E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	100MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, SD, SPI, UART/USART, USB, USB OTG
Peripherals	DMA, I ² S, LVD, POR, PWM, WDT
Number of I/O	66
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 33x16b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mk60dn256vll10r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

8	Pine	
	8.1	K60 signal multiplexing and pin assignments

	8.2 K60 pinouts	77
9	Revision history	78

1 Ordering parts

1.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to freescale.com and perform a part number search for the following device numbers: PK60 and MK60.

2 Part identification

2.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

2.2 Format

Part numbers for this device have the following format:

Q K## A M FFF R T PP CC N

2.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

Field	Description	Values
Q	Qualification status	 M = Fully qualified, general market flow P = Prequalification
K##	Kinetis family	• K60
A	Key attribute	 D = Cortex-M4 w/ DSP F = Cortex-M4 w/ DSP and FPU
М	Flash memory type	 N = Program flash only X = Program flash and FlexMemory

Table continues on the next page...

3.4 Definition: Rating

A *rating* is a minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure:

- Operating ratings apply during operation of the chip.
- *Handling ratings* apply when the chip is not powered.

3.4.1 Example

This is an example of an operating rating:

Symbol	Description	Min.	Max.	Unit
V _{DD}	1.0 V core supply voltage	-0.3	1.2	V

3.5 Result of exceeding a rating

Symbol	Description	Min.	Max.	Unit
Τ _f	Clock and data fall time	_	3	ns
Ts	Data setup	3	_	ns
Τ _h	Data hold	2	—	ns

Table 12. Debug trace operating behaviors (continued)

Figure 4. Trace data specifications

6.1.2 JTAG electricals

Table 13. JTAG limited voltage range electricals

Symbol	Description	Min.	Max.	Unit
	Operating voltage	2.7	3.6	V
J1	TCLK frequency of operation			MHz
	Boundary Scan	0	10	
	JTAG and CJTAG	0	25	
	Serial Wire Debug	0	50	
J2	TCLK cycle period	1/J1	_	ns
J3	TCLK clock pulse width			
	Boundary Scan	50	_	ns
	JTAG and CJTAG	20	—	ns
	Serial Wire Debug	10	—	ns
J4	TCLK rise and fall times	—	3	ns
J5	Boundary scan input data setup time to TCLK rise	20		ns

Table continues on the next page ...

Symbol	Description	Min.	Max.	Unit
J6	Boundary scan input data hold time after TCLK rise	0	—	ns
J7	TCLK low to boundary scan output data valid		25	ns
J8	TCLK low to boundary scan output high-Z		25	ns
J9	TMS, TDI input data setup time to TCLK rise	8		ns
J10	TMS, TDI input data hold time after TCLK rise	1		ns
J11	TCLK low to TDO data valid		17	ns
J12	TCLK low to TDO high-Z	—	17	ns
J13	TRST assert time	100		ns
J14	TRST setup time (negation) to TCLK high	8		ns

Table 13. JTAG limited voltage range electricals (continued)

Table 14. JTAG full voltage range electricals

Symbol	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
J1	TCLK frequency of operation			MHz
	Boundary Scan	0	10	
	JTAG and CJTAG	0	20	
	Serial Wire Debug	0	40	
J2	TCLK cycle period	1/J1	—	ns
J3	TCLK clock pulse width			
	Boundary Scan	50	—	ns
	JTAG and CJTAG	25	_	ns
	Serial Wire Debug	12.5	_	ns
J4	TCLK rise and fall times	_	3	ns
J5	Boundary scan input data setup time to TCLK rise	20		ns
J6	Boundary scan input data hold time after TCLK rise	0		ns
J7	TCLK low to boundary scan output data valid		25	ns
J8	TCLK low to boundary scan output high-Z		25	ns
J9	TMS, TDI input data setup time to TCLK rise	8		ns
J10	TMS, TDI input data hold time after TCLK rise	1.4		ns
J11	TCLK low to TDO data valid		22.1	ns
J12	TCLK low to TDO high-Z	_	22.1	ns
J13	TRST assert time	100		ns
J14	TRST setup time (negation) to TCLK high	8		ns

Figure 7. Test Access Port timing

6.2 System modules

There are no specifications necessary for the device's system modules.

6.3 Clock modules

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
J _{cyc_fll}	FLL period jitter		180		ps	
	 f_{DCO} = 48 MHz f_{DCO} = 98 MHz 	_	150	_		
t _{fll_acquire}	FLL target frequency acquisition time	_	_	1	ms	6
	P	LL				
f _{vco}	VCO operating frequency	48.0	_	100	MHz	
I _{pll}	PLL operating current • PLL @ 96 MHz (f _{osc_hi_1} = 8 MHz, f _{pll_ref} = 2 MHz, VDIV multiplier = 48)	_	1060	_	μA	7
I _{pll}	PLL operating current • PLL @ 48 MHz (f _{osc_hi_1} = 8 MHz, f _{pll_ref} = 2 MHz, VDIV multiplier = 24)	_	600	_	μA	7
f _{pll_ref}	PLL reference frequency range	2.0	—	4.0	MHz	
J _{cyc_pll}	PLL period jitter (RMS)					8
	• f _{vco} = 48 MHz	_	120	—	ps	
	• f _{vco} = 100 MHz		50	—	ps	
J _{acc_pll}	PLL accumulated jitter over 1µs (RMS)					8
	• f _{vco} = 48 MHz	_	1350	_	ps	
	• f _{vco} = 100 MHz	_	600	—	ps	
D _{lock}	Lock entry frequency tolerance	± 1.49	—	± 2.98	%	
D _{unl}	Lock exit frequency tolerance	± 4.47	—	± 5.97	%	
t _{pll_lock}	Lock detector detection time	_	_	150 × 10 ⁻⁶ + 1075(1/ f _{pll_ref})	S	9

 Table 15.
 MCG specifications (continued)

1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock mode).

- 2. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0.
- The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency deviation (Δf_{dco t}) over voltage and temperature should be considered.
- 4. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1.
- 5. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.
- 6. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- 7. Excludes any oscillator currents that are also consuming power while PLL is in operation.
- 8. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary.
- This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

6.3.2 Oscillator electrical specifications

This section provides the electrical characteristics of the module.

Table 28.	16-bit ADC characteristics	$(V_{REFH} = V_{DC})$	_{DA} , V _{REFL} = ^v	V _{SSA}) (continued)
-----------	----------------------------	-----------------------	--	--------------------------------

Symbol	Description	Conditions ¹ .	Min.	Typ. ²	Max.	Unit	Notes
	ADC	• ADLPC = 1, ADHSC = 0	1.2	2.4	3.9	MHz	t _{ADACK} = 1/
	asynchronous clock source	• ADLPC = 1, ADHSC = 1	2.4	4.0	6.1	MHz	† _{ADACK}
† _{ADACK}		• ADLPC = 0, ADHSC = 0	3.0	5.2	7.3	MHz	
		• ADLPC = 0, ADHSC = 1	4.4	6.2	9.5	MHz	
	Sample Time	See Reference Manual chapter	for sample t	imes			
TUE	Total unadjusted	12-bit modes	_	±4	±6.8	LSB ⁴	5
	error	<12-bit modes	—	±1.4	±2.1		
DNL	Differential non-	12-bit modes		±0.7	-1.1 to +1.9	LSB ⁴	5
	linearity				-0.3 to 0.5		
		 <12-bit modes 	—	±0.2			
INL	Integral non-	12-bit modes	—	±1.0	-2.7 to +1.9	LSB ⁴	5
	linearity				-0.7 to +0.5		
		 <12-bit modes 		±0.5			
E _{FS}	Full-scale error	12-bit modes	—	-4	-5.4	LSB ⁴	V _{ADIN} =
		<12-bit modes	—	-1.4	-1.8		V DDA
E .	Quantization	16-bit modes		-1 to 0		I SB4	5
	error	 <13-bit modes 		-1100	+0.5	LOD	
					10.5		
ENOB	Effective number	16-bit differential mode					6
		• Avg = 32	12.8	14.5	_	bits	
		• Avg = 4	11.9	13.8	_	bits	
		16-bit single-ended mode					
		• Avg = 32	10.0	12.0		bito	
		• Avg = 4	12.2	10.1	_	Dits	
	Signal-to-noise		11.4	13.1		DIIS	
SINAD	plus distortion		6.02	2 × ENOB +	1.76	dB	
THD	Total harmonic	16-bit differential mode					7
	distortion	• Avg = 32	—	-94	—	dB	
		16-bit single-ended mode					
		• Avg = 32	—	-85	—	dB	
0500							_
SFDR	Spurious free dvnamic range	16-bit differential mode				15	1
		• Avg = 32	82	95		aв	
		16-bit single-ended mode	70				
		• Avg = 32	78	90		uВ	

Table continues on the next page ...

Symbol	Description	Min.	Тур.	Max.	Unit
V _H	Analog comparator hysteresis ¹				
	• CR0[HYSTCTR] = 00	—	5	—	mV
	 CR0[HYSTCTR] = 01 	—	10	—	mV
	• CR0[HYSTCTR] = 10	_	20	—	mV
	 CR0[HYSTCTR] = 11 	—	30	—	mV
V _{CMPOh}	Output high	V _{DD} – 0.5	_	—	V
V _{CMPOI}	Output low		_	0.5	V
t _{DHS}	Propagation delay, high-speed mode (EN=1, PMODE=1)	20	50	200	ns
t _{DLS}	Propagation delay, low-speed mode (EN=1, PMODE=0)	80	250	600	ns
	Analog comparator initialization delay ²	_	_	40	μs
I _{DAC6b}	6-bit DAC current adder (enabled)	_	7	—	μA
INL	6-bit DAC integral non-linearity	-0.5	—	0.5	LSB ³
DNL	6-bit DAC differential non-linearity	-0.3	_	0.3	LSB

Table 31. Comparator and 6-bit DAC electrical specifications (continued)

1. Typical hysteresis is measured with input voltage range limited to 0.6 to V_{DD} -0.6 V.

2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to DACEN, VRSEL, PSEL, MSEL, VOSEL) and the comparator output settling to a stable level.

3. 1 LSB = $V_{reference}/64$

6.8.5 CAN switching specifications

See General switching specifications.

6.8.6 DSPI switching specifications (limited voltage range)

The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The tables below provide DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the Reference Manual for information on the modified transfer formats used for communicating with slower peripheral devices.

Num	Description	Min.	Max.	Unit	Notes
	Operating voltage	2.7	3.6	V	
	Frequency of operation		25	MHz	
DS1	DSPI_SCK output cycle time	2 x t _{BUS}	—	ns	
DS2	DSPI_SCK output high/low time	(t _{SCK} /2) – 2	$(t_{SCK}/2) + 2$	ns	
DS3	DSPI_PCSn valid to DSPI_SCK delay	(t _{BUS} x 2) – 2	_	ns	1
DS4	DSPI_SCK to DSPI_PCSn invalid delay	(t _{BUS} x 2) – 2	_	ns	2
DS5	DSPI_SCK to DSPI_SOUT valid	_	8	ns	
DS6	DSPI_SCK to DSPI_SOUT invalid	0	_	ns	
DS7	DSPI_SIN to DSPI_SCK input setup	14		ns	
DS8	DSPI_SCK to DSPI_SIN input hold	0	—	ns	

 Table 42.
 Master mode DSPI timing (limited voltage range)

1. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].

2. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].

Num	Description	Min.	Max.	Unit
	Operating voltage	2.7	3.6	V
	Frequency of operation		12.5	MHz
DS9	DSPI_SCK input cycle time	4 x t _{BUS}	—	ns
DS10	DSPI_SCK input high/low time	(t _{SCK} /2) – 2	(t _{SCK} /2) + 2	ns
DS11	DSPI_SCK to DSPI_SOUT valid	_	20	ns
DS12	DSPI_SCK to DSPI_SOUT invalid	0	—	ns
DS13	DSPI_SIN to DSPI_SCK input setup	2	—	ns
DS14	DSPI_SCK to DSPI_SIN input hold	7	_	ns
DS15	DSPI_SS active to DSPI_SOUT driven	—	14	ns
DS16	DSPI_SS inactive to DSPI_SOUT not driven		14	ns

Figure 23. DSPI classic SPI timing — slave mode

6.8.7 DSPI switching specifications (full voltage range)

The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The tables below provides DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the Reference Manual for information on the modified transfer formats used for communicating with slower peripheral devices.

Num	Description	Min.	Max.	Unit	Notes
	Operating voltage	1.71	3.6	V	1
	Frequency of operation	—	12.5	MHz	
DS1	DSPI_SCK output cycle time	4 x t _{BUS}	_	ns	

Table 44. Master mode DSPI timing (full voltage range)

Table continues on the next page...

Num	Description	Min.	Max.	Unit	Notes
DS2	DSPI_SCK output high/low time	(t _{SCK} /2) - 4	(t _{SCK/2)} + 4	ns	
DS3	DSPI_PCSn valid to DSPI_SCK delay	(t _{BUS} x 2) – 4	_	ns	2
DS4	DSPI_SCK to DSPI_PCSn invalid delay	(t _{BUS} x 2) – 4	_	ns	3
DS5	DSPI_SCK to DSPI_SOUT valid	—	8.5	ns	
DS6	DSPI_SCK to DSPI_SOUT invalid	-1.2	_	ns	
DS7	DSPI_SIN to DSPI_SCK input setup	19.1	_	ns	
DS8	DSPI_SCK to DSPI_SIN input hold	0		ns	

Table 44. Master mode DSPI timing (full voltage range) (continued)

- 1. The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage range the maximum frequency of operation is reduced.
- 2. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].
- 3. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].

Figure 24. DSPI classic SPI timing — master mode

Table 45. Slave mode DSPI timing (full voltage range)

Num	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
	Frequency of operation		6.25	MHz
DS9	DSPI_SCK input cycle time	8 x t _{BUS}		ns
DS10	DSPI_SCK input high/low time	(t _{SCK} /2) - 4	(t _{SCK/2)} + 4	ns
DS11	DSPI_SCK to DSPI_SOUT valid		24	ns
DS12	DSPI_SCK to DSPI_SOUT invalid	0	—	ns
DS13	DSPI_SIN to DSPI_SCK input setup	3.2		ns
DS14	DSPI_SCK to DSPI_SIN input hold	7		ns
DS15	DSPI_SS active to DSPI_SOUT driven		19	ns
DS16	DSPI_SS inactive to DSPI_SOUT not driven		19	ns

Table 48. I2S/SAI master mode timing in Normal Run, Wait and Stop modes (limited voltage range) (continued)

Num.	Characteristic	Min.	Max.	Unit
S6	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output invalid	0	_	ns
S7	I2S_TX_BCLK to I2S_TXD valid	—	15	ns
S8	I2S_TX_BCLK to I2S_TXD invalid	0	—	ns
S9	I2S_RXD/I2S_RX_FS input setup before I2S_RX_BCLK	15	_	ns
S10	I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK	0	—	ns

Figure 28. I2S/SAI timing — master modes

Table 49. I2S/SAI slave mode timing in Normal Run, Wait and Stop modes (limited voltage range)

Num.	Characteristic	Min.	Max.	Unit
	Operating voltage	2.7	3.6	V
S11	I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)	80	—	ns
S12	I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low (input)	45%	55%	MCLK period
S13	I2S_TX_FS/I2S_RX_FS input setup before I2S_TX_BCLK/I2S_RX_BCLK	4.5	_	ns
S14	I2S_TX_FS/I2S_RX_FS input hold after I2S_TX_BCLK/I2S_RX_BCLK	2	—	ns
S15	I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid Multiple SAI Synchronous mode 	_	21	ns
	All other modes	—	15	

Table continues on the next page...

Table 49. I2S/SAI slave mode timing in Normal Run, Wait and Stop modes (limited voltage range) (continued)

Num.	Characteristic	Min.	Max.	Unit
S16	I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid	0	—	ns
S17	I2S_RXD setup before I2S_RX_BCLK	4.5	—	ns
S18	I2S_RXD hold after I2S_RX_BCLK	2	—	ns
S19	I2S_TX_FS input assertion to I2S_TXD output valid ¹	—	25	ns

1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear

Figure 29. I2S/SAI timing — slave modes

6.8.11.2 Normal Run, Wait and Stop mode performance over the full operating voltage range

This section provides the operating performance over the full operating voltage for the device in Normal Run, Wait and Stop modes.

 Table 50.
 I2S/SAI master mode timing in Normal Run, Wait and Stop modes (full voltage range)

Num.	Characteristic	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
S1	I2S_MCLK cycle time	40	_	ns
S2	I2S_MCLK pulse width high/low	45%	55%	MCLK period
S3	I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)	80	_	ns
S4	I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low	45%	55%	BCLK period
S5	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output valid	—	15	ns
S6	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output invalid	-1.0	—	ns

Table continues on the next page...

Table 50. I2S/SAI master mode timing in Normal Run, Wait and Stop modes (full voltage range) (continued)

Num.	Characteristic	Min.	Max.	Unit
S7	I2S_TX_BCLK to I2S_TXD valid	—	15	ns
S8	I2S_TX_BCLK to I2S_TXD invalid	0	—	ns
S9	I2S_RXD/I2S_RX_FS input setup before I2S_RX_BCLK	20.5	—	ns
S10	I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK	0	—	ns

Figure 30. I2S/SAI timing — master modes

Table 51. I2S/SAI slave mode timing in Normal Run, Wait and Stop modes (full voltage range)

Num.	Characteristic	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
S11	I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)	80	—	ns
S12	I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low (input)	45%	55%	MCLK period
S13	I2S_TX_FS/I2S_RX_FS input setup before I2S_TX_BCLK/I2S_RX_BCLK	5.8	_	ns
S14	I2S_TX_FS/I2S_RX_FS input hold after I2S_TX_BCLK/I2S_RX_BCLK	2	_	ns
S15	I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid			ns
	Multiple SAI Synchronous mode	—	24	
	All other modes	_	20.6	
S16	I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid	0	_	ns

Table continues on the next page ...

Table 51. I2S/SAI slave mode timing in Normal Run, Wait and Stop modes (full voltage range) (continued)

Num.	Characteristic	Min.	Max.	Unit
S17	I2S_RXD setup before I2S_RX_BCLK	5.8	—	ns
S18	I2S_RXD hold after I2S_RX_BCLK	2	—	ns
S19	I2S_TX_FS input assertion to I2S_TXD output valid ¹	—	25	ns

1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear

Figure 31. I2S/SAI timing — slave modes

6.8.11.3 VLPR, VLPW, and VLPS mode performance over the full operating voltage range

This section provides the operating performance over the full operating voltage for the device in VLPR, VLPW, and VLPS modes.

Table 52.I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes
(full voltage range)

Num.	Characteristic	Min.	Max.	Unit		
	Operating voltage	1.71	3.6	V		
S1	I2S_MCLK cycle time	62.5	_	ns		
S2	I2S_MCLK pulse width high/low	45%	55%	MCLK period		
S3	I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)	250	_	ns		
S4	I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low	45%	55%	BCLK period		
S5	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output valid	—	45	ns		
S6	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output invalid	0		ns		
S7	I2S_TX_BCLK to I2S_TXD valid	—	45	ns		

Table continues on the next page...

6.9 Human-machine interfaces (HMI)

6.9.1 TSI electrical specifications

Table 54. TSI electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{DDTSI}	Operating voltage	1.71	—	3.6	V	
C _{ELE}	Target electrode capacitance range	1	20	500	pF	1
f _{REFmax}	Reference oscillator frequency	—	8	15	MHz	2, 3
f _{ELEmax}	Electrode oscillator frequency	_	1	1.8	MHz	2, 4
C _{REF}	Internal reference capacitor	_	1	—	pF	
V _{DELTA}	Oscillator delta voltage	—	500	—	mV	2, 5
I _{REF}	Reference oscillator current source base current • 2 μA setting (REFCHRG = 0)	_	2	3	μA	2, 6
	 32 µA setting (REFCHRG = 15) 	_	36	50		
I _{ELE}	Electrode oscillator current source base current • 2 μA setting (EXTCHRG = 0)	_	2	3	μA	2, 7
	 32 µA setting (EXTCHRG = 15) 	—	36	50		
Pres5	Electrode capacitance measurement precision	_	8.3333	38400	fF/count	8
Pres20	Electrode capacitance measurement precision	_	8.3333	38400	fF/count	9
Pres100	Electrode capacitance measurement precision	_	8.3333	38400	fF/count	10
MaxSens	Maximum sensitivity	0.008	1.46	_	fF/count	11
Res	Resolution	_	_	16	bits	
T _{Con20}	Response time @ 20 pF	8	15	25	μs	12
I _{TSI_RUN}	Current added in run mode		55	—	μΑ	
I _{TSI_LP}	Low power mode current adder	_	1.3	2.5	μΑ	13

- 1. The TSI module is functional with capacitance values outside this range. However, optimal performance is not guaranteed.
- 2. Fixed external capacitance of 20 pF.
- 3. REFCHRG = 2, EXTCHRG=0.
- 4. REFCHRG = 0, EXTCHRG = 10.
- 5. $V_{DD} = 3.0 V.$
- 6. The programmable current source value is generated by multiplying the SCANC[REFCHRG] value and the base current.
- 7. The programmable current source value is generated by multiplying the SCANC[EXTCHRG] value and the base current.
- 8. Measured with a 5 pF electrode, reference oscillator frequency of 10 MHz, PS = 128, NSCN = 8; lext = 16.
- 9. Measured with a 20 pF electrode, reference oscillator frequency of 10 MHz, PS = 128, NSCN = 2; lext = 16.
- 10. Measured with a 20 pF electrode, reference oscillator frequency of 10 MHz, PS = 16, NSCN = 3; lext = 16.
- 11. Sensitivity defines the minimum capacitance change when a single count from the TSI module changes. Sensitivity depends on the configuration used. The documented values are provided as examples calculated for a specific configuration of operating conditions using the following equation: (C_{ref} * I_{ext})/(I_{ref} * PS * NSCN)

The typical value is calculated with the following configuration:

I_{ext} = 6 μA (EXTCHRG = 2), PS = 128, NSCN = 2, I_{ref} = 16 μA (REFCHRG = 7), C_{ref} = 1.0 pF

The minimum value is calculated with the following configuration:

I_{ext} = 2 μA (EXTCHRG = 0), PS = 128, NSCN = 32, I_{ref} = 32 μA (REFCHRG = 15), C_{ref} = 0.5 pF

The highest possible sensitivity is the minimum value because it represents the smallest possible capacitance that can be measured by a single count.

- 12. Time to do one complete measurement of the electrode. Sensitivity resolution of 0.0133 pF, PS = 0, NSCN = 0, 1 electrode, EXTCHRG = 7.
- 13. REFCHRG=0, EXTCHRG=4, PS=7, NSCN=0F, LPSCNITV=F, LPO is selected (1 kHz), and fixed external capacitance of 20 pF. Data is captured with an average of 7 periods window.

7 Dimensions

7.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to freescale.com and perform a keyword search for the drawing's document number:

If you want the drawing for this package	Then use this document number				
100-pin LQFP	98ASS23308W				
104-pin MAPBGA	98ASA00344D				

8 Pinout

100 LQFP	Pin Name	Default	ALTO	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
81	PTC9	ADC1_SE5b/ CMP0_IN3	ADC1_SE5b/ CMP0_IN3	PTC9			I2S0_RX_BCLK	FB_AD6	FTM2_FLT0		
82	PTC10	ADC1_SE6b	ADC1_SE6b	PTC10	I2C1_SCL		I2S0_RX_FS	FB_AD5			
83	PTC11/ LLWU_P11	ADC1_SE7b	ADC1_SE7b	PTC11/ LLWU_P11	I2C1_SDA		12S0_RXD1	FB_RW_b			
84	PTC12	DISABLED		PTC12		UART4_RTS_b		FB_AD27			
85	PTC13	DISABLED		PTC13		UART4_CTS_b		FB_AD26			
86	PTC14	DISABLED		PTC14		UART4_RX		FB_AD25			
87	PTC15	DISABLED		PTC15		UART4_TX		FB_AD24			
88	VSS	VSS	VSS								
89	VDD	VDD	VDD								
90	PTC16	DISABLED		PTC16	CAN1_RX	UART3_RX	ENET0_1588_ TMR0	FB_CS5_b/ FB_TSIZ1/ FB_BE23_16_b			
91	PTC17	DISABLED		PTC17	CAN1_TX	UART3_TX	ENET0_1588_ TMR1	FB_CS4_b/ FB_TSIZ0/ FB_BE31_24_b			
92	PTC18	DISABLED		PTC18		UART3_RTS_b	ENET0_1588_ TMR2	FB_TBST_b/ FB_CS2_b/ FB_BE15_8_b			
93	PTD0/ LLWU_P12	DISABLED		PTD0/ LLWU_P12	SPI0_PCS0	UART2_RTS_b		FB_ALE/ FB_CS1_b/ FB_TS_b			
94	PTD1	ADC0_SE5b	ADC0_SE5b	PTD1	SPI0_SCK	UART2_CTS_b		FB_CS0_b			
95	PTD2/ LLWU_P13	DISABLED		PTD2/ LLWU_P13	SPI0_SOUT	UART2_RX		FB_AD4			
96	PTD3	DISABLED		PTD3	SPI0_SIN	UART2_TX		FB_AD3			
97	PTD4/ LLWU_P14	DISABLED		PTD4/ LLWU_P14	SPI0_PCS1	UARTO_RTS_b	FTM0_CH4	FB_AD2	EWM_IN		
98	PTD5	ADC0_SE6b	ADC0_SE6b	PTD5	SPI0_PCS2	UART0_CTS_ b/ UART0_COL_b	FTM0_CH5	FB_AD1	EWM_OUT_b		
99	PTD6/ LLWU_P15	ADC0_SE7b	ADC0_SE7b	PTD6/ LLWU_P15	SPI0_PCS3	UARTO_RX	FTM0_CH6	FB_AD0	FTM0_FLT0		
100	PTD7	DISABLED		PTD7	CMT_IRO	UART0_TX	FTM0_CH7		FTM0_FLT1		
L		1		1	1					1	

8.2 K60 pinouts

The figure below shows the pinout diagram for the devices supported by this document. Many signals may be multiplexed onto a single pin. To determine what signals can be used on which pin, see the previous section.

Pinout

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo and Kinetis are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. ARM is the registered trademark of ARM Limited. Cortex-M4 is the trademark of ARM Limited.

are the registered trademarks of ARM Limited. © 2012–2013Freescale Semiconductor, Inc.

Document Number: K60P100M100SF2V2 Rev. 3 06/2013

