

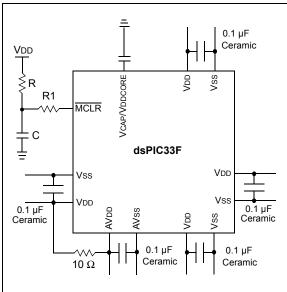
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	85
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 24x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64mc710-i-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 2-1: RECOMMENDED MINIMUM CONNECTION

2.2.1 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits including DSCs to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μ F to 47 μ F.

2.3 Capacitor on Internal Voltage Regulator (VCAP/VDDCORE)

A low-ESR (< 5 Ohms) capacitor is required on the VCAP/VDDCORE pin, which is used to stabilize the voltage regulator output voltage. The VCAP/VDDCORE pin must not be connected to VDD, and must have a capacitor between 4.7 μ F and 10 μ F, 16V connected to ground. The type can be ceramic or tantalum. Refer to **Section 26.0** "Electrical Characteristics" for additional information.

The placement of this capacitor should be close to the VCAP/VDDCORE. It is recommended that the trace length not exceed one-quarter inch (6 mm). Refer to **Section 23.2** "**On-Chip Voltage Regulator**" for details.

2.4 Master Clear (MCLR) Pin

The $\overline{\text{MCLR}}$ pin provides for two specific device functions:

- Device Reset
- Device programming and debugging

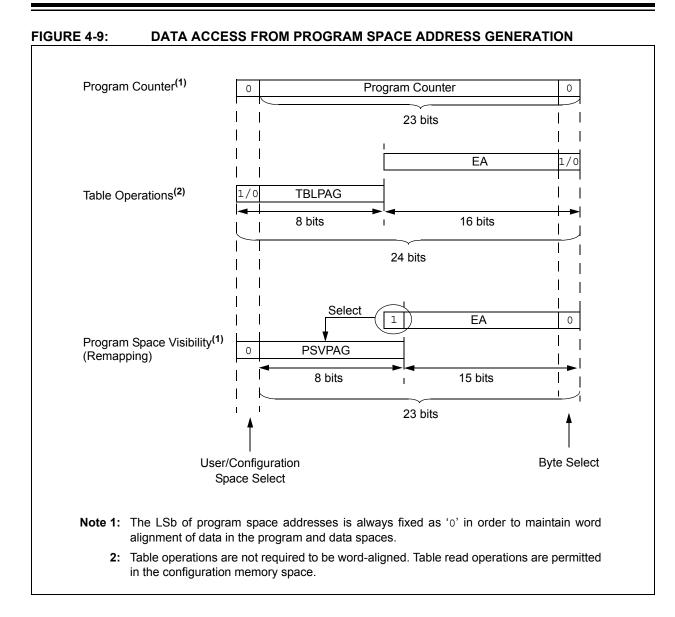
During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as shown in Figure 2-2, it is recommended that the capacitor C, be isolated from the $\overline{\text{MCLR}}$ pin during programming and debugging operations.

Place the components shown in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.

ote 1: $R \le 10 \text{ k}\Omega$ is recommended. A suggested starting value is $10 \text{ k}\Omega$. Ensure that the MCLR pin VIH and VIL specifications are met.

TABLE 4-23: ECAN2 REGISTER MAP WHEN C2CTRL1.WIN = 0 OR 1 FOR dsPIC33FJXXXMC708/710 DEVICES


File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C2CTRL1	0500	—	_	CSIDL	ABAT	_	RI	EQOP<2:0	>	OPM	/ODE<2:0	>	_	CANCAP	—	_	WIN	0480
C2CTRL2	0502	—	_	—	_		-	_	—	—	_	—		D	NCNT<4:0)>		0000
C2VEC	0504	—	_	—		FI	LHIT<4:0>			—				ICODE<6:0)>			0000
C2FCTRL	0506	C	MABS<2:0	>	—	-	-	—	—	-	—	—			FSA<4:0>			0000
C2FIFO	0508	_	_			FBP<5	:0>			_	_			FNRE	3<5:0>			0000
C2INTF	050A	—	_	TXBO	TXBP	RXBP	TXWAR	RXWAR	EWARN	IVRIF	WAKIF	ERRIF	_	FIFOIF	RBOVIF	RBIF	TBIF	0000
C2INTE	050C	_		—	—			_	_	IVRIE	WAKIE	ERRIE	—	FIFOIE	RBOVIE	RBIE	TBIE	0000
C2EC	050E				TERRCN	Γ<7:0>							RERRCI	NT<7:0>				0000
C2CFG1	0510	_		—	_			_	_	SJW<1	1:0>			BRP	<5:0>			0000
C2CFG2	0512	_	WAKFIL	—	_		SE	G2PH<2:0)>	SEG2PHTS	SAM	SE	G1PH<2	:0>	Р	RSEG<2:0)>	0000
C2FEN1	0514	FLTEN15	FLTEN14	FLTEN13	FLTEN12	FLTEN11	FLTEN10	FLTEN9	FLTEN8	FLTEN7	FLTEN6	FLTEN5	FLTEN4	FLTEN3	FLTEN2	FLTEN1	FLTEN0	FFFF
C2FMSKSEL1	0518	F7MSł	<<1:0>	F6MSI	K<1:0>	F5MSH	<1:0>	F4MSł	< <1:0>	F3MSK<	<1:0>	F2MSk	<1:0>	F1MS	<<1:0>	F0MS	K<1:0>	0000
C2FMSKSEL2	051A	F15MS	K<1:0>	F14MS	K<1:0>	F13MS	K<1:0>	F12MS	K<1:0>	F11MSK	<1:0>	F10MS	< <1:0>	F9MSł	<<1:0>	F8MS	K<1:0>	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-24: ECAN2 REGISTER MAP WHEN C2CTRL1.WIN = 0 FOR dsPIC33FJXXXMC708/710 DEVICES

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0500- 051E							See	e definition	when WIN	= x							
C2RXFUL1	0520	RXFUL15	RXFUL14	RXFUL13	RXFUL12	RXFUL11	RXFUL10	RXFUL9	RXFUL8	RXFUL7	RXFUL6	RXFUL5	RXFUL4	RXFUL3	RXFUL2	RXFUL1	RXFUL0	0000
C2RXFUL2	0522	RXFUL31	RXFUL30	RXFUL29	RXFUL28	RXFUL27	RXFUL26	RXFUL25	RXFUL24	RXFUL23	RXFUL22	RXFUL21	RXFUL20	RXFUL19	RXFUL18	RXFUL17	RXFUL16	0000
C2RXOVF1	0528	RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF09	RXOVF08	RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVF0	0000
C2RXOVF2	052A	RXOVF31	RXOVF30	RXOVF29	RXOVF28	RXOVF27	RXOVF26	RXOVF25	RXOVF24	RXOVF23	RXOVF22	RXOVF21	RXOVF20	RXOVF19	RXOVF18	RXOVF17	RXOVF16	0000
C2TR01CON	0530	TXEN1	TX ABAT1	TX LARB1	TX ERR1	TX REQ1	RTREN1	TX1PF	RI<1:0>	TXEN0	TX ABAT0	TX LARB0	TX ERR0	TX REQ0	RTREN0	TX0PF	81<1:0>	0000
C2TR23CON	0532	TXEN3	TX ABAT3	TX LARB3	TX ERR3	TX REQ3	RTREN3	TX3PF	RI<1:0>	TXEN2	TX ABAT2	TX LARB2	TX ERR2	TX REQ2	RTREN2	TX2PF	RI<1:0>	0000
C2TR45CON	0534	TXEN5	TX ABAT5	TX LARB5	TX ERR5	TX REQ5	RTREN5	TX5PF	RI<1:0>	TXEN4	TX ABAT4	TX LARB4	TX ERR4	TX REQ4	RTREN4	TX4PF	RI<1:0>	0000
C2TR67CON	0536	TXEN7	TX ABAT7	TX LARB7	TX ERR7	TX REQ7	RTREN7 TX7PRI<1:0> TXEN6 TX TX TX TX TX RTREN6 TX6PRI<1:0> ABAT6 LARB6 ERR6 REQ6							xxxx				
C2RXD	0540								Recieved	Data Word								xxxx
C2TXD	0542		Transmit Data Word xxx									xxxx						

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
		IC5IP<2:0>		_		IC4IP<2:0>	
bit 15							bit
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—		IC3IP<2:0>		_		DMA3IP<2:0>	
bit 7							bit
Legend:							
R = Readab	le bit	W = Writable I	oit	U = Unimpler	mented bit, rea	ad as '0'	
n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown
bit 15	Unimpleme	nted: Read as 'd)'				
bit 14-12	IC5IP<2:0>:	Input Capture C	hannel 5 Inte	errupt Priority b	its		
	111 = Interr	upt is priority 7 (ł	nighest priori	ty interrupt)			
	•						
	•						
		upt is priority 1					
		upt source is disa					
bit 11	-	nted: Read as 'o					
bit 10-8		Input Capture C			its		
	111 = Interr	upt is priority 7 (h	nignest priori	ty interrupt)			
	•						
	•						
		upt is priority 1 upt source is disa	abled				
bit 7		nted: Read as '					
bit 6-4		Input Capture C		errunt Priority b	its		
		upt is priority 7 (h					
	•		0 1	, ,			
	•						
	• 001 = Interr	upt is priority 1					
		upt source is disa	abled				
bit 3	Unimpleme	nted: Read as 'o)'				
bit 2-0	DMA3IP<2:	0>: DMA Channe	el 3 Data Tra	nsfer Complete	Interrupt Price	rity bits	
	111 = Interr	upt is priority 7 (ł	nighest priori	ty interrupt)			
	•						
	•						
		upt is priority 1					
	000 = Interr						

REGISTER 7-27: IPC12: INTERRUPT PRIORITY CONTROL REGISTER 12

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
		T8IP<2:0>		—		MI2C2IP<2:0>	
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		SI2C2IP<2:0>		—		T7IP<2:0>	
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15	Unimpleme	ented: Read as '	0'				
bit 14-12	-	Timer8 Interrupt					
		rupt is priority 7 (•	y interrupt)			
	•						
	•						
	001 = Interr	rupt is priority 1					
	000 = Interr	rupt source is dis	abled				
bit 11	Unimpleme	ented: Read as '	0'				
bit 10-8		:0>: I2C2 Master			S		
	111 = Interr	rupt is priority 7 (highest priorit	y interrupt)			
	•						
	•						
		rupt is priority 1	a la la al				
L:1 7		rupt source is dis					
bit 7	-	ented: Read as '		nt Drievity bite			
bit 6-4		0>: I2C2 Slave E rupt is priority 7 (
	•		nightest priorit	y menupi)			
	•						
	•	rupt in priority 1					
		rupt is priority 1 rupt source is dis	abled				
bit 3		ented: Read as '					
bit 2-0	-	Timer7 Interrupt					
		rupt is priority 7 (-	y interrupt)			
	•						
	•						
	001 = Interr	rupt is priority 1					
	000 = Interr						

REGISTER 9-3: PLLFBD: PLL FEEDBACK DIVISOR REGISTER

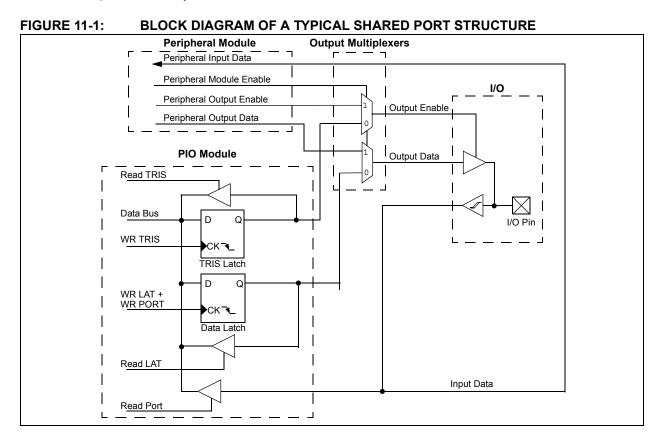
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0 ⁽¹⁾
	—	_		_	_	_	PLLDIV<8>
bit 15		·					bit 8
R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
			PLLDI	V<7:0>			
bit 7							bit 0
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unl	known
bit 15-9 bit 8-0	PLLDIV<8:0 000000000 00000001 000000010 • •	= 2 = 3		(also denoted	as 'M', PLL mu	ltiplier)	
	111111111	= 513					

11.0 I/O PORTS

Note: This data sheet summarizes the features of the dsPIC33FJXXXMCX06/X08/X10 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 10. "I/O Ports" (DS70193) in the "dsPIC33F Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

All of the device pins (except VDD, VSS, MCLR and OSC1/CLKIN) are shared between the peripherals and the parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

11.1 Parallel I/O (PIO) Ports

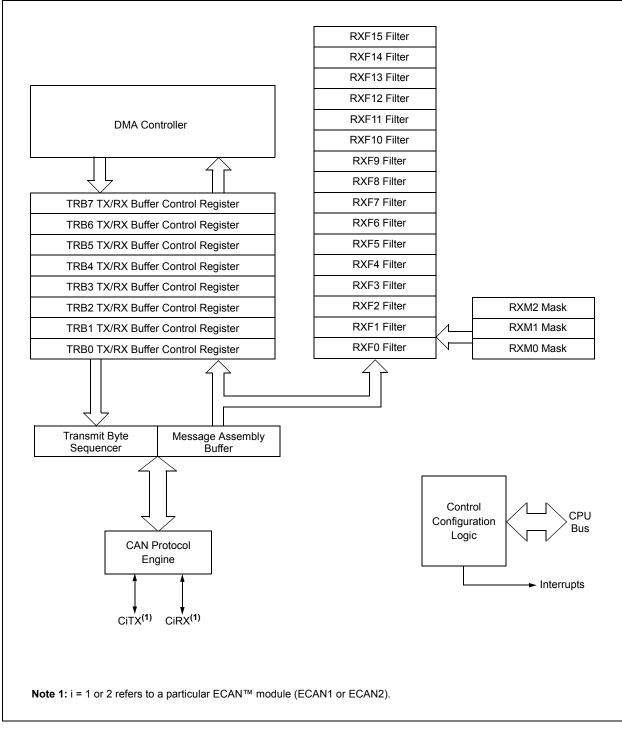

A parallel I/O port that shares a pin with a peripheral is, in general, subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through," in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 11-1 shows how ports are shared with other peripherals and the associated I/O pin to which they are connected. When a peripheral is enabled and actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin may be read, but the output driver for the parallel port bit will be disabled. If a peripheral is enabled but the peripheral is not actively driving a pin, that pin may be driven by a port.

All port pins have three registers directly associated with their operation as digital I/O. The data direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx), read the latch. Writes to the latch, write the latch. Reads from the port (PORTx), read the port pins, while writes to the port pins, write the latch.

Any bit and its associated data and control registers that are not valid for a particular device will be disabled. That means the corresponding LATx and TRISx registers and the port pins will read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs. An example is the INT4 pin.

Note: The voltage on a digital input pin can be between -0.3V to 5.6V.



© 2009 Microchip Technology Inc.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FAOV4H	FAOV4L	FAOV3H	FAOV3L	FAOV2H	FAOV2L	FAOV1H	FAOV1L
bit 15							bit 8
R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
FLTAM	—		—	FAEN4	FAEN3	FAEN2	FAEN1
bit 7							bit (
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 7		A input pin fur		Cycle-by-Cycle		ied in FLTACON	J<15 [:] 8>
						ed in FLTACON	J<15·8>
bit 6-4	Unimplemen	ted: Read as '	0'				
bit 3	FAEN4: Fault	t Input A Enabl	e bit				
				by Fault Input blied by Fault In			
bit 2	FAEN3: Fault	t Input A Enabl	e bit				
				by Fault Input blied by Fault In			
bit 1	FAEN2: Fault	t Input A Enabl	e bit				
				by Fault Input blied by Fault In			
bit 0		t Input A Enabl					
				by Fault Input blied by Fault In			

REGISTER 16-9: PxFLTACON: FAULT A CONTROL REGISTER

FIGURE 21-1: ECAN™ MODULE BLOCK DIAGRAM

	,15)	ICID: LOAN					(11 = 0, 1,
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3
bit 15	·		·	· ·			bit 8
R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x
SID2	SID1	SID0		EXIDE	_	EID17	EID16
bit 7							bit (
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown
bit 15-5	SID<10:0>: S	Standard Identif	ier bits				
	1 = Message	address bit SI	Ox must be '1	' to match filter			
	0 = Message	address bit SI	Ox must be '0	' to match filter			
bit 4	Unimplemen	ted: Read as '	0'				
bit 3	EXIDE: Exte	nded Identifier	Enable bit				
	<u> If MIDE = 1 th</u>	nen:					
				identifier addres			
			ith standard i	dentifier addres	ses		
	$\frac{\text{If MIDE} = 0 \text{ th}}{1000 \text{ m}}$						
	Ignore EXIDE						
bit 2	•	ted: Read as '					
bit 1-0		Extended Ider					
				' to match filter ' to match filter			

REGISTER 21-16: CIRXFnSID: ECAN™ ACCEPTANCE FILTER n STANDARD IDENTIFIER (n = 0, 1,

REGISTER 21-17: CIRXFnEID: ECAN™ ACCEPTANCE FILTER n EXTENDED IDENTIFIER (n = 0, 1, ..., 15)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8
bit 15					•		bit 8

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EID7 | EID6 | EID5 | EID4 | EID3 | EID2 | EID1 | EID0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0

EID<15:0>: Extended Identifier bits

- Massage address hit FIDy must be '1'

1 = Message address bit EIDx must be '1' to match filter0 = Message address bit EIDx must be '0' to match filter

Bit Field	Register	Description
HPOL	FPOR	Motor Control PWM High Side Polarity bit 1 = PWM module high side output pins have active-high output polarity 0 = PWM module high side output pins have active-low output polarity
LPOL	FPOR	Motor Control PWM Low Side Polarity bit 1 = PWM module low side output pins have active-high output polarity 0 = PWM module low side output pins have active-low output polarity
FPWRT<2:0>	FPOR	Power-on Reset Timer Value Select bits 111 = PWRT = 128 ms 110 = PWRT = 64 ms 101 = PWRT = 32 ms 100 = PWRT = 16 ms 011 = PWRT = 8 ms 010 = PWRT = 4 ms 001 = PWRT = 2 ms 000 = PWRT = Disabled
JTAGEN	FICD	JTAG Enable bits 1 = JTAG enabled 0 = JTAG disabled
ICS<1:0>	FICD	ICD Communication Channel Select bits 11 = Communicate on PGEC1 and PGED1 10 = Communicate on PGEC2 and PGED2 01 = Communicate on PGEC3 and PGED3 00 = Reserved

TABLE 23-2: dsPIC33FJXXXMCX06/X08/X10 CONFIGURATION BITS DESCRIPTION (CONTINUED)

23.5 JTAG Interface

dsPIC33FJXXXMCX06/X08/X10 devices implement a JTAG interface, which supports boundary scan device testing, as well as in-circuit programming. Detailed information on the interface will be provided in future revisions of the document.

23.6 Code Protection and CodeGuard™ Security

The dsPIC33FJXXXMCX06/X08/X10 devices offer the advanced implementation of CodeGuard[™] Security. CodeGuard Security enables multiple parties to securely share resources (memory, interrupts and peripherals) on a single chip. This feature helps protect individual Intellectual Property in collaborative system designs.

When coupled with software encryption libraries, CodeGuard Security can be used to securely update Flash even when multiple IP are resident on the single chip. The code protection features vary depending on the actual device implemented. The following sections provide an overview of these features.

The code protection features are controlled by the Configuration registers: FBS, FSS and FGS.

Note: Refer to Section 23. "CodeGuard™ Security" (DS70199) in the "dsPlC33F Family Reference Manual" for further information on usage, configuration and operation of CodeGuard Security.

23.7 In-Circuit Serial Programming

dsPIC33FJXXXMCX06/X08/X10 family digital signal controllers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data and three other lines for power, ground and the programming sequence. This allows customers to manufacture boards with unprogrammed devices and then program the digital signal controller just before shipping the product. This also allows the most recent firmware or a custom firmware, to be programmed. Please refer to the "*dsPIC33F/PIC24H Flash Programming Specification*" (DS70152) document for details about ICSP.

Any one out of three pairs of programming clock/data pins may be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

23.8 In-Circuit Debugger

When MPLAB[®] ICD 2 is selected as a debugger, the in-circuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the PGECx (Emulation/Debug Clock) and PGEDx (Emulation/Debug Data) pin functions.

Any one out of three pairs of debugging clock/data pins may be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

To use the in-circuit debugger function of the device, the design must implement ICSP connections to MCLR, VDD, Vss and the PGECx/PGEDx pin pair. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins.

TABLE 24-2 :	INSTRUCTION SET OVERVIEW (CONTINUED)

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
66	RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N,Z
67	SAC	SAC	Acc,#Slit4,Wdo	Store Accumulator	1	1	None
		SAC.R	Acc,#Slit4,Wdo	Store Rounded Accumulator	1	1	None
68	SE	SE	Ws,Wnd	Wnd = sign-extended Ws	1	1	C,N,Z
69	SETM	SETM	f	f = 0xFFFF	1	1	None
		SETM	WREG	WREG = 0xFFFF	1	1	None
		SETM	Ws	Ws = 0xFFFF	1	1	None
70	SFTAC	SFTAC	Acc,Wn	Arithmetic Shift Accumulator by (Wn)	1	1	OA,OB,OAB SA,SB,SAB
		SFTAC	Acc,#Slit6	Arithmetic Shift Accumulator by Slit6	1	1	OA,OB,OAB SA,SB,SAB
71	SL	SL	f	f = Left Shift f	1	1	C,N,OV,Z
		SL	f,WREG	WREG = Left Shift f	1	1	C,N,OV,Z
		SL	Ws,Wd	Wd = Left Shift Ws	1	1	C,N,OV,Z
		SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N,Z
		SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N,Z
72 SUB	SUB	SUB	Асс	Subtract Accumulators	1	1	OA,OB,OAB SA,SB,SAB
		SUB	f	f = f – WREG	1	1	C,DC,N,OV,
		SUB	f,WREG	WREG = f – WREG	1	1	C,DC,N,OV,
		SUB	#lit10,Wn	Wn = Wn - Iit10	1	1	C,DC,N,OV,
		SUB	Wb,Ws,Wd	Wd = Wb – Ws	1	1	C,DC,N,OV,
		SUB	Wb,#lit5,Wd	Wd = Wb – lit5	1	1	C,DC,N,OV,
73	SUBB	SUBB	f	$f = f - WREG - (\overline{C})$	1	1	C,DC,N,OV,
		SUBB	f,WREG	WREG = $f - WREG - (\overline{C})$	1	1	C,DC,N,OV,
		SUBB	#lit10,Wn	$Wn = Wn - Iit10 - (\overline{C})$	1	1	C,DC,N,OV,
		SUBB	Wb,Ws,Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C,DC,N,OV,
		SUBB	Wb,#lit5,Wd	$Wd = Wb - lit5 - (\overline{C})$	1	1	C,DC,N,OV,
74	SUBR	SUBR	f	f = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	f,WREG	WREG = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	Wb,Ws,Wd	Wd = Ws – Wb	1	1	C,DC,N,OV,Z
		SUBR	Wb,#lit5,Wd	Wd = lit5 – Wb	1	1	C,DC,N,OV,Z
75	SUBBR	SUBBR	f	$f = WREG - f - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	f,WREG	WREG = WREG – f – (\overline{C})	1	1	C,DC,N,OV,Z
		SUBBR	Wb,Ws,Wd	$Wd = Ws - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	Wb,#lit5,Wd	$Wd = lit5 - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
76	SWAP	SWAP.b	Wn	Wn = nibble swap Wn	1	1	None
		SWAP	Wn	Wn = byte swap Wn	1	1	None
77	TBLRDH	TBLRDH	Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	2	None
78	TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	2	None
79	TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None
30	TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None
31	ULNK	ULNK		Unlink Frame Pointer	1	1	None
32	XOR	XOR	f	f = f .XOR. WREG	1	1	N,Z
		XOR	f,WREG	WREG = f .XOR. WREG	1	1	N,Z
		XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N,Z
		XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N,Z
		XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N,Z
83	ZE	ZE	Ws,Wnd	Wnd = Zero-extend Ws	1	1	C,Z,N

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial							
Parameter No.	Typical ⁽¹⁾	Мах	Units Conditions							
Idle Current (IIDLE): Core OFF Clock ON Base Current ⁽²⁾										
DC40d	3	25	mA	-40°C						
DC40a	3	25	mA	+25°C	3.3V	10 MIPS				
DC40b	3	25	mA	+85°C	5.5V					
DC41d	4	25	mA	-40°C		16 MIPS				
DC41a	5	25	mA	+25°C	3.3V					
DC41b	6	25	mA	+85°C						
DC42d	8	25	mA	-40°C						
DC42a	9	25	mA	+25°C	3.3V	20 MIPS				
DC42b	10	25	mA	+85°C						
DC43a	15	25	mA	+25°C						
DC43d	15	25	mA	-40°C	3.3V	30 MIPS				
DC43b	15	25	mA	+85°C	7					
DC44d	16	25	mA	-40°C						
DC44a	16	25	mA	+25°C	3.3V	40 MIPS				
DC44b	16	25	mA	+85°C	7					

TABLE 26-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated.

2: Base IIDLE current is measured with core off, clock on and all modules turned off. Peripheral Module Disable SFR registers are zeroed. All I/O pins are configured as inputs and pulled to Vss.

TABLE 26-10: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial						
Param No. Symbol Characteristic			Min	Тур	Мах	Units	Conditions		
-	Vol	Output Low Voltage							
DO10		I/O ports	—	—	0.4	V	IOL = 2mA, VDD = 3.3V		
DO16		OSC2/CLKO	—	—	0.4	V	IOL = 2mA, VDD = 3.3V		
	Voн	Output High Voltage							
DO20		I/O ports	2.40	—	—	V	Iон = -2.3 mA, Vdd = 3.3V		
DO26		OSC2/CLKO	2.41	_	—	V	Iон = -1.3 mA, Vdd = 3.3V		

TABLE 26-11: ELECTRICAL CHARACTERISTICS: BOR

DC CHARACTERISTICS			Standard Opera (unless otherw Operating temp	ise state	ed)			Industrial
Param No.	Symbol	Characteristic		Min ⁽¹⁾	Тур	Max ⁽¹⁾	Units	Conditions
BO10	VBOR	BOR Event on VDD transition high-to-low BOR event is tied to VDD core voltage decrease		2.40	_	2.55	V	_

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

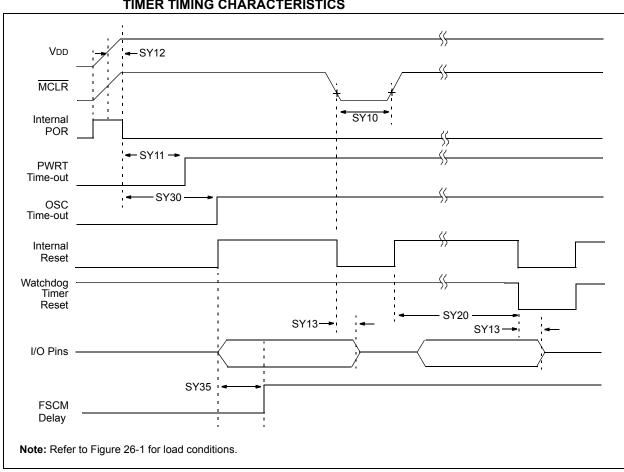
TABLE 26-17: PLL CLOCK TIMING SPECIFICATIONS (VDD = 3.0V TO 3.6V)

AC CHARACTERISTICS			Standard (unless of Operating	herwise s	stated)			or Industrial
Param No. Symbol Characteristic			Min	Typ ⁽¹⁾	Max	Units	Conditions	
OS50	Fplli	PLL Voltage Controlled Oscillator (VCO) Input Frequency Range ⁽²⁾		0.8		8.0	MHz	ECPLL, HSPLL, XTPLL modes
OS51	Fsys	On-Chip VCO System Frequency		100	_	200	MHz	_
OS52	TLOCK	PLL Start-up Time (Lock Time)		0.9	1.5	3.1	ms	—
OS53	DCLK	CLKO Stability (Jitter)		-3.0	0.5	3.0	%	Measured over 100 ms period

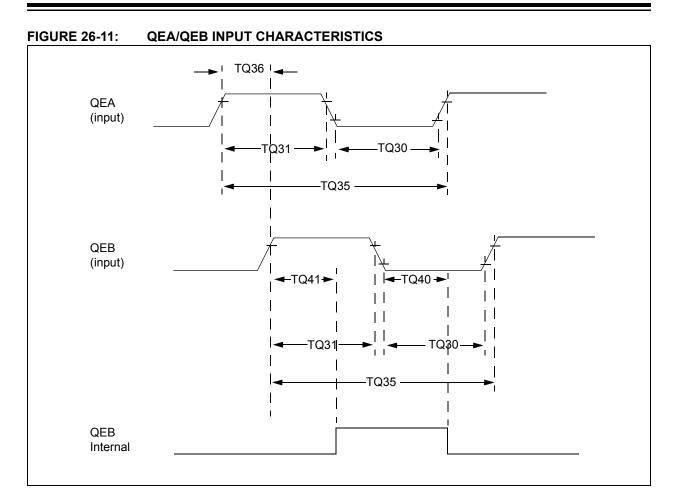
Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

TABLE 26-18: AC CHARACTERISTICS: INTERNAL FRC ACCURACY

АС СНА	RACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial								
Param No.	Characteristic	Min	Тур	Max	Units	Condit	ions				
	Internal FRC Accuracy	@ FRC Fr	equency	, = 7.37 N	1Hz ^(1,2)						
F20	FRC	-2	2 - +2 % $-40^{\circ}C \le TA \le +85^{\circ}C$ VDD = $3.0-3.6V$								


Note 1: Frequency calibrated at 25°C and 3.3V. TUN bits can be used to compensate for temperature drift.

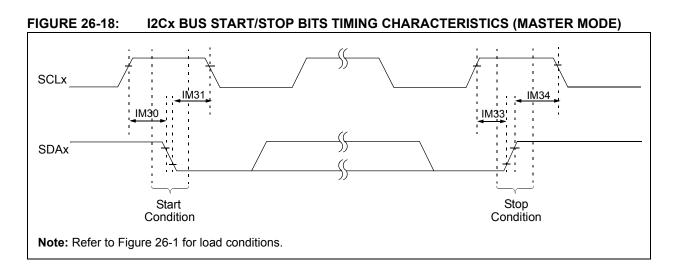
2: FRC set to initial frequency of 7.37 MHz (+1-2%) at 25° C FRC.


TABLE 26-19: INTERNAL LPRC ACCURACY

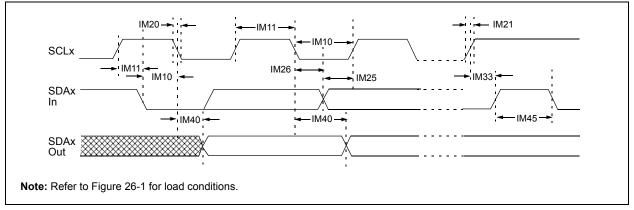
AC CHARACTERISTICSStandard Operating Conditions: $3.0V$ to $3.6V$ (unless other Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial									
Param No.	Characteristic	Min	Тур	Max	Units	Condit	ions		
	LPRC @ 32.768 kHz ⁽¹⁾	LPRC @ 32.768 kHz ⁽¹⁾							
F21		-20	±6	+20	%	$-40^{\circ}C \le TA \le +85^{\circ}C \qquad VDD = 3.0-3.6V$			

Note 1: Change of LPRC frequency as VDD changes.

FIGURE 26-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING CHARACTERISTICS


TABLE 26-29: QUADRATURE DECODER TIMING REQUIREMENTS

			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param No.	Symbol	Characteristic ⁽¹⁾		Тур ⁽²⁾	Max	Units	Conditions	
TQ30	TQUL	Quadrature Input Low Time		6 Tcy	_	ns	—	
TQ31	ΤουΗ	Quadrature Input High Time		6 Tcy	_	ns	—	
TQ35	ΤουΙΝ	Quadrature Input Period		12 TCY	_	ns	—	
TQ36	ΤουΡ	Quadrature Phase Period		3 Tcy	_	ns	—	
TQ40	TQUFL	Filter Time to Recognize Low, with Digital Filter		3 * N * Tcy	_	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 3)	
TQ41	TQUFH	Filter Time to Recognize Hig with Digital Filter	h,	3 * N * Tcy	_	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 3)	


Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: N = Index Channel Digital Filter Clock Divide Select bits. Refer to Section 15. "Quadrature Encoder Interface (QEI)" (DS70208) in the "dsPIC33F Family Reference Manual".

TABLE 26-42: ADC CONVERSION (12-BIT MODE) TIMING REQUIREMENTS

АС СНА	AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industria					
Param No.	Symbol	Characteristic	Min.	Typ ⁽¹⁾	Max.	Units	Conditions		
		Cloc	k Paramet	ers					
AD50a	Tad	ADC Clock Period	117.6			ns	_		
AD51a	tRC	ADC Internal RC Oscillator Period	—	250	_	ns	_		
		Con	version R	ate					
AD55a	tCONV	Conversion Time		14 Tad			_		
AD56a	FCNV	Throughput Rate	_	_	500	ksps	_		
AD57a	TSAMP	Sample Time	3.0 Tad				_		
		Timin	g Parame	ters					
AD60a	tPCS	Conversion Start from Sample Trigger ⁽²⁾	2.0 TAD	—	3.0 Tad	—	_		
AD61a	tpss	Sample Start from Setting Sample (SAMP) bit ⁽²⁾	2.0 TAD	—	3.0 Tad	_	—		
AD62a	tcss	Conversion Completion to Sample Start (ASAM = 1) ⁽²⁾	-	0.5 Tad	—	—	_		
AD63a	tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ^(2,3)	—	—	20	μs	_		

Note 1: These parameters are characterized but not tested in manufacturing.

2: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

3: tDPU is the time required for the ADC module to stabilize when it is turned on (AD1CON1<ADON> = 1). During this time, the ADC result is indeterminate.