADCx PORT CONFIGURATION REGISTER LOW^(1,2,3)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PCFG15	PCFG14	PCFG13	PCFG12	PCFG11	PCFG10	PCFG9	PCFG8
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PCFG7	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-0 **PCFG<15:0>:** ADC Port Configuration Control bits

1 = Port pin in Digital mode, port read input enabled, ADC input multiplexer connected to AVss

0 = Port pin in Analog mode, port read input disabled, ADC samples pin voltage

- **Note 1:** On devices without 16 analog inputs, all PCFG bits are R/W by user. However, PCFG bits are ignored on ports without a corresponding input on device.
 - **2:** On devices with two analog-to-digital modules, both AD1PCFGL and AD2PCFGL will affect the configuration of port pins multiplexed with AN0-AN15.
 - **3**: PCFGx = ANx, where x = 0 through 15.

dsPIC33FJXXXMCX06/X08/X10

TABLE 24-2: INSTRUCTION SET OVERVIEW

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description		# of Cycles	Status Flags Affected
1	ADD	ADD	Acc	Add Accumulators	1	1	OA,OB,SA,SB
		ADD	f	f = f + WREG	1	1	C,DC,N,OV,Z
		ADD	f,WREG	WREG = f + WREG	1	1	C,DC,N,OV,Z
		ADD	#lit10,Wn	Wd = lit10 + Wd	1	1	C,DC,N,OV,Z
		ADD	Wb,Ws,Wd	Wd = Wb + Ws	1	1	C,DC,N,OV,Z
		ADD	Wb,#lit5,Wd	Wd = Wb + lit5	1	1	C,DC,N,OV,Z
		ADD	Wso,#Slit4,Acc	16-bit Signed Add to Accumulator	1	1	OA,OB,SA,SB
2	ADDC	ADDC	f	f = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	f,WREG	WREG = $f + WREG + (C)$	1	1	C,DC,N,OV,Z
		ADDC	#lit10,Wn	Wd = lit10 + Wd + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,Ws,Wd	Wd = Wb + Ws + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,#lit5,Wd	Wd = Wb + lit5 + (C)	1	1	C,DC,N,OV,Z
3	AND	AND	f	f = f .AND. WREG	1	1	N,Z
		AND	f,WREG	WREG = f .AND. WREG	1	1	N,Z
		AND	#lit10,Wn	Wd = lit10 .AND. Wd	1	1	N,Z
		AND	Wb,Ws,Wd	Wd = Wb .AND. Ws	1	1	N,Z
		AND	Wb,#lit5,Wd	Wd = Wb .AND. lit5	1	1	N,Z
4	ASR	ASR	f	f = Arithmetic Right Shift f	1	1	C.N.OV.Z
		ASR	f,WREG	WREG = Arithmetic Right Shift f	1	1	C.N.OV.Z
		ASR	Ws,Wd	Wd = Arithmetic Right Shift Ws	1	1	C.N.OV.Z
		ASR	Wb,Wns,Wnd	Wnd = Arithmetic Right Shift Wb by Wns	1	1	N.Z
		ASR	Wb.#lit5.Wnd	Wnd = Arithmetic Right Shift Wb by lit5	1	1	N.Z
5	BCLR	BCLR	f.#bit4	Bit Clear f	1	1	None
Ũ	DODIC	BCLR	Ws.#bit4	Bit Clear Ws	1	1	None
6	BRA	BRA	C.Expr	Branch if Carry	1	1(2)	None
-		BRA	GE.Expr	Branch if greater than or equal	1	1 (2)	None
		BRA	GEU. Expr	Branch if unsigned greater than or equal	1	1 (2)	None
		BRA	GT. Expr	Branch if greater than	1	1 (2)	None
		BRA	GTU Expr	Branch if unsigned greater than	1	1 (2)	None
		BRA	LE Expr	Branch if less than or equal	1	1 (2)	None
		BRA	LEU Expr	Branch if unsigned less than or equal	1	1 (2)	None
		BRA	LT Expr	Branch if less than	1	1 (2)	None
		BRA	LTIL Expr	Branch if unsigned less than	1	1 (2)	None
		BRA	N Expr	Branch if Negative	1	1 (2)	None
		BRA	NC Expr	Branch if Not Carry	1	1 (2)	None
		BRA	NC, Expr Bianch if Not Carly		1	1 (2)	None
		BRA NN, Expr		1	1 (2)	None	
		BRA	NZ Expr	Branch if Not Zero	1	1 (2)	None
		BRA	OA Expr	Branch if Accumulator A overflow	1	1 (2)	None
		DDA	OP Ever	Branch if Accumulator B overflow	1	1 (2)	None
		DDA	OV Ever	Branch if Overflow	1	1 (2)	None
		DDA	CA Evor	Branch if Accumulator A saturated	1	1 (2)	None
		DDA	CP Evor	Branch if Accumulator B saturated	1	1 (2)	None
		DDA	SB, EXPI	Branch I Inconditionally	1	2	None
		DDA	Z Ever	Branch Unconditionally Branch if Zero		1 (2)	None
		BRA	Wn	Computed Branch	1	· (4)	None
7	BCFT	BCDT	f #bit4	Bit Set f	1	1	None
1	DOLL	DODU	L, HULLY	Dit Sot We	1	1	None
Q	DCW	DOLT DOW C	WS, #DIL4		1	1	None
0	Mea	DOW.C	Wa Wh	Write Z bit to Wes/Wh	1	1	None
٥	DTC	DDW.4	f #bit4		1	1	None
5	D10	DIG	L, HULLA		1	1	None
		DIG.	ws,#D1L4	Dir iuggie wa	I	1	NULLE

26.2 AC Characteristics and Timing Parameters

The information contained in this section defines dsPIC33FJXXXMCX06/X08/X10 AC characteristics and timing parameters.

TABLE 26-14: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)				
AC CHARACTERISTICS	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
	Operating voltage VDD range as described in Section 26.0 "Electrical				
	Characteristics".				

FIGURE 26-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 26-15: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions
DO50	Cosc2	OSC2/SOSC2 pin	_	—	15	pF	In XT and HS modes when external clock is used to drive OSC1
DO56	Сю	All I/O pins and OSC2	—	—	50	pF	EC mode
DO58	Св	SCLx, SDAx	_	_	400	pF	In I ² C™ mode

100-Lead Plastic Thin Quad Flatpack (PF) – 14x14x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension Limits		MIN	NOM	MAX	
Contact Pitch	E	0.50 BSC			
Contact Pad Spacing	C1		15.40		
Contact Pad Spacing	C2		15.40		
Contact Pad Width (X100)	X1			0.30	
Contact Pad Length (X100)	Y1			1.50	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2110A

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com