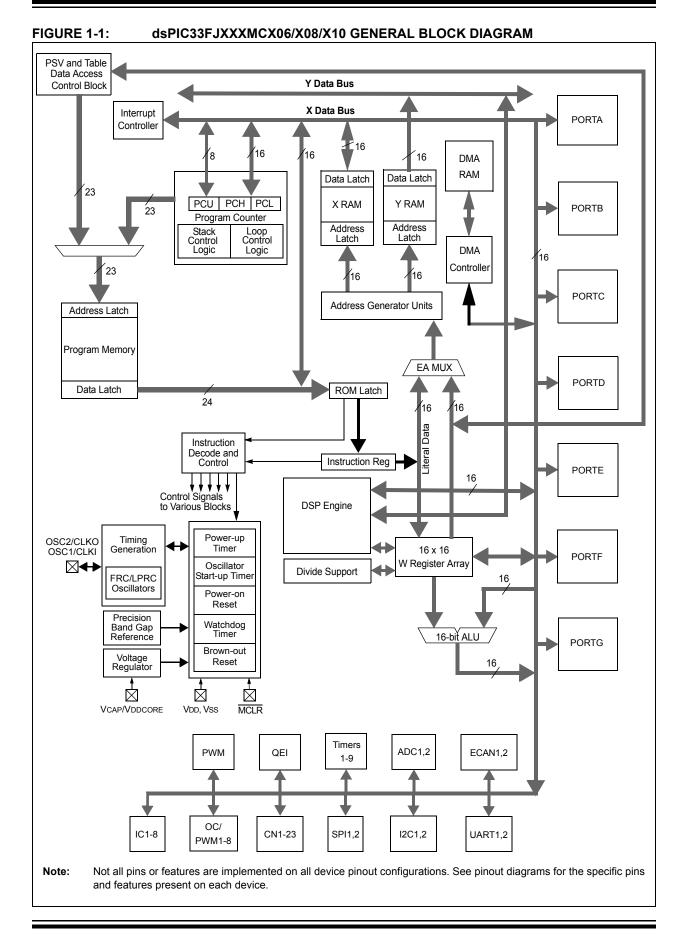


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	85
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	- ·
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 24x10/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64mc710-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.6.2.4 Data Space Write Saturation

In addition to adder/subtracter saturation, writes to data space can also be saturated – but without affecting the contents of the source accumulator. The data space write saturation logic block accepts a 16-bit, 1.15 fractional value from the round logic block as its input, together with overflow status from the original source (accumulator) and the 16-bit round adder. These inputs are combined and used to select the appropriate 1.15 fractional value as output to write to data space memory.

If the SATDW bit in the CORCON register is set, data (after rounding or truncation) is tested for overflow and adjusted accordingly. For input data greater than 0x007FFF, data written to memory is forced to the maximum positive 1.15 value, 0x7FFF. For input data less than 0xFF8000, data written to memory is forced to the maximum negative 1.15 value, 0x8000. The Most Significant bit of the source (bit 39) is used to determine the sign of the operand being tested.

If the SATDW bit in the CORCON register is not set, the input data is always passed through unmodified under all conditions.

3.6.3 BARREL SHIFTER

The barrel shifter is capable of performing up to 16-bit arithmetic or logic right shifts, or up to 16-bit left shifts in a single cycle. The source can be either of the two DSP accumulators or the X bus (to support multi-bit shifts of register or memory data).

The shifter requires a signed binary value to determine both the magnitude (number of bits) and direction of the shift operation. A positive value shifts the operand right. A negative value shifts the operand left. A value of '0' does not modify the operand.

The barrel shifter is 40 bits wide, thereby obtaining a 40-bit result for DSP shift operations and a 16-bit result for MCU shift operations. Data from the X bus is presented to the barrel shifter between bit positions 16 to 31 for right shifts and between bit positions 0 to 16 for left shifts.

	R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0
TRAPR	IOPUWR	—	_	—	_	_	VREGS
bit 15	·						bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1
EXTR	SWR	SWDTEN ⁽²⁾	WDTO	SLEEP	IDLE	BOR	POR
bit 7							bit
Lanandı							
Legend: R = Readable	, bit	W = Writable b	.i+	II – Unimplor	nonted hit read	aa 'O'	
-n = Value at		'1' = Bit is set	Л	'0' = Bit is cle	nented bit, read	x = Bit is unk	nown
	FOR				areu		
bit 15	TRAPR: Trat	o Reset Flag bit					
		onflict Reset has	soccurred				
	0 = A Trap C	onflict Reset has	s not occurre	d			
bit 14		egal Opcode or l			-		
	•	al opcode detec Pointer caused		al address mo	ode or uninitiali	zed W registe	er used as a
		l opcode or unin		eset has not or	ccurred		
bit 13-9	-	ted: Read as '0					
bit 8	VREGS: Volt	age Regulator S	tandby Durir	ig Sleep bit			
	•	regulator is activ	•	•			
	-	regulator goes in	_	node during Sle	еер		
bit 7		nal Reset (MCLF					
		Clear (pin) Reserved Clear (pin) Reserved					
bit 6		are Reset (Instru					
		instruction has l					
		instruction has i					
bit 5		oftware Enable/[Disable of WI	DT bit ⁽²⁾			
	1 = WDT is e 0 = WDT is d						
		hdog Timer Tim	e-out Flag bi	t			
bit 4		-	-	•			
bit 4		e-out has occurr	ed				
bit 4		e-out has occurr e-out has not oc					
bit 4 bit 3	0 = WDT time		curred				
	0 = WDT time SLEEP: Wak 1 = Device ha	e-out has not oc ae-up from Sleep as been in Sleep	curred Flag bit mode				
bit 3	0 = WDT time SLEEP: Wak 1 = Device ha 0 = Device ha	e-out has not oc e-up from Sleep as been in Sleep as not been in S	curred Flag bit mode leep mode				
bit 3	0 = WDT time SLEEP: Wak 1 = Device ha 0 = Device ha IDLE: Wake-	e-out has not oc ae-up from Sleep as been in Sleep as not been in S up from Idle Flag	curred Flag bit mode leep mode				
bit 3	0 = WDT time SLEEP: Wak 1 = Device ha 0 = Device ha IDLE: Wake- 1 = Device w	e-out has not oc e-up from Sleep as been in Sleep as not been in S	curred Flag bit mode leep mode g bit				
bit 3 bit 2	0 = WDT time SLEEP: Wak 1 = Device ha 0 = Device ha IDLE: Wake- 1 = Device w 0 = Device w	e-out has not oc ae-up from Sleep as been in Sleep as not been in S up from Idle Flag as in Idle mode	curred Flag bit mode leep mode g bit				

2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

FIGURE 7-1:	dsPIC33FJXXXMCX06/X08/X10 INTERRUPT VECTOR TABLE

1		-	
	Reset – GOTO Instruction	0x000000	
	Reset – GOTO Address	0x000002	
	Reserved	0x000004	
	Oscillator Fail Trap Vector		
	Address Error Trap Vector		
	Stack Error Trap Vector		
	Math Error Trap Vector		
	DMA Error Trap Vector	_	
	Reserved	_	
	Reserved		
	Interrupt Vector 0	0x000014 —	1
	Interrupt Vector 1	_	
	~	_	
	~	-	
	~		
	Interrupt Vector 52	0x00007C	Interrupt Vector Table (IVT) ⁽¹⁾
>	Interrupt Vector 53	0x00007E	
orit	Interrupt Vector 54	0x000080	
Dric	~	_	
er	~	-	
Decreasing Natural Order Priority			
a	Interrupt Vector 116	0x0000FC 0x0000FE	
tura	Interrupt Vector 117	0x0000FE	_
Nai	Reserved Reserved	0x000100 0x000102	
βĽ	Reserved	0000102	
asii	Oscillator Fail Trap Vector	-	
crea	Address Error Trap Vector	-	
Oec	Stack Error Trap Vector	-	
-	Math Error Trap Vector	-	
	DMA Error Trap Vector	-	
	Reserved	-	
	Reserved	-	
	Interrupt Vector 0	0x000114 —	-
	Interrupt Vector 1		
	~		
	~	1	
	~	1	Alternate Interrupt Vector Table (AIVT) ⁽¹⁾
	Interrupt Vector 52	0x00017C	, ,
	Interrupt Vector 53	0x00017E	
	Interrupt Vector 54	0x000180	
	~		
	~	1	
	~	1	
	Interrupt Vector 116		
↓ U	Interrupt Vector 117	0x0001FE -	1
V	Start of Code	0x000200	
Note 1: S	ee Table 7-1 for the list of impleme	anted interrupt	(ectors
Note T: S		enteu interrupt v	

ALTIVT bit 15	DISI						
bit 15	-	—	l —	—	—	—	—
DIL 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		—	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	iown
bit 15	ALTIVT: Enat	ole Alternate In	terrupt Vector	Table bit			
		nate vector tab					
		dard (default) v					
bit 14		struction Statu					
		ruction is active ruction is not a	-				
bit 13-5		ted: Read as '					
bit 4	-			Polarity Select	bit		
		on negative ed	•	· · · , · · · · ·			
	0 = Interrupt o	on positive edg	e				
bit 3		•	•	Polarity Select	bit		
		on negative ed					
bit 2	-	on positive edg		Polarity Select	hit		
		on negative ed	•	Folanty Select	bit		
		on positive edg					
bit 1	INT1EP: Exte	ernal Interrupt 1	Edge Detect	Polarity Select	bit		
		on negative ed					
	-	on positive edg					
bit 0			•	Polarity Select	bit		
		on negative ed on positive edg					

REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE				
bit 15		·			•	÷	bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INTOIE				
bit 7	UC2IE	ICZIE	DIVIAULE		OCTIE	ICTIE	bit 0				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'					
-n = Value at		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	iown				
iii valao at		1 Bitle co	•	o Dicio dia							
bit 15	Unimplemen	ted: Read as '	0'								
bit 14	DMA1IE: DM	A Channel 1 D	ata Transfer C	Complete Interi	rupt Enable bit						
		equest enable									
		equest not en									
bit 13				rupt Enable bit							
	 1 = Interrupt request enabled 0 = Interrupt request not enabled 										
bit 12	•	RT1 Transmitte		able bit							
	1 = Interrupt request enabled										
	0 = Interrupt r	equest not en	abled								
bit 11	U1RXIE: UART1 Receiver Interrupt Enable bit										
	 1 = Interrupt request enabled 0 = Interrupt request not enabled 										
bit 10	-	Event Interrup									
		equest enable									
		equest not en									
bit 9	SPI1EIE: SPI	1 Error Interru	pt Enable bit								
	1 = Interrupt request enabled										
	•	equest not en									
bit 8	T3IE: Timer3 Interrupt Enable bit										
	 1 = Interrupt request enabled 0 = Interrupt request not enabled 										
bit 7	-	Interrupt Enab									
		equest enable									
	0 = Interrupt r	equest not en	abled								
bit 6	•	ut Compare Ch		upt Enable bit							
		equest enable									
bit 5	•	equest not en Capture Chann		Enabla bit							
DIL 5	•	equest enable	•								
		request not en									
bit 4	DMA0IE: DM	A Channel 0 D	ata Transfer C	Complete Interi	rupt Enable bit						
		equest enable									
		equest not en									
bit 3		Interrupt Enab									
		equest enable equest not en									

REGISTER 8-2: DMAxREQ: DMA CHANNEL x IRQ SELECT REGISTER

R/W-0	U-0						
FORCE ⁽¹⁾	—	—	—	—	—	—	—
bit 15							bit 8

U-0	R/W-0						
—	IRQSEL6 ⁽²⁾	IRQSEL5 ⁽²⁾	IRQSEL4 ⁽²⁾	IRQSEL3 ⁽²⁾	IRQSEL2 ⁽²⁾	IRQSEL1 ⁽²⁾	IRQSEL0 ⁽²⁾
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15 **FORCE:** Force DMA Transfer bit⁽¹⁾

1 = Force a single DMA transfer (Manual mode)

0 = Automatic DMA transfer initiation by DMA request

bit 14-7 Unimplemented: Read as '0'

- bit 6-0 IRQSEL<6:0>: DMA Peripheral IRQ Number Select bits⁽²⁾ 0000000-1111111 = DMAIRQ0-DMAIRQ127 selected to be Channel DMAREQ
 - **Note 1:** The FORCE bit cannot be cleared by the user. The FORCE bit is cleared by hardware when the forced DMA transfer is complete.
 - 2: See Table 8-1 for a complete listing of IRQ numbers for all interrupt sources.

9.1 CPU Clocking System

There are seven system clock options provided by the dsPIC33FJXXXMCX06/X08/X10:

- FRC Oscillator
- · FRC Oscillator with PLL
- Primary (XT, HS or EC) Oscillator
- Primary Oscillator with PLL
- Secondary (LP) Oscillator
- LPRC Oscillator
- · FRC Oscillator with postscaler

9.1.1 SYSTEM CLOCK SOURCES

The FRC (Fast RC) internal oscillator runs at a nominal frequency of 7.37 MHz. The user software can tune the FRC frequency. User software can optionally specify a factor (ranging from 1:2 to 1:256) by which the FRC clock frequency is divided. This factor is selected using the FRCDIV<2:0> (CLKDIV<10:8>) bits.

The primary oscillator can use one of the following as its clock source:

- 1. XT (Crystal): Crystals and ceramic resonators in the range of 3 MHz to 10 MHz. The crystal is connected to the OSC1 and OSC2 pins.
- 2. HS (High-Speed Crystal): Crystals in the range of 10 MHz to 40 MHz. The crystal is connected to the OSC1 and OSC2 pins.
- 3. EC (External Clock): External clock signal is directly applied to the OSC1 pin.

The secondary (LP) oscillator is designed for low power and uses a 32.768 kHz crystal or ceramic resonator. The LP oscillator uses the SOSCI and SOSCO pins.

The LPRC (Low-Power RC) internal oscillator runs at a nominal frequency of 32.768 kHz. It is also used as a reference clock by the Watchdog Timer (WDT) and Fail-Safe Clock Monitor (FSCM).

The clock signals generated by the FRC and primary oscillators can be optionally applied to an on-chip Phase Locked Loop (PLL) to provide a wide range of output frequencies for device operation. PLL configuration is described in **Section 9.1.3 "PLL Configuration**".

The FRC frequency depends on the FRC accuracy (see Table 26-19) and the value of the FRC Oscillator Tuning register (see Register 9-4).

9.1.2 SYSTEM CLOCK SELECTION

The oscillator source that is used at a device Power-on Reset event is selected using Configuration bit settings. The oscillator Configuration bit settings are located in the Configuration registers in the program memory. (Refer to **Section 23.1 "Configuration Bits"** for further details.) The Initial Oscillator Selection Configuration bits, FNOSC<2:0> (FOSCSEL<2:0>), and the Primary Oscillator Mode Select Configuration bits, POSCMD<1:0> (FOSC<1:0>), select the oscillator source that is used at a Power-on Reset. The FRC primary oscillator is the default (unprogrammed) selection.

The Configuration bits allow users to choose between twelve different clock modes, shown in Table 9-1.

The output of the oscillator (or the output of the PLL if a PLL mode has been selected), Fosc, is divided by 2 to generate the device instruction clock (FcY) and the peripheral clock time base (FP). FcY defines the operating speed of the device, and speeds up to 40 MHz are supported by the dsPIC33FJXXXMCX06/ X08/X10 architecture.

Instruction execution speed or device operating frequency, FCY, is given by the following equation:

EQUATION 9-1: DEVICE OPERATING FREQUENCY

 $FCY = \frac{FOSC}{2}$

9.1.3 PLL CONFIGURATION

The primary oscillator and internal FRC oscillator can optionally use an on-chip PLL to obtain higher speeds of operation. The PLL provides a significant amount of flexibility in selecting the device operating speed. A block diagram of the PLL is shown in Figure 9-2.

The output of the primary oscillator or FRC, denoted as 'FIN', is divided down by a prescale factor (N1) of 2, 3, ... or 33 before being provided to the PLL's Voltage Controlled Oscillator (VCO). The input to the VCO must be selected to be in the range of 0.8 MHz to 8 MHz. Since the minimum prescale factor is 2, this implies that FIN must be chosen to be in the range of 1.6 MHz to 16 MHz. The prescale factor, 'N1', is selected using the PLLPRE<4:0> bits (CLKDIV<4:0>).

The PLL Feedback Divisor, selected using the PLLDIV<8:0> bits (PLLFBD<8:0>), provides a factor, 'M', by which the input to the VCO is multiplied. This factor must be selected such that the resulting VCO output frequency is in the range of 100 MHz to 200 MHz.

The VCO output is further divided by a postscale factor, 'N2'. This factor is selected using the PLLPOST<1:0> bits (CLKDIV<7:6>). 'N2' can be either 2, 4 or 8, and must be selected such that the PLL output frequency (Fosc) is in the range of 12.5 MHz to 80 MHz, which generates device operating speeds of 6.25-40 MIPS.

For a primary oscillator or FRC oscillator output, 'FIN', the PLL output, 'FOSC', is given by the following equation:

EQUATION 9-2: Fosc CALCULATION

 $FOSC = FIN \cdot \left(\frac{M}{N1 \cdot N2}\right)$

10.2.2 IDLE MODE

Idle mode has the following features:

- The CPU stops executing instructions.
- The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 10.4 "Peripheral Module Disable").
- If the WDT or FSCM is enabled, the LPRC also remains active.

The device will wake from Idle mode on any of the following events:

- Any interrupt that is individually enabled
- · Any device Reset
- A WDT time-out

On wake-up from Idle, the clock is reapplied to the CPU and instruction execution begins immediately, starting with the instruction following the PWRSAV instruction or the first instruction in the ISR.

10.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction is held off until entry into Sleep or Idle mode has completed. The device then wakes up from Sleep or Idle mode.

10.3 Doze Mode

Generally, changing clock speed and invoking one of the power-saving modes are the preferred strategies for reducing power consumption. There may be circumstances, however, where this is not practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed may introduce communication errors, while using a power-saving mode may stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate. Doze mode is enabled by setting the DOZEN bit (CLK-DIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLK-DIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default setting.

It is also possible to use Doze mode to selectively reduce power consumption in event-driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU idles, waiting for something to invoke an interrupt routine. Enabling the automatic return to full-speed CPU operation on interrupts is enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation.

For example, suppose the device is operating at 20 MIPS and the CAN module has been configured for 500 kbps based on this device operating speed. If the device is now placed in Doze mode with a clock frequency ratio of 1:4, the CAN module continues to communicate at the required bit rate of 500 kbps, but the CPU now starts executing instructions at a frequency of 5 MIPS.

10.4 Peripheral Module Disable

The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled via the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers will have no effect and read values will be invalid.

A peripheral module is only enabled if both the associated bit in the PMD register is cleared and the peripheral is supported by the specific dsPIC[®] DSC variant. If the peripheral is present in the device, it is enabled in the PMD register by default.

Note: If a PMD bit is set, the corresponding module is disabled after a delay of 1 instruction cycle. Similarly, if a PMD bit is cleared, the corresponding module is enabled after a delay of 1 instruction cycle (assuming the module control registers are already configured to enable module operation).

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
FAOV4H	FAOV4L	FAOV3H	FAOV3L	FAOV2H	FAOV2L	FAOV1H	FAOV1L		
bit 15							bit 8		
R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0		
FLTAM	—		—	FAEN4	FAEN3	FAEN2	FAEN1		
bit 7							bit (
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'			
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown		
bit 7		A input pin fur		Cycle-by-Cycle		ied in FLTACON	J<15 [:] 8>		
						ed in FLTACON	J<15·8>		
bit 6-4	Unimplemen	ted: Read as '	0'						
bit 3	FAEN4: Fault	t Input A Enabl	e bit						
				by Fault Input blied by Fault In					
bit 2	FAEN3: Fault Input A Enable bit								
				by Fault Input blied by Fault In					
bit 1	FAEN2: Fault	FAEN2: Fault Input A Enable bit							
				by Fault Input blied by Fault In					
bit 0		t Input A Enabl							
				by Fault Input blied by Fault In					

REGISTER 16-9: PxFLTACON: FAULT A CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
FBOV4H	FBOV4L	FBOV3H	FBOV3L	FBOV2H	FBOV2L	FBOV1H	FBOV1L			
bit 15	FBOV4L	гволян	FBOV3L	FBOV2N	FBOV2L	FBOVIN	bit 8			
							DILO			
R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
FLTBM	_	—	_	FBEN4 ⁽¹⁾	FBEN3 ⁽¹⁾	FBEN2 ⁽¹⁾	FBEN1 ⁽¹⁾			
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	hit	II = I Inimplen	nented bit, read	1 as 'O'				
-n = Value at F		'1' = Bit is set		'0' = Bit is clea	,	x = Bit is unkr				
	-OR	I – DILIS SEL			areu		IOWII			
h: 45 0			As . Fault land		ride Value hite					
bit 15-8				t B PWM Over						
				n an external F on an external						
bit 7	FLTBM: Faul			on an external	i duit input ev					
			nctions in the (Cycle-by-Cycle	mode					
						ed in FLTBCON	\ <15:8>			
bit 6-4	Unimplemen	ted: Read as '	0'							
bit 3	FBEN4: Faul	t Input B Enabl	e bit ⁽¹⁾							
	1 = PWM4H/PWM4L pin pair is controlled by Fault Input B									
	0 = PWM4H/PWM4L pin pair is not controlled by Fault Input B									
bit 2	FBEN3: Fault	t Input B Enabl	e bit ⁽¹⁾							
	1 = PWM3H/PWM3L pin pair is controlled by Fault Input B									
	0 = PWM3H/PWM3L pin pair is not controlled by Fault Input B									
bit 1	FBEN2: Fault Input B Enable bit ⁽¹⁾									
				by Fault Input lled by Fault In						
bit 0		t Input B Enabl			F					
		•		by Fault Input	D					

REGISTER 16-10: PxFLTBCON: FAULT B CONTROL REGISTER

Note 1: Fault A pin has priority over Fault B pin, if enabled.

REGISTER 21-20: CIRXMnSID: ECAN™ ACCEPTANCE FILTER MASK n STANDARD IDENTIFIER R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x SID10 SID9 SID8 SID7 SID6 SID5 SID4 SID3 bit 15 bit 8

R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x
SID2	SID1	SID0	—	MIDE	—	EID17	EID16
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-5	SID<10:0>: Standard Identifier bits 1 = Include bit SIDx in filter comparison 0 = Bit SIDx is don't care in filter comparison
bit 4	Unimplemented: Read as '0'
bit 3	MIDE: Identifier Receive Mode bit
	 1 = Match only message types (standard or extended address) that correspond to EXIDE bit in filter 0 = Match either standard or extended address message if filters match (i.e., if (Filter SID) = (Message SID) or if (Filter SID/EID) = (Message SID/EID))
bit 2	Unimplemented: Read as '0'
bit 1-0	EID<17:16>: Extended Identifier bits
	 1 = Include bit EIDx in filter comparison 0 = Bit EIDx is don't care in filter comparison

REGISTER 21-21: CIRXMnEID: ECAN™ ACCEPTANCE FILTER MASK n EXTENDED IDENTIFIER

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8
bit 15				•			bit 8
R/M-v	R/M-v	R/\/_v	R/M-v	R/M_v	R/W-x	R/\\/_v	R/W-v

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EID7 | EID6 | EID5 | EID4 | EID3 | EID2 | EID1 | EID0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 EID<15:0>: Extended Identifier bits

1 = Include bit EIDx in filter comparison

0 = Bit EIDx is don't care in filter comparison

REGISTER 21-31: CITRBnSTAT: ECAN™ RECEIVE BUFFER n STATUS (n = 0, 1, ..., 31)

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	—	FILHIT4	FILHIT3	FILHIT2	FILHIT1	FILHIT0
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 7	•			•			bit 0
Legend:							
R = Readable bit W = Writable bit			oit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown			

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **FILHIT<4:0>:** Filter Hit Code bits (only written by module for receive buffers, unused for transmit buffers) Encodes number of filter that resulted in writing this buffer.

bit 7-0 Unimplemented: Read as '0'

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
ADRC	_	_			SAMC<4:0>	1)			
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			ADCS	<7:0> ⁽²⁾					
bit 7							bit (
Legend:									
R = Readable	e bit	W = Writable b	it	U = Unimpler	mented bit, rea	ad as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown		
bit 14-13	0 = Clock der	rnal RC clock rived from syster nted: Read as 'o							
bit 14-13	Unimplemen	ited: Read as '0	3						
bit 12-8	SAMC<4:0>:	Auto Sample Ti	me bits ⁽¹⁾						
	11111 = 31	Tad							
	•								
	• 00001 = 1 TA	AD.							
	00000 = 0 TA	AD							
bit 7-0	ADCS<7:0>: ADC Conversion Clock Select bits ⁽²⁾ 11111111 = Reserved								
	•	Reserved							
	•								
	•								
	01000000 = Reserved 00111111 = Tcy · (ADCS<7:0> + 1) = 64 · Tcy = Tad								
			:0> + 1) = 64	· TCY = TAD					
			:0> + 1) = 64	• Tcy = Tad					
			:0> + 1) = 64	• • Tcy = Tad					
			:0> + 1) = 64	• • Tcy = Tad					
	00111111 = • • • 00000010 =		:0> + 1) = 3	· Tcy = Tad					

2: This bit is not used if ADxCON3<ADRC> = 1.

Bit Field	Register	Description
BWRP	FBS	Boot Segment Program Flash Write Protection 1 = Boot segment may be written 0 = Boot segment is write-protected
BSS<2:0>	FBS	Boot Segment Program Flash Code Protection Size X11 = No Boot program Flash segment
		Boot space is 1K IW less VS 110 = Standard security; boot program Flash segment starts at End of VS, ends at 0007FEh 010 = High security; boot program Flash segment starts at End of VS, ends at 0007FEh
		Boot space is 4K IW less VS 101 = Standard security; boot program Flash segment starts at End of VS, ends at 001FFEh 001 = High security; boot program Flash segment starts at End of VS, ends at 001FFEh
		Boot space is 8K IW less VS 100 = Standard security; boot program Flash segment starts at End of VS, ends at 003FFEh 000 = High security; boot program Flash segment starts at End of VS, ends at 003FFEh
RBS<1:0>	FBS	Boot Segment RAM Code Protection 11 = No Boot RAM defined 10 = Boot RAM is 128 Bytes 01 = Boot RAM is 256 Bytes 00 = Boot RAM is 1024 Bytes
SWRP	FSS	Secure Segment Program Flash Write Protection 1 = Secure segment may be written 0 = Secure segment is write-protected

TABLE 23-2: dsPIC33FJXXXMCX06/X08/X10 CONFIGURATION BITS DESCRIPTION

Bit Field	Register	Description
SSS<2:0>	FSS	Secure Segment Program Flash Code Protection Size
		<pre>(FOR 128K and 256K DEVICES) X11 = No Secure program Flash segment Secure space is 8K IW less BS 110 = Standard security; secure program Flash segment starts at End of BS, ends at 0x003FFE 010 = High security; secure program Flash segment starts at End of BS, ends at 0x003FFE</pre>
		Secure space is 16K IW less BS 101 = Standard security; secure program Flash segment starts at End of BS, ends at 0x007FFE 001 = High security; secure program Flash segment starts at End of BS, ends at 0x007FFE
		Secure space is 32K IW less BS 100 = Standard security; secure program Flash segment starts at End of BS, ends at 0x00FFFE 000 = High security; secure program Flash segment starts at End of BS, ends at 0x00FFFE
		(FOR 64K DEVICES) X11 = No Secure program Flash segment
		Secure space is 4K IW less BS 110 = Standard security; secure program Flash segment starts at End of BS, ends at 0x001FFE 010 = High security; secure program Flash segment starts at End of BS, ends at 0x001FFE
		Secure space is 8K IW less BS 101 = Standard security; secure program Flash segment starts at End of BS, ends at 0x003FFE 001 = High security; secure program Flash segment starts at End of BS, ends at 0x003FFE
		Secure space is 16K IW less BS 100 = Standard security; secure program Flash segment starts at End of BS, ends at 007FFEh 000 = High security; secure program Flash segment starts at End of BS, ends at 0x007FFE
RSS<1:0>	FSS	Secure Segment RAM Code Protection 11 = No Secure RAM defined 10 = Secure RAM is 256 Bytes less BS RAM 01 = Secure RAM is 2048 Bytes less BS RAM 00 = Secure RAM is 4096 Bytes less BS RAM
GSS<1:0>	FGS	General Segment Code-Protect bit 11 = User program memory is not code-protected 10 = Standard security; general program Flash segment starts at End of SS, ends at EOM 0x = High security; general program Flash segment starts at End of SS, ends at EOM

TABLE 23-2: dsPIC33FJXXXMCX06/X08/X10 CONFIGURATION BITS DESCRIPTION (CONTINUED)

TABLE 24-2 :	INSTRUCTION SET OVERVIEW (CONTINUED)

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
66	RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N,Z
67	SAC	SAC	Acc,#Slit4,Wdo	Store Accumulator	1	1	None
		SAC.R	Acc,#Slit4,Wdo	Store Rounded Accumulator	1	1	None
68	SE	SE	Ws,Wnd	Wnd = sign-extended Ws	1	1	C,N,Z
69	SETM	SETM	f	f = 0xFFFF	1	1	None
		SETM	WREG	WREG = 0xFFFF	1	1	None
		SETM	Ws	Ws = 0xFFFF	1	1	None
70	SFTAC	SFTAC	Acc,Wn	Arithmetic Shift Accumulator by (Wn)	1	1	OA,OB,OAB SA,SB,SAB
		SFTAC	Acc,#Slit6	Arithmetic Shift Accumulator by Slit6	1	1	OA,OB,OAB SA,SB,SAB
71	SL	SL	f	f = Left Shift f	1	1	C,N,OV,Z
		SL	f,WREG	WREG = Left Shift f	1	1	C,N,OV,Z
		SL	Ws,Wd	Wd = Left Shift Ws	1	1	C,N,OV,Z
		SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N,Z
		SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N,Z
72	SUB	SUB	Асс	Subtract Accumulators	1	1	OA,OB,OAB SA,SB,SAB
		SUB	f	f = f – WREG	1	1	C,DC,N,OV,
		SUB	f,WREG	WREG = f – WREG	1	1	C,DC,N,OV,
		SUB	#lit10,Wn	Wn = Wn - lit10	1	1	C,DC,N,OV,
		SUB	Wb,Ws,Wd	Wd = Wb – Ws	1	1	C,DC,N,OV,
		SUB	Wb,#lit5,Wd	Wd = Wb – lit5	1	1	C,DC,N,OV,
73	SUBB	SUBB	f	$f = f - WREG - (\overline{C})$	1	1	C,DC,N,OV,
		SUBB	f,WREG	WREG = $f - WREG - (\overline{C})$	1	1	C,DC,N,OV,
		SUBB	#lit10,Wn	$Wn = Wn - Iit10 - (\overline{C})$	1	1	C,DC,N,OV,
		SUBB	Wb,Ws,Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C,DC,N,OV,
		SUBB	Wb,#lit5,Wd	$Wd = Wb - lit5 - (\overline{C})$	1	1	C,DC,N,OV,
74	SUBR	SUBR	f	f = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	f,WREG	WREG = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	Wb,Ws,Wd	Wd = Ws – Wb	1	1	C,DC,N,OV,Z
		SUBR	Wb,#lit5,Wd	Wd = lit5 – Wb	1	1	C,DC,N,OV,Z
75	SUBBR	SUBBR	f	$f = WREG - f - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	f,WREG	WREG = WREG – f – (\overline{C})	1	1	C,DC,N,OV,Z
		SUBBR	Wb,Ws,Wd	$Wd = Ws - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	Wb,#lit5,Wd	$Wd = lit5 - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
76	SWAP	SWAP.b	Wn	Wn = nibble swap Wn	1	1	None
		SWAP	Wn	Wn = byte swap Wn	1	1	None
77	TBLRDH	TBLRDH	Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	2	None
78	TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	2	None
79	TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None
30	TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None
31	ULNK	ULNK		Unlink Frame Pointer	1	1	None
32	XOR	XOR	f	f = f .XOR. WREG	1	1	N,Z
		XOR	f,WREG	WREG = f .XOR. WREG	1	1	N,Z
		XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N,Z
		XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N,Z
		XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N,Z
83	ZE	ZE	Ws,Wnd	Wnd = Zero-extend Ws	1	1	C,Z,N

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
Param No.	Symbol	Characteristic	Min Typ ⁽¹⁾ Max Units Conditions				
		Program Flash Memory					
D130a	Eр	Cell Endurance	100	1000	_	E/W	See Note 2
D131	Vpr	VDD for Read	VMIN	—	3.6	V	VMIN = Minimum operating voltage
D132B	VPEW	VDD for Self-Timed Write	VMIN	—	3.6	V	VMIN = Minimum operating voltage
D134	TRETD	Characteristic Retention	20	—	—	Year	Provided no other specifications are violated
D135	IDDP	Supply Current during Programming	—	10	—	mA	
D136a	Trw	Row Write Time	1.32	—	1.74	ms	Trw = 11064 FRC cycles, See Note 2
D137a	TPE	Page Erase Time	20.1	—	26.5	ms	TPE = 168517 FRC cycles, See Note 2
D138a	Tww	Word Write Cycle Time	42.3	-	55.9	μs	Tww = 355 FRC cycles, See Note 2

TABLE 26-12: DC CHARACTERISTICS: PROGRAM MEMORY

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: Other conditions: FRC = 7.37 MHz, TUN<5:0> = b'011111 (for Min), TUN<5:0> = b'100000 (for Max). This parameter depends on the FRC accuracy (see Table 26-19) and the value of the FRC Oscillator Tuning register (see Register 9-4). For complete details on calculating the Minimum and Maximum time see Section 5.3 "Programming Operations".

TABLE 26-13: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial							
Param No.	Symbol	Characteristics	Min	Тур	Max	Units	Comments
	Cefc	External Filter Capacitor Value	4.7	10		μF	Capacitor must be low series resistance (< 5 ohms)

Table Read Instructions	
TBLRDH	70
TBLRDL	70
Visibility Operation	71
Program Memory	
Interrupt Vector	
Organization	
Reset Vector	

Q

4
Quadrature Encoder Interface (QEI)
R
Reader Response
ADxCHS0 (ADCx Input Channel 0 Select
ADxCHS123 (ADCx Input Channel 1, 2, 3 Select) 249
ADxCON1 (ADCx Control 1)
ADxCON2 (ADCx Control 2)
ADxCON3 (ADCx Control 3)
ADxCON4 (ADCx Control 4)
ADxCON4 (ADCx Control 4)248 ADxCSSH (ADCx Input Scan Select High)251
ADxCSSL (ADCx Input Scan Select High)
ADxCSSE (ADCX input Scan Select Low)
ADxPCFGL (ADCx Port Configuration Low)
CIBUFPNT1 (ECAN Filter 0-3 Buffer Pointer)
CIBUFPNT2 (ECAN Filter 4-7 Buffer Pointer)
CIBUFPNT3 (ECAN Filter 8-11 Buffer Pointer)
CIBUFPNT4 (ECAN Filter 12-15 Buffer Pointer) 230
CiCFG1 (ECAN Baud Rate Configuration 1)
CiCFG2 (ECAN Baud Rate Configuration 2)
CiCTRL1 (ECAN Control 1)
CiCTRL2 (ECAN Control 2) 219
CiEC (ECAN Transmit/Receive Error Count)
CIFCTRL (ECAN FIFO Control)221
CiFEN1 (ECAN Acceptance Filter Enable) 228
CiFIFO (ECAN FIFO Status)222
CiFMSKSEL1 (ECAN Filter 7-0 Mask Selection) 232, 233
CilNTE (ECAN Interrupt Enable)
CiINTF (ECAN Interrupt Flag)
CiRXFnEID (ECAN Acceptance Filter n Extended Identi-
fier)
CiRXFnSID (ECAN Acceptance Filter n Standard Identi-
fier)
CiRXFUL1 (ECAN Receive Buffer Full 1)
CiRXFUL2 (ECAN Receive Buffer Full 2)
CIRXPOL2 (ECAN Receive Builer Full 2)
Identifier)234 CiRXMnSID (ECAN Acceptance Filter Mask n Standard
Identifier)
CiRXOVF1 (ECAN Receive Buffer Overflow 1) 236
CiRXOVF2 (ECAN Receive Buffer Overflow 2)
CiTRBnDLC (ECAN Buffer n Data Length Control)239
CiTRBnDm (ECAN Buffer n Data Field Byte m) 239
CiTRBnEID (ECAN Buffer n Extended Identifier) 238
CiTRBnSID (ECAN Buffer n Standard Identifier) 238
CiTRBnSTAT (ECAN Burler in Standard Identifier)
CiTRmnCON (ECAN TX/RX Buffer m Control)
CiVEC (ECAN Interrupt Code)
CLKDIV (Clock Divisor)
CORCON (Core Control)
DFLTCON (QEI Control)
DMACS0 (DMA Controller Status 0) 139

DMACS1 (DMA Controller Status 1)	1/1
DMAXCNT (DMA Channel x Transfer Count)	
DMAxCON (DMA Channel x Control)	
DMAxPAD (DMA Channel x Peripheral Address)	138
DMAxREQ (DMA Channel x IRQ Select)	
DMAxSTA (DMA Channel x RAM Start Address A).	
DMAxSTB (DMA Channel x RAM Start Address B).	
DSADR (Most Recent DMA RAM Address)	
DTCON1 (Dead-Time Control 1)	184
DTCON2 (Dead-Time Control 2)	185
FLTACON (Fault A Control)	
FLTBCON (Fault B Control)	
I2CxCON (I2Cx Control)	
I2CxMSK (I2Cx Slave Mode Address Mask)	
I2CxSTAT (I2Cx Status)	
ICxCON (Input Capture x Control)	172
IEC0 (Interrupt Enable Control 0)	103
IEC1 (Interrupt Enable Control 1)	105
IEC2 (Interrupt Enable Control 2)	107
IEC3 (Interrupt Enable Control 3)	109
IEC4 (Interrupt Enable Control 4)	
IFS0 (Interrupt Flag Status 0)	
IFS1 (Interrupt Flag Status 1)	
IFS2 (Interrupt Flag Status 2)	
IFS3 (Interrupt Flag Status 3)	100
IFS4 (Interrupt Flag Status 4)	
INTCON1 (Interrupt Control 1)	91
INTCON2 (Interrupt Control 2)	93
INTTREG Interrupt Control and Status Register	130
IPC0 (Interrupt Priority Control 0)	
IPC1 (Interrupt Priority Control 1)	
IPC10 (Interrupt Priority Control 10)	
IPC11 (Interrupt Priority Control 11)	
IPC12 (Interrupt Priority Control 12)	1/4
	105
IPC13 (Interrupt Priority Control 13)	125
IPC14 (Interrupt Priority Control 14)	125 126
IPC14 (Interrupt Priority Control 14) IPC15 (Interrupt Priority Control 15)	125 126 127
IPC14 (Interrupt Priority Control 14) IPC15 (Interrupt Priority Control 15) IPC16 (Interrupt Priority Control 16)	125 126 127 128
IPC14 (Interrupt Priority Control 14) IPC15 (Interrupt Priority Control 15)	125 126 127 128
IPC14 (Interrupt Priority Control 14) IPC15 (Interrupt Priority Control 15) IPC16 (Interrupt Priority Control 16) IPC17 (Interrupt Priority Control 17)	125 126 127 128 129
IPC14 (Interrupt Priority Control 14) IPC15 (Interrupt Priority Control 15) IPC16 (Interrupt Priority Control 16) IPC17 (Interrupt Priority Control 17) IPC2 (Interrupt Priority Control 2)	125 126 127 128 129 114
IPC14 (Interrupt Priority Control 14) IPC15 (Interrupt Priority Control 15) IPC16 (Interrupt Priority Control 16) IPC17 (Interrupt Priority Control 17) IPC2 (Interrupt Priority Control 2) IPC3 (Interrupt Priority Control 3)	125 126 127 128 129 114 115
IPC14 (Interrupt Priority Control 14) IPC15 (Interrupt Priority Control 15) IPC16 (Interrupt Priority Control 16) IPC17 (Interrupt Priority Control 17) IPC2 (Interrupt Priority Control 2) IPC3 (Interrupt Priority Control 3) IPC4 (Interrupt Priority Control 3)	125 126 127 128 129 114 115 116
IPC14 (Interrupt Priority Control 14) IPC15 (Interrupt Priority Control 15) IPC16 (Interrupt Priority Control 16) IPC17 (Interrupt Priority Control 17) IPC2 (Interrupt Priority Control 2) IPC3 (Interrupt Priority Control 2) IPC3 (Interrupt Priority Control 3) IPC4 (Interrupt Priority Control 4) IPC5 (Interrupt Priority Control 5)	125 126 127 128 129 114 115 116 117
IPC14 (Interrupt Priority Control 14) IPC15 (Interrupt Priority Control 15) IPC16 (Interrupt Priority Control 16) IPC17 (Interrupt Priority Control 17) IPC2 (Interrupt Priority Control 2) IPC3 (Interrupt Priority Control 3) IPC4 (Interrupt Priority Control 3) IPC5 (Interrupt Priority Control 4) IPC5 (Interrupt Priority Control 5) IPC6 (Interrupt Priority Control 5)	125 126 127 128 129 114 115 116 117 118
IPC14 (Interrupt Priority Control 14) IPC15 (Interrupt Priority Control 15) IPC16 (Interrupt Priority Control 16) IPC17 (Interrupt Priority Control 17) IPC2 (Interrupt Priority Control 2) IPC3 (Interrupt Priority Control 3) IPC4 (Interrupt Priority Control 3) IPC5 (Interrupt Priority Control 4) IPC5 (Interrupt Priority Control 5) IPC6 (Interrupt Priority Control 5) IPC6 (Interrupt Priority Control 6) IPC7 (Interrupt Priority Control 7)	125 126 127 128 129 114 115 116 117 118 119
IPC14 (Interrupt Priority Control 14) IPC15 (Interrupt Priority Control 15) IPC16 (Interrupt Priority Control 16) IPC17 (Interrupt Priority Control 17) IPC2 (Interrupt Priority Control 2) IPC3 (Interrupt Priority Control 2) IPC3 (Interrupt Priority Control 3) IPC4 (Interrupt Priority Control 3) IPC5 (Interrupt Priority Control 4) IPC5 (Interrupt Priority Control 5) IPC6 (Interrupt Priority Control 6) IPC7 (Interrupt Priority Control 7) IPC8 (Interrupt Priority Control 8)	125 126 127 128 129 114 115 116 117 118 119 120
IPC14 (Interrupt Priority Control 14) IPC15 (Interrupt Priority Control 15) IPC16 (Interrupt Priority Control 16) IPC17 (Interrupt Priority Control 17) IPC2 (Interrupt Priority Control 2) IPC3 (Interrupt Priority Control 3) IPC4 (Interrupt Priority Control 3) IPC5 (Interrupt Priority Control 4) IPC5 (Interrupt Priority Control 5) IPC6 (Interrupt Priority Control 6) IPC7 (Interrupt Priority Control 7) IPC8 (Interrupt Priority Control 8) IPC9 (Interrupt Priority Control 8)	125 126 127 128 129 114 115 116 117 118 119 120 121
IPC14 (Interrupt Priority Control 14) IPC15 (Interrupt Priority Control 15) IPC16 (Interrupt Priority Control 16) IPC17 (Interrupt Priority Control 17) IPC2 (Interrupt Priority Control 2) IPC3 (Interrupt Priority Control 3) IPC4 (Interrupt Priority Control 3) IPC4 (Interrupt Priority Control 4) IPC5 (Interrupt Priority Control 4) IPC5 (Interrupt Priority Control 5) IPC6 (Interrupt Priority Control 6) IPC7 (Interrupt Priority Control 7) IPC8 (Interrupt Priority Control 8) IPC9 (Interrupt Priority Control 8) IPC9 (Interrupt Priority Control 9) NVMCOM (Flash Memory Control)	125 126 127 128 129 114 115 116 117 118 119 120 121 75
IPC14 (Interrupt Priority Control 14) IPC15 (Interrupt Priority Control 15) IPC16 (Interrupt Priority Control 16) IPC17 (Interrupt Priority Control 17) IPC2 (Interrupt Priority Control 2) IPC3 (Interrupt Priority Control 3) IPC4 (Interrupt Priority Control 3) IPC5 (Interrupt Priority Control 4) IPC5 (Interrupt Priority Control 5) IPC6 (Interrupt Priority Control 6) IPC7 (Interrupt Priority Control 7) IPC8 (Interrupt Priority Control 8) IPC9 (Interrupt Priority Control 8)	125 126 127 128 129 114 115 116 117 118 119 120 121 75
IPC14 (Interrupt Priority Control 14) IPC15 (Interrupt Priority Control 15) IPC16 (Interrupt Priority Control 16) IPC17 (Interrupt Priority Control 17) IPC2 (Interrupt Priority Control 2) IPC3 (Interrupt Priority Control 3) IPC4 (Interrupt Priority Control 3) IPC4 (Interrupt Priority Control 4) IPC5 (Interrupt Priority Control 5) IPC6 (Interrupt Priority Control 6) IPC7 (Interrupt Priority Control 6) IPC7 (Interrupt Priority Control 7) IPC8 (Interrupt Priority Control 8) IPC9 (Interrupt Priority Control 9) NVMCOM (Flash Memory Control) OCxCON (Output Compare x Control)	125 126 127 128 129 114 115 116 117 118 119 120 121 75 175
IPC14 (Interrupt Priority Control 14) IPC15 (Interrupt Priority Control 15) IPC16 (Interrupt Priority Control 16) IPC17 (Interrupt Priority Control 17) IPC2 (Interrupt Priority Control 2) IPC3 (Interrupt Priority Control 3) IPC4 (Interrupt Priority Control 3) IPC4 (Interrupt Priority Control 4) IPC5 (Interrupt Priority Control 5) IPC6 (Interrupt Priority Control 6) IPC7 (Interrupt Priority Control 6) IPC7 (Interrupt Priority Control 7) IPC8 (Interrupt Priority Control 8) IPC9 (Interrupt Priority Control 9) NVMCOM (Flash Memory Control) OCxCON (Output Compare x Control) OSCCON (Oscillator Control)	125 126 127 128 129 114 115 116 117 118 119 120 121 75 146
IPC14 (Interrupt Priority Control 14) IPC15 (Interrupt Priority Control 15) IPC16 (Interrupt Priority Control 16) IPC17 (Interrupt Priority Control 17) IPC2 (Interrupt Priority Control 2) IPC3 (Interrupt Priority Control 3) IPC4 (Interrupt Priority Control 3) IPC4 (Interrupt Priority Control 3) IPC5 (Interrupt Priority Control 4) IPC5 (Interrupt Priority Control 5) IPC6 (Interrupt Priority Control 6) IPC7 (Interrupt Priority Control 7) IPC8 (Interrupt Priority Control 8) IPC9 (Interrupt Priority Control 9) NVMCOM (Flash Memory Control) OCxCON (Output Compare x Control) OSCCON (Oscillator Control) OSCTUN (FRC Oscillator Tuning)	125 126 127 128 129 114 115 116 117 118 119 120 121 75 146 150
IPC14 (Interrupt Priority Control 14) IPC15 (Interrupt Priority Control 15) IPC16 (Interrupt Priority Control 16) IPC17 (Interrupt Priority Control 17) IPC2 (Interrupt Priority Control 2) IPC3 (Interrupt Priority Control 3) IPC4 (Interrupt Priority Control 3) IPC4 (Interrupt Priority Control 3) IPC5 (Interrupt Priority Control 4) IPC5 (Interrupt Priority Control 5) IPC6 (Interrupt Priority Control 6) IPC7 (Interrupt Priority Control 7) IPC8 (Interrupt Priority Control 8) IPC9 (Interrupt Priority Control 9) NVMCOM (Flash Memory Control) OCxCON (Output Compare x Control) OSCCUN (FRC Oscillator Tuning) OVDCON (Override Control)	125 126 127 128 129 114 115 116 117 118 119 120 121 75 146 150 188
IPC14 (Interrupt Priority Control 14) IPC15 (Interrupt Priority Control 15) IPC16 (Interrupt Priority Control 16) IPC17 (Interrupt Priority Control 17) IPC2 (Interrupt Priority Control 2) IPC3 (Interrupt Priority Control 3) IPC4 (Interrupt Priority Control 3) IPC4 (Interrupt Priority Control 3) IPC5 (Interrupt Priority Control 4) IPC5 (Interrupt Priority Control 5) IPC6 (Interrupt Priority Control 6) IPC7 (Interrupt Priority Control 7) IPC8 (Interrupt Priority Control 8) IPC9 (Interrupt Priority Control 9) NVMCOM (Flash Memory Control) OCxCON (Output Compare x Control) OSCCON (Oscillator Control) OSCTUN (FRC Oscillator Tuning) OVDCON (Override Control) PDC1 (PWM Duty Cycle 1)	125 126 127 128 129 114 115 116 117 118 119 120 121 75 146 150 188 189
IPC14 (Interrupt Priority Control 14) IPC15 (Interrupt Priority Control 15) IPC16 (Interrupt Priority Control 16) IPC17 (Interrupt Priority Control 17) IPC2 (Interrupt Priority Control 2) IPC3 (Interrupt Priority Control 3) IPC4 (Interrupt Priority Control 3) IPC4 (Interrupt Priority Control 4) IPC5 (Interrupt Priority Control 4) IPC5 (Interrupt Priority Control 5) IPC6 (Interrupt Priority Control 6) IPC7 (Interrupt Priority Control 7) IPC8 (Interrupt Priority Control 8) IPC9 (Interrupt Priority Control 9) NVMCOM (Flash Memory Control) OCxCON (Output Compare x Control) OSCCON (Oscillator Control) OSCTUN (FRC Oscillator Tuning) OVDCON (Override Control) PDC1 (PWM Duty Cycle 1) PDC2 (PWM Duty Cycle 2)	125 126 127 128 129 114 115 116 117 118 119 120 121 75 146 150 188 189 189
IPC14 (Interrupt Priority Control 14) IPC15 (Interrupt Priority Control 15) IPC16 (Interrupt Priority Control 16) IPC17 (Interrupt Priority Control 17) IPC2 (Interrupt Priority Control 2) IPC3 (Interrupt Priority Control 3) IPC4 (Interrupt Priority Control 3) IPC4 (Interrupt Priority Control 3) IPC5 (Interrupt Priority Control 4) IPC5 (Interrupt Priority Control 5) IPC6 (Interrupt Priority Control 6) IPC7 (Interrupt Priority Control 7) IPC8 (Interrupt Priority Control 8) IPC9 (Interrupt Priority Control 9) NVMCOM (Flash Memory Control) OSCCON (Output Compare x Control) OSCCON (Oscillator Control) OSCTUN (FRC Oscillator Tuning) OVDCON (Override Control) PDC1 (PWM Duty Cycle 1) PDC2 (PWM Duty Cycle 3)	125 126 127 128 129 114 115 116 117 118 119 120 121 175 146 150 188 189 189 190
IPC14 (Interrupt Priority Control 14) IPC15 (Interrupt Priority Control 15) IPC16 (Interrupt Priority Control 16) IPC17 (Interrupt Priority Control 17) IPC2 (Interrupt Priority Control 2) IPC3 (Interrupt Priority Control 3) IPC4 (Interrupt Priority Control 4) IPC5 (Interrupt Priority Control 5) IPC6 (Interrupt Priority Control 6) IPC7 (Interrupt Priority Control 6) IPC7 (Interrupt Priority Control 8) IPC8 (Interrupt Priority Control 9) NVMCOM (Flash Memory Control 9) NVMCOM (Flash Memory Control) OSCCON (Output Compare x Control) OSCCON (Oscillator Control) OSCCON (Override Control) PDC1 (PWM Duty Cycle 1) PDC2 (PWM Duty Cycle 3) PDC4 (PWM Duty Cycle 4)	125 126 127 128 129 114 115 116 117 118 119 120 121 175 146 150 188 189 189 190
IPC14 (Interrupt Priority Control 14) IPC15 (Interrupt Priority Control 15) IPC16 (Interrupt Priority Control 16) IPC17 (Interrupt Priority Control 17) IPC2 (Interrupt Priority Control 2) IPC3 (Interrupt Priority Control 3) IPC4 (Interrupt Priority Control 4) IPC5 (Interrupt Priority Control 5) IPC6 (Interrupt Priority Control 6) IPC7 (Interrupt Priority Control 6) IPC7 (Interrupt Priority Control 8) IPC8 (Interrupt Priority Control 8) IPC9 (Interrupt Priority Control 9) NVMCOM (Flash Memory Control) OSCCON (Output Compare x Control) OSCCON (Oscillator Control) OSCTUN (FRC Oscillator Tuning) OVDCON (Override Control) PDC1 (PWM Duty Cycle 1) PDC2 (PWM Duty Cycle 3) PDC4 (PWM Duty Cycle 4) PLLFBD (PLL Feedback Divisor)	125 126 127 128 129 114 115 116 117 118 119 120 121 175 146 150 150 188 189 189 190 190
IPC14 (Interrupt Priority Control 14) IPC15 (Interrupt Priority Control 15) IPC16 (Interrupt Priority Control 16) IPC17 (Interrupt Priority Control 2) IPC3 (Interrupt Priority Control 3) IPC4 (Interrupt Priority Control 3) IPC4 (Interrupt Priority Control 3) IPC4 (Interrupt Priority Control 4) IPC5 (Interrupt Priority Control 5) IPC6 (Interrupt Priority Control 6) IPC7 (Interrupt Priority Control 6) IPC7 (Interrupt Priority Control 7) IPC8 (Interrupt Priority Control 8) IPC9 (Interrupt Priority Control 9) NVMCOM (Flash Memory Control) OSCCON (Output Compare x Control) OSCCON (Oscillator Control) OSCCUN (FRC Oscillator Tuning) OVDCON (Override Control) PDC1 (PWM Duty Cycle 1) PDC2 (PWM Duty Cycle 3) PDC3 (PWM Duty Cycle 4) PLLFBD (PLL Feedback Divisor) PMD1 (Peripheral Module Disable Control Register	125 126 127 128 129 114 115 116 117 118 119 120 121 175 146 150 150 188 189 189 190 190
IPC14 (Interrupt Priority Control 14) IPC15 (Interrupt Priority Control 15) IPC16 (Interrupt Priority Control 16) IPC17 (Interrupt Priority Control 17) IPC2 (Interrupt Priority Control 2) IPC3 (Interrupt Priority Control 3) IPC4 (Interrupt Priority Control 4) IPC5 (Interrupt Priority Control 5) IPC6 (Interrupt Priority Control 6) IPC7 (Interrupt Priority Control 6) IPC7 (Interrupt Priority Control 8) IPC8 (Interrupt Priority Control 9) NVMCOM (Flash Memory Control) OSCCON (Output Compare x Control) OSCCON (Oscillator Control) OSCCON (Override Control) OVDCON (Verride Control) PDC1 (PWM Duty Cycle 1) PDC2 (PWM Duty Cycle 3) PDC4 (PWM Duty Cycle 4) PLLFBD (PLL Feedback Divisor) PMD1 (Peripheral Module Disable Control Register 155	125 126 127 128 129 114 115 116 117 118 119 120 121 175 146 150 150 188 189 190 190 149 1)
IPC14 (Interrupt Priority Control 14) IPC15 (Interrupt Priority Control 15) IPC16 (Interrupt Priority Control 16) IPC17 (Interrupt Priority Control 2) IPC3 (Interrupt Priority Control 3) IPC4 (Interrupt Priority Control 3) IPC4 (Interrupt Priority Control 3) IPC4 (Interrupt Priority Control 4) IPC5 (Interrupt Priority Control 5) IPC6 (Interrupt Priority Control 6) IPC7 (Interrupt Priority Control 6) IPC7 (Interrupt Priority Control 7) IPC8 (Interrupt Priority Control 8) IPC9 (Interrupt Priority Control 9) NVMCOM (Flash Memory Control) OSCCON (Output Compare x Control) OSCCON (Oscillator Control) OSCCUN (FRC Oscillator Tuning) OVDCON (Override Control) PDC1 (PWM Duty Cycle 1) PDC2 (PWM Duty Cycle 3) PDC3 (PWM Duty Cycle 4) PLLFBD (PLL Feedback Divisor) PMD1 (Peripheral Module Disable Control Register	125 126 127 128 129 114 115 116 117 118 119 120 121 175 146 150 150 188 189 190 190 149 1)
IPC14 (Interrupt Priority Control 14) IPC15 (Interrupt Priority Control 15) IPC16 (Interrupt Priority Control 16) IPC17 (Interrupt Priority Control 17) IPC2 (Interrupt Priority Control 2) IPC3 (Interrupt Priority Control 3) IPC4 (Interrupt Priority Control 4) IPC5 (Interrupt Priority Control 5) IPC6 (Interrupt Priority Control 6) IPC7 (Interrupt Priority Control 6) IPC7 (Interrupt Priority Control 8) IPC8 (Interrupt Priority Control 9) NVMCOM (Flash Memory Control) OSCCON (Output Compare x Control) OSCCON (Oscillator Control) OSCCON (Override Control) OVDCON (Verride Control) PDC1 (PWM Duty Cycle 1) PDC2 (PWM Duty Cycle 3) PDC4 (PWM Duty Cycle 4) PLLFBD (PLL Feedback Divisor) PMD1 (Peripheral Module Disable Control Register 155	125 126 127 128 129 114 115 116 117 118 119 120 121 175 146 150 150 188 189 190 190 149 1)
 IPC14 (Interrupt Priority Control 14) IPC15 (Interrupt Priority Control 15) IPC16 (Interrupt Priority Control 17) IPC2 (Interrupt Priority Control 2) IPC3 (Interrupt Priority Control 3) IPC4 (Interrupt Priority Control 4) IPC5 (Interrupt Priority Control 5) IPC6 (Interrupt Priority Control 6) IPC7 (Interrupt Priority Control 7) IPC8 (Interrupt Priority Control 8) IPC9 (Interrupt Priority Control 9) NVMCOM (Flash Memory Control) OSCCON (Output Compare x Control) OSCCUN (FRC Oscillator Tuning) OVDCON (Override Control) PDC2 (PWM Duty Cycle 1) PDC3 (PWM Duty Cycle 3) PDC4 (PWM Duty Cycle 4) PLLFBD (PLL Feedback Divisor) PMD1 (Peripheral Module Disable Control Register 155 PMD2 (Peripheral Module Disable Control Register 157 	125 126 127 128 129 114 115 116 117 118 119 120 121 175 146 150 188 189 190 190 149 1) 2)
 IPC14 (Interrupt Priority Control 14) IPC15 (Interrupt Priority Control 15) IPC16 (Interrupt Priority Control 17) IPC2 (Interrupt Priority Control 2) IPC3 (Interrupt Priority Control 3) IPC4 (Interrupt Priority Control 4) IPC5 (Interrupt Priority Control 5) IPC6 (Interrupt Priority Control 6) IPC7 (Interrupt Priority Control 7) IPC8 (Interrupt Priority Control 8) IPC9 (Interrupt Priority Control 9) NVMCOM (Flash Memory Control) OSCCON (Oscillator Control) OSCTUN (FRC Oscillator Tuning) OVDCON (Override Control) PDC2 (PWM Duty Cycle 2) PDC3 (PWM Duty Cycle 4) PLLFBD (PLL Feedback Divisor) PMD1 (Peripheral Module Disable Control Register 155 PMD2 (Peripheral Module Disable Control Register 	125 126 127 128 129 114 115 116 117 118 119 120 121 175 146 150 188 189 190 190 149 1) 2)
 IPC14 (Interrupt Priority Control 14) IPC15 (Interrupt Priority Control 15) IPC16 (Interrupt Priority Control 17) IPC2 (Interrupt Priority Control 2) IPC3 (Interrupt Priority Control 3) IPC4 (Interrupt Priority Control 4) IPC5 (Interrupt Priority Control 5) IPC6 (Interrupt Priority Control 6) IPC7 (Interrupt Priority Control 7) IPC6 (Interrupt Priority Control 8)	125 126 127 128 129 114 115 116 117 118 119 120 121 75 146 150 88 189 190 190 149 1) 2) 3)
 IPC14 (Interrupt Priority Control 14) IPC15 (Interrupt Priority Control 15) IPC16 (Interrupt Priority Control 17) IPC2 (Interrupt Priority Control 2) IPC3 (Interrupt Priority Control 3) IPC4 (Interrupt Priority Control 4) IPC5 (Interrupt Priority Control 5) IPC6 (Interrupt Priority Control 6) IPC7 (Interrupt Priority Control 7) IPC8 (Interrupt Priority Control 8)	125 126 127 128 129 114 115 116 117 118 119 120 121 75 146 150 188 189 190 190 190 19 2) 3) 179

PTPER (PWM Time Base Period)	. 180
PWMCON1 (PWM Control 1)	. 182
PWMCON2 (PWM Control 2)	
QEICON (QEI Control)	
RCON (Reset Control)	
SEVTCMP (Special Event Compare)	
SPIxCON1 (SPIx Control 1)	. 197
SPIxCON2 (SPIx Control 2)	
SPIxSTAT (SPIx Status and Control)	
SR (CPU Status)26	
T1CON (Timer1 Control)	
TxCON (T2CON, T4CON, T6CON or T8CON Contr 168	ol)
TyCON (T3CON, T5CON, T7CON or T9CON Contr	ol)
169	0.,
UxMODE (UARTx Mode)	
UxSTA (UARTx Status and Control)	. 212
Reset	
Clock Source Selection	82
Special Function Register Reset States	84
Times	82
Reset Sequence	
Resets	79
S	
Serial Peripheral Interface (SPI)	. 195
Software Simulator (MPLAB SIM)	. 270
Software Stack Pointer, Frame Pointer	
CALLL Stack Frame	63
Special Features of the CPU	. 253

Special Features of the CPU	
SPI Module	
SPI1 Register Map	51
SPI2 Register Map	51
Symbols Used in Opcode Descriptions	
System Control	
Register Map	62

т

Temperature and Voltage Specifications	
AC	32
Timer116	33
Timer2/3, Timer4/5, Timer6/7 and Timer8/916	35
Timing Characteristics	
CLKO and I/O28	35
Timing Diagrams	
10-bit A/D Conversion (CHPS = 01, SIMSAM = 0, ASA	Μ
= 0, SSRC = 000)	11
10-bit A/D Conversion (CHPS = 01, SIMSAM = 0, ASA	Μ
= 1, SSRC = 111, SAMC = 00001)31	2
12-bit A/D Conversion (ASAM = 0, SSRC = 000) 30)9
CAN I/O)5
External Clock	33
I2Cx Bus Data (Master Mode))1
I2Cx Bus Data (Slave Mode))3
I2Cx Bus Start/Stop Bits (Master Mode) 30)1
I2Cx Bus Start/Stop Bits (Slave Mode))3
Input Capture (CAPx)29	90
Motor Control PWM29	92
Motor Control PWM Fault29	92
OC/PWM) 1
Output Compare (OCx)29	90
QEA/QEB Input29	93
QEI Module Index Pulse	94
Reset, Watchdog Timer, Oscillator Start-up Timer ar	۱d
Power-up Timer28	36
SPIx Master Mode (CKE = 0)29	96

SPIx Master Mode (CKE = 1)
SPIx Slave Mode (CKE = 0)
SPIx Slave Mode (CKE = 1)
Timer1, 2, 3, 4, 5, 6, 7, 8, 9 External Clock
TimerQ (QEI Module) External Clock
Timing Requirements
CLKO and I/O
External Clock
Input Capture
Timing Specifications
10-bit A/D Conversion Requirements
12-bit A/D Conversion Requirements
CAN I/O Requirements
I2Cx Bus Data Requirements (Master Mode)
I2Cx Bus Data Requirements (Slave Mode)
Motor Control PWM Requirements 292
Output Compare Requirements
PLL Clock 284
QEI External Clock Requirements 295
QEI Index Pulse Requirements 294
Quadrature Decoder Requirements
Reset, Watchdog Timer, Oscillator Start-up Timer, Pow-
er-up Timer and Brown-out Reset Requirements 287
Simple OC/PWM Mode Requirements
SPIx Master Mode (CKE = 0) Requirements
SPIx Master Mode (CKE = 1) Requirements
SPIx Slave Mode (CKE = 0) Requirements
SPIx Slave Mode (CKE = 1) Requirements
Timer1 External Clock Requirements 288
Timer2, Timer4, Timer6 and Timer8 External Clock Re-
quirements
Timer3, Timer5, Timer7 and Timer9 External Clock Re-
quirements

U

UART Module	
UART1 Register Map	51
UART2 Register Map	51

V

Voltage Regulator (On-Chip)	
-----------------------------	--

W

Watchdog Timer (WDT)	253, 259
Programming Considerations	
WWW Address	335
WWW, On-Line Support	11