

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	53
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64mc706t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	Pin Type	Buffer Type	Description
AN0-AN31	I	Analog	Analog input channels.
AVDD	Р	Р	Positive supply for analog modules. This pin must be connected at all times.
AVss	Р	Р	Ground reference for analog modules.
CLKI	I	ST/CMOS	External clock source input. Always associated with OSC1 pin function.
ССКО	0	_	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with OSC2 pin function.
CN0-CN23	I	ST	Input change notification inputs. Can be software programmed for internal weak pull-ups on all inputs.
C1RX	Ι	ST	ECAN1 bus receive pin.
C1TX	0		ECAN1 bus transmit pin.
C2RX		SI	ECAN2 bus receive pin.
	0	 	Data I/O pin for programming/dobugging communication abonnol 1
PGED1 PGEC1	1/0	ST	Clock input pin for programming/debugging communication channel 1.
PGED2	1/0	ST	Data I/O pin for programming/debugging communication channel 2.
PGEC2	I	ST	Clock input pin for programming/debugging communication channel 2.
PGED3	I/O	ST	Data I/O pin for programming/debugging communication channel 3.
PGEC3	I	ST	Clock input pin for programming/debugging communication channel 3.
IC1-IC8	I	ST	Capture inputs 1 through 8.
INDX	I	ST	Quadrature Encoder Index Pulse input.
QEA	I	ST	Quadrature Encoder Phase A input in QEI mode. Auxiliary Timer External
		OT	Clock/Gate input in Timer mode.
QEB	I	SI	Quadrature Encoder Phase A input in QEI mode. Auxiliary Timer External
UPDN	ο	CMOS	Position Up/Down Counter Direction State.
INT0	I	ST	External interrupt 0.
INT1	I	ST	External interrupt 1.
INT2	I	ST	External interrupt 2.
INT3	I	ST	External interrupt 3.
INT4	I	ST	External interrupt 4.
FLTA	I	ST	PWM Fault A input.
		SI	PWM Fault B input.
PWM1H	0		PWM 1 high output
PWM2L	ŏ	_	PWM 2 low output.
PWM2H	0	—	PWM 2 high output.
PWM3L	0	—	PWM 3 low output.
PWM3H	0	—	PWM 3 high output.
PWM4L	0	—	PWM 4 low output.
	0	-	
MCLR	I/P	SI	Master Clear (Reset) input. This pin is an active-low Reset to the device.
OCFA		ST	Compare Fault A input (for Compare Channels 1, 2, 3 and 4).
		51	Compare entruits 1 through 8
09012000	1	STICMOS	Oscillator crystal input. ST buffer when configured in PC mode:
		31/01000	CMOS otherwise.
OSC2	I/O	_	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.
Legend: CMC	S = CMO	S compatible	e input or output Analog = Analog input P = Power
ST =	Schmitt T	rigger input	with CMOS levels O = Output I = Input

TABLE 1-1: PINOUT I/O DESCRIPTIONS

TABLE 4-1: CPU CORE REGISTERS MAP(CONTINUED)

					•	-	- ,											
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
YMODSRT	004C							١	YS<15:1>								0	xxxx
YMODEND	004E		_					١	YE<15:1>								1	xxxx
XBREV	0050	BREN								XB<14:0>								xxxx
DISICNT	0052	_	_						Disabl	e Interrupts	Counter R	legister						xxxx
BSRAM	0750	_	—	—	—	—	—	_	—	_	—	—		—	IW_BSR	IR_BSR	RL_BSR	0000
SSRAM	0752	_	_	_	_	_	_	_	_	_	_	_		—	IW_SSR	IR_SSR	RL_SSR	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-32: PORTG REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISG	02E4	TRISG15	TRISG14	TRISG13	TRISG12	—		TRISG9	TRISG8	TRISG7	TRISG6	-	_	TRISG3	TRISG2	TRISG1	TRISG0	F3CF
PORTG	02E6	RG15	RG14	RG13	RG12	_	_	RG9	RG8	RG7	RG6	_	_	RG3	RG2	RG1	RG0	xxxx
LATG	02E8	LATG15	LATG14	LATG13	LATG12	_	_	LATG9	LATG8	LATG7	LATG6	_	_	LATG3	LATG2	LATG1	LATG0	xxxx
ODCG	06E4	ODCG15	ODCG14	ODCG13	ODCG12	_	_	ODCG9	ODCG8	ODCG7	ODCG6	_	_	ODCG3	ODCG2	ODCG1	ODCG0	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.

TABLE 4-33: SYSTEM CONTROL REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RCON	0740	TRAPR	IOPUWR	-	—	-	—	-	VREGS	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	xxxx(1)
OSCCON	0742	_	(COSC<2:0	>	_	1	NOSC<2:0	>	CLKLOCK	_	LOCK	_	CF	_	LPOSCEN	OSWEN	₀₃₀₀ (2)
CLKDIV	0744	ROI		DOZE<2:0>	>	DOZEN	F	RCDIV<2:0)>	PLLPOS	T<1:0>	_		I	PLLPRE<4	:0>		3040
PLLFBD	0746	_	_	_	_	_	_	_				I	PLLDIV<8:0)>				0030
OSCTUN	0748	—	—	—	—	—	—	—	—	—	_			TUN	N<5:0>			0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: RCON register Reset values dependent on type of Reset.

2: OSCCON register Reset values dependent on the FOSC Configuration bits and type of Reset.

TABLE 4-34: NVM REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
NVMCON	0760	WR	WREN	WRERR	—	—	—	—	—	—	ERASE	—	—	NVMOP<3:0> 0			0000 (1)	
NVMKEY	0766	—	—	—	—	_	_	—	—				NVMKE	Y<7:0>				0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Reset value shown is for POR only. Value on other Reset states is dependent on the state of memory write or erase operations at the time of Reset.

TABLE 4-35: PMD REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	T5MD	T4MD	T3MD	T2MD	T1MD	QEIMD	PWMMD	—	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	C2MD	C1MD	AD1MD	0000
PMD2	0772	IC8MD	IC7MD	IC6MD	IC5MD	IC4MD	IC3MD	IC2MD	IC1MD	OC8MD	OC7MD	OC6MD	OC5MD	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0774	T9MD	T8MD	T7MD	T6MD	_			_		_	_	_	—	_	I2C2MD	AD2MD	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

can operate on any W register pointer. However, it is not advisable to use W14 or W15 for Modulo Addressing, since these two registers are used as the Stack Frame Pointer and Stack Pointer, respectively.

In general, any particular circular buffer can only be configured to operate in one direction, as there are certain restrictions on the buffer start address (for incrementing buffers) or end address (for decrementing buffers), based upon the direction of the buffer.

The only exception to the usage restrictions is for buffers which have a power-of-2 length. As these buffers satisfy the start and end address criteria, they may operate in a bidirectional mode (i.e., address boundary checks will be performed on both the lower and upper address boundaries).

4.4.1 START AND END ADDRESS

The Modulo Addressing scheme requires that a starting and ending address be specified and loaded into the 16-bit Modulo Buffer Address registers: XMODSRT, XMODEND, YMODSRT and YMODEND (see Table 4-1).

Note:	Y space Modulo Addressing EA calcula-
	tions assume word sized data (LSb of
	every EA is always clear).

The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32K words (64 Kbytes).

4.4.2 W ADDRESS REGISTER SELECTION

The Modulo and Bit-Reversed Addressing Control register, MODCON<15:0>, contains enable flags as well as a W register field to specify the W Address registers. The XWM and YWM fields select which registers will operate with Modulo Addressing. If XWM = 15, X RAGU and X WAGU Modulo Addressing is disabled. Similarly, if YWM = 15, Y AGU Modulo Addressing is disabled.

The X Address Space Pointer W register (XWM) to which Modulo Addressing is to be applied is stored in MODCON<3:0> (see Table 4-1). Modulo Addressing is enabled for X data space when XWM is set to any value other than '15' and the XMODEN bit is set at MODCON<15>.

The Y Address Space Pointer W register (YWM) to which Modulo Addressing is to be applied is stored in MODCON<7:4>. Modulo Addressing is enabled for Y data space when YWM is set to any value other than '15' and the YMODEN bit is set at MODCON<14>.

FIGURE 4-7: MODULO ADDRESSING OPERATION EXAMPLE

4.6.3 READING DATA FROM PROGRAM MEMORY USING PROGRAM SPACE VISIBILITY

The upper 32 Kbytes of data space may optionally be mapped into any 16K word page of the program space. This option provides transparent access of stored constant data from the data space without the need to use special instructions (i.e., TBLRDL/H).

Program space access through the data space occurs if the Most Significant bit of the data space EA is '1' and program space visibility is enabled by setting the PSV bit in the Core Control register (CORCON<2>). The location of the program memory space to be mapped into the data space is determined by the Program Space Visibility Page register (PSVPAG). This 8-bit register defines any one of 256 possible pages of 16K words in program space. In effect, PSVPAG functions as the upper 8 bits of the program memory address, with the 15 bits of the EA functioning as the lower bits. Note that by incrementing the PC by 2 for each program memory word, the lower 15 bits of data space addresses directly map to the lower 15 bits in the corresponding program space addresses.

Data reads to this area add an additional cycle to the instruction being executed, since two program memory fetches are required.

Although each data space address, 8000h and higher, maps directly into a corresponding program memory address (see Figure 4-11), only the lower 16 bits of the 24-bit program word are used to contain the data. The upper 8 bits of any program space location used as data should be programmed with '1111 1111' or '0000 0000' to force a NOP. This prevents possible issues should the area of code ever be accidentally executed.

Note: PSV access is temporarily disabled during table reads/writes.

For operations that use PSV and are executed outside a REPEAT loop, the MOV and MOV.D instructions require one instruction cycle in addition to the specified execution time. All other instructions require two instruction cycles in addition to the specified execution time.

For operations that use PSV and are executed inside a REPEAT loop, there will be some instances that require two instruction cycles in addition to the specified execution time of the instruction:

- · Execution in the first iteration
- · Execution in the last iteration
- Execution prior to exiting the loop due to an interrupt
- Execution upon re-entering the loop after an interrupt is serviced

Any other iteration of the REPEAT loop will allow the instruction accessing data using PSV to execute in a single cycle.

FIGURE 4-11: PROGRAM SPACE VISIBILITY OPERATION

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	—
bit 7							bit 0

Legend:				
R = Readable	bit	W = Writable bit	U = Unimplemented bit, re-	ad as '0'
-n = Value at P	POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15	NSTDIS: Inte 1 = Interrupt 0 = Interrupt	errupt Nesting Disable bit nesting is disabled nesting is enabled	t	
bit 14	OVAERR: Ac 1 = Trap was 0 = Trap was	cumulator A Overflow T caused by overflow of A not caused by overflow	rap Flag bit Accumulator A of Accumulator A	
bit 13	OVBERR: Ad 1 = Trap was 0 = Trap was	ccumulator B Overflow T caused by overflow of A not caused by overflow	rap Flag bit Accumulator B of Accumulator B	
bit 12	COVAERR: A 1 = Trap was 0 = Trap was	Accumulator A Catastrop caused by catastrophic not caused by catastrop	ohic Overflow Trap Flag bit overflow of Accumulator A ohic overflow of Accumulator A	
bit 11	COVBERR: 1 = Trap was 0 = Trap was	Accumulator B Catastrop caused by catastrophic not caused by catastrop	ohic Overflow Trap Flag bit overflow of Accumulator B ohic overflow of Accumulator B	
bit 10	OVATE: Accult 1 = Trap over 0 = Trap disa	umulator A Overflow Tra flow of Accumulator A bled	p Enable bit	
bit 9	OVBTE: Acc 1 = Trap over 0 = Trap disa	umulator B Overflow Tra flow of Accumulator B bled	p Enable bit	
bit 8	COVTE : Cata 1 = Trap on c 0 = Trap disa	astrophic Overflow Trap atastrophic overflow of A bled	Enable bit Accumulator A or B enabled	
bit 7	SFTACERR: 1 = Math error 0 = Math error	Shift Accumulator Error or trap was caused by an or trap was not caused b	Status bit n invalid accumulator shift y an invalid accumulator shift	
bit 6	DIV0ERR: An 1 = Math error 0 = Math error	ithmetic Error Status bit or trap was caused by a o or trap was not caused b	divide by zero y a divide by zero	
bit 5	DMACERR: 1 = DMA con 0 = DMA con	DMA Controller Error Sta troller error trap has occ troller error trap has not	atus bit urred occurred	
bit 4	MATHERR: <i>A</i> 1 = Math error 0 = Math error	Arithmetic Error Status b or trap has occurred or trap has not occurred	it	

REGISTER 7-11:	IEC1: INTERRUPT ENABLE CONTROL	REGISTER 1
----------------	--------------------------------	-------------------

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
IC8IE	IC7IE	AD2IE	INT1IE	CNIE		MI2C1IE	SI2C1IE
bit 7							bit 0
Legend:	L :4		L:4	II — I Inimania	mented bit men		
R = Readable		vv = vvritable	DIL	0' = 0	mented bit, read	uas u v = Pitio unkr	2014/2
	OR	I = DILIS SEL			eareu	x = Bit is uliki	IOWI
bit 15	U2TXIF: UAF	RT2 Transmitte	r Interrupt En:	able bit			
bit io	1 = Interrupt i	request enable	d				
	0 = Interrupt i	request not ena	abled				
bit 14	U2RXIE: UAF	RT2 Receiver li	nterrupt Enab	le bit			
	1 = Interrupt I	request enable	d				
hit 12		request not ena	Enchlo hit				
DIL 13	1 = Interrupt i	request enable					
	0 = Interrupt i	request not ena	abled				
bit 12	T5IE: Timer5	Interrupt Enab	le bit				
	1 = Interrupt i	request enable	d				
L:1 44		request not ena					
DIT	1 = Interrupt	Interrupt Enab	ie dit H				
	0 = Interrupt i	request not ena	abled				
bit 10	OC4IE: Output	ut Compare Ch	annel 4 Interr	upt Enable bit			
	1 = Interrupt	request enable	d				
		request not ena	abled				
bit 9	OC3IE: Output	ut Compare Ch	annel 3 Interr	upt Enable bit			
	0 = Interrupt i	request enable	abled				
bit 8	DMA2IE: DM	A Channel 2 D	ata Transfer (Complete Inter	rupt Enable bit		
	1 = Interrupt I	request enable	d				
	0 = Interrupt I	request not ena	abled				
bit 7	IC8IE: Input (Capture Chann	el 8 Interrupt	Enable bit			
	1 = Interrupt i	request enable	a abled				
bit 6	IC7IE: Input (Capture Chann	el 7 Interrupt	Enable bit			
	1 = Interrupt request enabled						
	0 = Interrupt i	request not ena	abled				
bit 5	AD2IE: ADC2	2 Conversion C	omplete Inter	rupt Enable bit	t		
	1 = Interrupt I	request enable	d abled				
bit 4	INT1IE: Exter	rnal Interrunt 1	Enable bit				
	1 = Interrupt i	request enable					
	0 = Interrupt	request not ena	abled				

REGISTER 7-11: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1 (CONTINUED)

bit 3	CNIE: Input Change Notification Interrupt Enable bit
	1 = Interrupt request enabled
	0 = Interrupt request not enabled
bit 2	Unimplemented: Read as '0'
bit 1	MI2C1IE: I2C1 Master Events Interrupt Enable bit
	1 = Interrupt request enabled
	0 = Interrupt request not enabled

- bit 0 SI2C1IE: I2C1 Slave Events Interrupt Enable bit
 - 1 = Interrupt request enabled
 - 0 = Interrupt request not enabled

REGISTER 7-18:	IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3
----------------	--

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
—	—	—	_	_		DMA1IP<2:0>	
bit 15	·						bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
		AD1IP<2:0>		_		U1TXIP<2:0>	
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable I	oit	U = Unimpler	mented bit, re	ad as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkno	own
bit 15-11	Unimplement	ted: Read as 'o)'				
bit 10-8	DMA1IP<2:0>	: DMA Channe	el 1 Data Trar	nsfer Complete	Interrupt Price	ority bits	
	111 = Interrup	ot is priority 7 (h	nighest priorit	y interrupt)			
	•						
	•						
	001 = Interrup	ot is priority 1	ablad				
hit 7			,				
		ADC1 Convers) vian Camalata	Interrupt Drie	ritu da ita		
DIL 0-4		ADC I COnvers	sion Complete	e interrupt Prio	nty bits		
	•		lighest phone	y interrupt)			
	•						
	•						
	001 = Interrup 000 = Interrup	ot is priority 1 ot source is disa	abled				
bit 3	Unimplement	ted: Read as 'd)'				
bit 2-0	U1TXIP<2:0>	: UART1 Trans	mitter Interru	pt Priority bits			
	111 = Interrupt is priority 7 (highest priority interrupt)						
	•						
	•						
	001 = Interrur	ot is priority 1					
	000 = Interrup	ot source is disa	abled				

REGISTER 7-20:	IPC5: INTERRUPT PRIORITY CONTROL REGISTER 5
----------------	--

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
		IC8IP<2:0>				IC7IP<2:0>	
bit 15							bit 8
-							1
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
		AD2IP<2:0>		—		INT1IP<2:0>	
bit 7							bit 0
Logondy							
R - Readable	bit	W = Writable k	nit	II – I Inimpler	mented hit re	ad as 'O'	
n = Value at F		'1' = Bit is set	JIL	0' = Bit is cle	ared	v = Bitis unkn	own
					arcu		own
bit 15	Unimpleme	nted: Read as 'o)'				
bit 14-12	IC8IP<2:0>:	Input Capture C	hannel 8 Inte	errupt Priority b	its		
	111 = Interr	upt is priority 7 (h	nighest priorit	ty interrupt)			
	•						
	•						
	001 = Interr	upt is priority 1					
	000 = Interr	upt source is disa	abled				
bit 11	Unimpleme	nted: Read as 'o)'				
bit 10-8	IC7IP<2:0>:	Input Capture C	hannel 7 Inte	errupt Priority b	its		
	111 = Interr	upt is priority 7 (h	nighest priorit	ty interrupt)			
	•						
	•						
	001 = Interr	upt is priority 1 upt source is disa	abled				
bit 7	Unimpleme	nted: Read as 'o)'				
bit 6-4	AD2IP<2:0>	ADC2 Convers	ion Complet	e Interrupt Prio	rity bits		
	111 = Interr	upt is priority 7 (h	nighest priorit	ty interrupt)			
	•						
	•						
	001 = Interr	upt is priority 1					
	000 = Interr	upt source is disa	abled				
bit 3	Unimpleme	nted: Read as 'o)'				
bit 2-0	INT1IP<2:0	>: External Interr	upt 1 Priority	bits			
	111 = Interr	upt is priority 7 (h	highest priori	ty interrupt)			
	•						
	•						
	001 = Intern	upt is priority 1	blod				
	000 = mem	upt source is disa	UBIU				

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_	—		_	—		U2EIP<2:0>	
bit 15							bit
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		U1EIP<2:0>				FLTBIP<2:0>	
bit 7							bit
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimple	mented bit, re	ad as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	iown
bit 15-11	Unimplemen	ted: Read as '	0'				
bit 10-8	U2EIP<2:0>:	UART2 Error I	nterrupt Prior	ity bits			
	111 = Interrup	pt is priority 7 (highest priori	ty interrupt)			
	•						
	•						
	001 = Interrup	pt is priority 1					
	000 = Interrup	pt source is dis	abled				
bit 7	Unimplemen	ted: Read as '	0'				
bit 6-4	U1EIP<2:0>:	UART1 Error I	nterrupt Prior	rity bits			
	111 = Interrup	pt is priority 7 (highest priori	ty interrupt)			
	•						
	•						
	001 = Interrup	pt is priority 1					
	000 = Interru	pt source is dis	abled				
bit 3	Unimplemen	ted: Read as '	0'				
bit 2-0	FLTBIP<2:0>	: PWM Fault B	Interrupt Prie	ority bits			
	111 = Interrup	pt is priority 7 (highest priori	ty interrupt)			
	•						
	•						
	-						
	• 001 = Interrur	ot is priority 1					

REGISTER 7-31: IPC16: INTERRUPT PRIORITY CONTROL REGISTER 16

REGISTER 8-2: DMAxREQ: DMA CHANNEL x IRQ SELECT REGISTER

R/W-0	U-0						
FORCE ⁽¹⁾	—	—		—	—	—	—
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	IRQSEL6 ⁽²⁾	IRQSEL5 ⁽²⁾	IRQSEL4 ⁽²⁾	IRQSEL3 ⁽²⁾	IRQSEL2 ⁽²⁾	IRQSEL1(2)	IRQSEL0(2)
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 **FORCE:** Force DMA Transfer bit⁽¹⁾

1 = Force a single DMA transfer (Manual mode)

0 = Automatic DMA transfer initiation by DMA request

bit 14-7 Unimplemented: Read as '0'

- bit 6-0 IRQSEL<6:0>: DMA Peripheral IRQ Number Select bits⁽²⁾ 0000000-1111111 = DMAIRQ0-DMAIRQ127 selected to be Channel DMAREQ
 - **Note 1:** The FORCE bit cannot be cleared by the user. The FORCE bit is cleared by hardware when the forced DMA transfer is complete.
 - 2: See Table 8-1 for a complete listing of IRQ numbers for all interrupt sources.

REGISTER 9-3: PLLFBD: PLL FEEDBACK DIVISOR REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0 ⁽¹⁾
	_	_	_	_	_	_	PLLDIV<8>
bit 15	•			-			bit 8
R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
			PLLD	IV<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15-9	Unimplemer	nted: Read as 'o	כ'				
bit 8-0	PLLDIV<8:0	>: PLL Feedbac	k Divisor bits	(also denoted	as 'M', PLL mu	ltiplier)	
	000000000	= 2					
	00000001	= 3					
	00000010	= 4					
	•						
	•						
	•						
	000110000	= 50 (delault)					
	•						
	•						
	111111111	= 513					
		010					

11.2 Open-Drain Configuration

In addition to the PORT, LAT and TRIS registers for data control, some port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs higher than VDD (e.g., 5V) on any desired digital-only pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

See **"Pin Diagrams"** for the available pins and their functionality.

11.3 Configuring Analog Port Pins

The ADxPCFGH, ADxPCFGL and TRIS registers control the operation of the ADC port pins. The port pins that are desired as analog inputs must have their corresponding TRIS bit set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) is converted.

Clearing any bit in the ADxPCFGH or ADxPCFGL register configures the corresponding bit to be an analog pin. This is also the Reset state of any I/O pin that has an analog (ANx) function associated with it.

Note:	In devices with two ADC modules, if the
	corresponding PCFG bit in either
	AD1PCFGH(L) and AD2PCFGH(L) is
	cleared, the pin is configured as an analog
	input.

When reading the PORT register, all pins configured as analog input channels will read as cleared (a low level).

Pins configured as digital inputs will not convert an analog input. Analog levels on any pin that is defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications.

Note:	The voltage on an analog input pin can be
	between -0.3V to (VDD + 0.3 V).

EXAMPLE 11-1: PORT WRITE/READ EXAMPLE

MOV	0xFF00, W0
MOV	W0, TRISBB
NOP	
btss	PORTB, #13

11.4 I/O Port Write/Read Timing

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be a NOP.

11.5 Input Change Notification

The input change notification function of the I/O ports allows the dsPIC33FJXXXMCX06/X08/X10 devices to generate interrupt requests to the processor in response to a change-of-state on selected input pins. This feature is capable of detecting input change-of-states even in Sleep mode, when the clocks are disabled. Depending on the device pin count, there are up to 24 external signals (CN0 through CN23) that can be selected (enabled) for generating an interrupt request on a change-of-state.

There are four control registers associated with the CN module. The CNEN1 and CNEN2 registers contain the CN interrupt enable (CNxIE) control bits for each of the CN input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

Each CN pin also has a weak pull-up connected to it. The pull-ups act as a current source that is connected to the pin and eliminate the need for external resistors when push button or keypad devices are connected. The pull-ups are enabled separately using the CNPU1 and CNPU2 registers, which contain the weak pull-up enable (CNxPUE) bits for each of the CN pins. Setting any of the control bits enables the weak pull-ups for the corresponding pins.

Note: Pull-ups on change notification pins should always be disabled whenever the port pin is configured as a digital output.

[;] Configure PORTB<15:8> as inputs ; and PORTB<7:0> as outputs ; Delay 1 cycle ; Next Instruction

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
TON	_	TSIDL	_	—		_	_			
bit 15							bit 8			
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0			
	TGATE	TCKPS	S<1:0>		TSYNC	TCS	_			
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, read	l as '0'				
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	iown			
bit 15	TON: Timer1	On bit								
	1 = Starts 16-	bit Timer1								
hit 14		ted: Read as '	ר י							
bit 13	TSIDI · Ston i	n Idle Mode bit								
bit 10	1 = Discontinu	ue module ope	ration when d	levice enters ld	lle mode					
	0 = Continue	module operat	ion in Idle mo	de						
bit 12-7	Unimplemen	ted: Read as '	כ'							
bit 6	TGATE: Time	er1 Gated Time	Accumulation	n Enable bit						
	When T1CS =	= 1:								
	This bit is igno	ored.								
	When $11CS =$	<u>= 0:</u>	onablod							
	0 = Gated tim	le accumulation	n disabled							
bit 5-4	TCKPS<1:0>	: Timer1 Input	Clock Presca	le Select bits						
	11 = 1:256	·								
	10 = 1:64									
	01 = 1:8									
hit 3		tod: Pead as '	ר י							
bit 2		r1 Extornal Clo) ock Input Svn	chronization S	plact hit					
DIL Z	When TCS =		JCK IIIput Syli	chionization 36						
1 = Synchronize external clock input										
	0 = Do not synchronize external clock input									
	When TCS =	0:								
	This bit is igno	ored.								
bit 1	TCS: Timer1	Clock Source S	Select bit	• • • • • • •						
	1 = External of	CIOCK from pin 1 lock (Ec⊻)	TCK (on the	rising edge)						
bit 0	Unimplemen	ted: Read as '	ר י							
Situ	Cimplement		5							

NOTES:

14.1 Input Capture Registers

REGISTER 14-1: ICxCON: INPUT CAPTURE x CONTROL REGISTER

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0	
	—	ICSIDL	—	—	—	—	—	
bit 15							bit 8	
r								
R/W-0	R/W-0	R/W-0	R-0, HC	R-0, HC	R/W-0	R/W-0	R/W-0	
ICTMR ⁽¹⁾	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		
bit 7							bit 0	
]	
Legend:								
R = Readable I	bit	W = Writable	bit		nented bit, read			
-n = Value at P	OR	'1' = Bit is set		0' = Bit is cle	ared	x = Bit is unkr	iown	
		had. Deed on f	,					
DIL 15-14		Conture Modu) Ila Stan in Idia	Control hit				
DIL 13	1 = Input capt	ure module wil	lie Stop III luie Libalt in CPLL					
	0 = Input capt	ure module wil	I continue to c	operate in CPL	J Idle mode			
bit 12-8	Unimplement	ted: Read as ')'					
bit 7	ICTMR: Input	Capture Timer	Select bits(1)					
	1 = TMR2 cor	ntents are capt	ured on captu	re event				
	0 = TMR3 cor	ntents are capt	ured on captu	re event				
bit 6-5	ICI<1:0>: Sele	ect Number of	Captures per	Interrupt bits				
	11 = Interrupt	on every fourt	h capture eve	nt t				
	01 = Interrupt	on every seco	nd capture even	rent				
	00 = Interrupt	on every captu	ure event					
bit 4	ICOV: Input C	apture Overflo	w Status Flag	bit (read-only))			
	1 = Input capt 0 = No input c	ure overflow of apture overflow	ccurred w occurred					
bit 3	ICBNE: Input	Capture Buffer	Empty Status	s bit (read-only	()			
	1 = Input capt 0 = Input capt	ure buffer is no ure buffer is er	ot empty; at le npty	ast one more o	capture value c	an be read		
bit 2-0	ICM<2:0>: Inp	out Capture Mo	de Select bits	6				
	111 = Input ca	apture function	s as interrupt	pin only when	device is in Sle	ep or Idle mode	e	
	(Rising	edge detect o	nly, all other o	control bits are	not applicable.)		
	110 = Unused (module disabled)							
	100 = Capture	e mode, every	4th rising edg	e				
	011 = Capture	e mode, every	rising edge					
	010 = Capture	e mode, every	talling edge	nd falling)				
	(ICI<1)	0> bits do not	control interru	ipt generation f	for this mode.)			
	000 = Input ca	apture module	turned off		,			

Note 1: Timer selections may vary. Refer to the device data sheet for details.

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID5	EID4	EID3	EID2	EID1	EID0	RTR	RB1
bit 15							bit 8
U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	—	RB0	DLC3	DLC2	DLC1	DLC0
bit 7		•					bit 0
Legend:							
D - Doodoblo	hit	M = M/ritoblo	hit		monted hit read		

REGISTER 21-29: CiTRBnDLC: ECAN™ BUFFER n DATA LENGTH CONTROL (n = 0, 1, ..., 31)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-10	EID<5:0>: Extended Identifier bits						
bit 9	RTR: Remote Transmission Request bit						
	1 = Message will request remote transmission						
	0 = Normal message						
bit 8	RB1: Reserved Bit 1						
	User must set this bit to '0' per CAN protocol.						
bit 7-5	Unimplemented: Read as '0'						
bit 4	RB0: Reserved Bit 0						
	User must set this bit to '0' per CAN protocol.						
bit 3-0	DLC<3:0>: Data Length Code bits						

REGISTER 21-30: CiTRBnDm: ECANTM BUFFER n DATA FIELD BYTE m (n = 0, 1, ..., 31; m = 0, 1, ..., 7)⁽¹⁾

| R/W-x |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TRBnDm7 | TRBnDm6 | TRBnDm5 | TRBnDm4 | TRBnDm3 | TRBnDm2 | TRBnDm1 | TRBnDm0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 **TRBnDm<7:0>:** Data Field Buffer 'n' Byte 'm' bits

Note 1: The Most Significant Byte contains byte (m + 1) of the buffer.

26.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of dsPIC33FJXXXMCX06/X08/X10 electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the dsPIC33FJXXXMCX06/X08/X10 family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings⁽¹⁾

Ambient temperature under bias	40°C to +85°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	0.3V to +4.0V
Voltage on any combined analog and digital pin and MCLR, with respect to Vss	0.3V to (VDD + 0.3V)
Voltage on any digital-only pin with respect to Vss	0.3V to +5.6V
Voltage on VCAP/VDDCORE with respect to Vss	2.25V to 2.75V
Maximum current out of Vss pin	
Maximum current into VDD pin ⁽²⁾	250 mA
Maximum output current sunk by any I/O pin ⁽³⁾	4 mA
Maximum output current sourced by any I/O pin ⁽³⁾	4 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports ⁽²⁾	200 mA

- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
 - 2: Maximum allowable current is a function of device maximum power dissipation (see Table 26-2).
 - **3:** Exceptions are CLKOUT, which is able to sink/source 25 mA, and the VREF+, VREF-, SCLx, SDAx, PGECx and PGEDx pins, which are able to sink/source 12 mA.

АС СНА	AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ \end{array}$					
Param No.	Symbol	Characteristic	Min. Typ Max. I		Units	Conditions			
		ADC Accuracy (10-bit Mode	e) – Meas	uremen	ts with e	xternal	VREF+/VREF-		
AD20c	Nr	Resolution	1(0 data bi	ts	bits			
AD21c	INL	Integral Nonlinearity	-1.5	—	+1.5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V		
AD22c	DNL	Differential Nonlinearity	>-1	-	<1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V		
AD23c	Gerr	Gain Error	1	3	6	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V		
AD24c	EOFF	Offset Error	1	2	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V		
AD25c	_	Monotonicity	_				Guaranteed		
		ADC Accuracy (10-bit Mode	e) – Meas	uremen	ts with ir	nternal V	VREF+/VREF-		
AD20d	Nr	Resolution	1(0 data bi	ts	bits			
AD21d	INL	Integral Nonlinearity	-1		+1	LSb	VINL = AVSS = 0V, AVDD = 3.6V		
AD22d	DNL	Differential Nonlinearity	>-1	—	<1	LSb	VINL = AVSS = 0V, AVDD = 3.6V		
AD23d	Gerr	Gain Error	1	5	6	LSb	VINL = AVSS = 0V, AVDD = 3.6V		
AD24d	EOFF	Offset Error	1	2	3	LSb	VINL = AVSS = 0V, AVDD = 3.6V		
AD25d	—	Monotonicity	—	—		—	Guaranteed		
		Dynamic	Performa	nce (10	-bit Mode	e)			
AD30b	THD	Total Harmonic Distortion		-64	-67	dB	_		
AD31b	SINAD	Signal to Noise and Distortion	—	57	58	dB	—		
AD32b	SFDR	Spurious Free Dynamic Range	-	60	62	dB	_		
AD33b	Fnyq	Input Signal Bandwidth	_		550	kHz	—		
AD34b	ENOB	Effective Number of Bits	9.1	9.7	9.8	bits			

TABLE 26-41: ADC MODULE SPECIFICATIONS (10-BIT MODE)