

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	36
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	128 × 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 28x10b; D/A 4x5b, 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1777-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.0 MEMORY ORGANIZATION

These devices contain the following types of memory:

- Program Memory
 - Configuration Words
 - Device ID
 - User ID
 - Flash Program Memory
- Data Memory
 - Core Registers
 - Special Function Registers
 - General Purpose RAM
 - Common RAM

Note 1: The method to access Flash memory through the PMCON registers is described in Section 10.0 "Flash Program Memory Control".

The following features are associated with access and control of program memory and data memory:

- PCL and PCLATH
- Stack
- Indirect Addressing

TABLE 3-1: DEVICE SIZES AND ADDRESSES

3.1 **Program Memory Organization**

The enhanced mid-range core has a 15-bit program counter capable of addressing a 32K x 14 program memory space. Table 3-1 shows the memory sizes implemented for the PIC16(L)F1777/8/9 family. Accessing a location above these boundaries will cause a wrap-around within the implemented memory space. The Reset vector is at 0000h and the interrupt vector is at 0004h (see Figures 3-1 and 3-2).

3.2 High-Endurance Flash

This device has a 128-byte section of high-endurance program Flash memory (PFM) in lieu of data EEPROM. This area is especially well suited for nonvolatile data storage that is expected to be updated frequently over the life of the end product. See Section 10.2 "Flash **Program Memory Overview**" for more information on writing data to PFM. See Section 3.2.1.2 "Indirect **Read with FSR**" for more information about using the FSR registers to read byte data stored in PFM.

Device	Program Memory Space (Words)	Last Program Memory Address	High-Endurance Flash Memory Address Range ⁽¹⁾		
PIC16(L)F1777	8,192	1FFFh	1F80h-1FFFh		
PIC16(L)F1778/9	16,384	3FFFh	3F80h-3FFFh		

Note 1: High-endurance Flash applies to the low byte of each address in the range.

3.3 Data Memory Organization

The data memory is partitioned in 32 memory banks with 128 bytes in a bank. Each bank consists of (Figure 3-3):

- 12 core registers
- 20 Special Function Registers (SFR)
- Up to 80 bytes of General Purpose RAM (GPR)
- · 16 bytes of common RAM

The active bank is selected by writing the bank number into the Bank Select Register (BSR). Unimplemented memory will read as '0'. All data memory can be accessed either directly (via instructions that use the file registers) or indirectly via the two File Select Registers (FSR). See **Section 3.7** "Indirect Addressing" for more information.

Data memory uses a 12-bit address. The upper five bits of the address define the Bank address and the lower seven bits select the registers/RAM in that bank.

3.3.1 CORE REGISTERS

TABLE 3-2:

The core registers contain the registers that directly affect the basic operation. The core registers occupy the first 12 addresses of every data memory bank (addresses x00h/x08h through x0Bh/x8Bh). These registers are listed below in Table 3-2. For detailed information, see Table 3-17.

CORE REGISTERS

Addresses BANKx x00h or x80h INDF0 x01h or x81h INDF1 x02h or x82h PCL x03h or x83h STATUS x04h or x84h FSR0L x05h or x85h FSR0H FSR1L x06h or x86h FSR1H x07h or x87h x08h or x88h BSR x09h or x89h WREG PCLATH x0Ah or x8Ah x0Bh or x8Bh INTCON

3.3.1.1 STATUS Register

The STATUS register, shown in Register 3-1, contains:

- the arithmetic status of the ALU
- · the Reset status

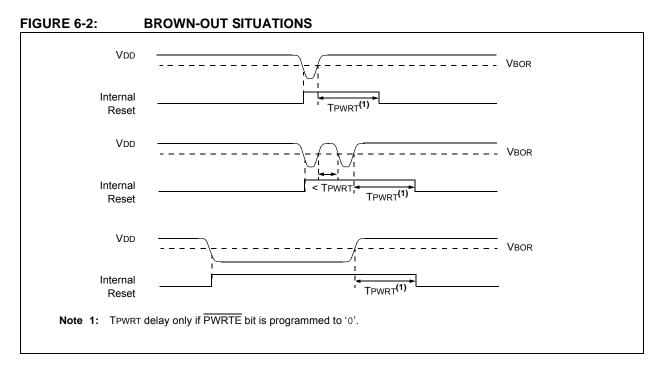
The STATUS register can be the destination for any instruction, like any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as '000u uluu' (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect any Status bits. For other instructions not affecting any Status bits (Refer to Section 35.0 "Instruction Set Summary").

Note: The C and DC bits operate as Borrow and Digit Borrow out bits, respectively, in subtraction.

TABLE 3-18: S	SPECIAL FUNCTION REGISTER SUMMARY
---------------	--


										Value on	Value on all
Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	POR, BOR	other Resets
Bank	< 0										
00Ch	PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	XXXX XXXX	uuuu uuuu
00Dh	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	XXXX XXXX	uuuu uuuu
00Eh	PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	XXXX XXXX	uuuu uuuu
00Fh	PORTD ⁽³⁾	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	XXXX XXXX	uuuu uuuu
010h	PORTE	—			_	RE3	RE2 ⁽³⁾	RE1 ⁽³⁾	RE0 ⁽³⁾	xxxx	uuuu
011h	PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
012h	PIR2	OSFIF	C2IF	C1IF	COG1IF	BCL1IF	C4IF	C3IF	CCP2IF	0000 0000	0000 0000
013h	PIR3	—		COG2IF	ZCDIF	CLC4IF	CLC3IF	CLC2IF	CLC1IF	00 0000	00 0000
014h	PIR4	—	TMR8IF	TMR5GIF	TMR5IF	TMR3GIF	TMR3IF	TMR6IF	TRM4IF	-000 0000	-000 0000
015h	PIR5	CCP8IF ⁽³⁾	CCP7IF	COG4IF ⁽³⁾	COG3IF	C8IF ⁽³⁾	C7IF ⁽³⁾	C6IF	C5IF	000000	000000
016h	PIR6	—			_	PWM12IF ⁽³⁾	PWM11IF	PWM6IF	PWM5IF	0000	0000
017h	TMR0	Timer0 Module Re	egister							0000 0000	0000 0000
018h	TMR1L	Holding Register f	or the Least Signif	cant Byte of the 16	6-bit TMR1 Registe	er				XXXX XXXX	uuuu uuuu
019h	TMR1H	Holding Register f	or the Most Signifi	cant Byte of the 16	-bit TMR1 Registe	r				XXXX XXXX	uuuu uuuu
01Ah	T1CON	CS<	1:0>	CKPS	6<1:0>	OSCEN	SYNC	—	ON	0000 00-0	uuuu uu-u
01Bh	T1GCON	GE	GPOL	GTM	GSPM	GGO/DONE	GVAL	GSS	<1:0>	0000 0x00	uuuu uxuu
01Ch	TMR3L	Holding Register f	or the Least Signif	cant Byte of the 16	5-bit TMR3 Registe	er				XXXX XXXX	uuuu uuuu
01Dh	TMR3H	Holding Register f	or the Most Signific	cant Byte of the 16	-bit TMR3 Registe	r				XXXX XXXX	uuuu uuuu
01Eh	T3CON	CS<	1:0>	CKPS	6<1:0>	OSCEN	SYNC	_	ON	0000 00-0	uuuu uu-u
01Fh	T3GCON	GE	GPOL	GTM	GSPM	GGO/DONE	GVAL	GSS	<1:0>	00x0 0x00	uuuu uxuu

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: Unimplemented, read as '1'.

2: Unimplemented on PIC16LF1777/8/9.

3: Unimplemented on PIC16(L)F1778.

6.3 Register Definitions: BOR Control

REGISTER 6-1: BORCON: BROWN-OUT RESET CONTROL REGISTER

R/W-1/u	R/W-0/u	U-0	U-0	U-0	U-0	U-0	R-q/u
SBOREN	BORFS ⁽¹⁾	—	—	—	—	—	BORRDY
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7	SBOREN: Software Brown-out Reset Enable bit If BOREN <1:0> in Configuration Words ≠ 01: SBOREN is read/write, but has no effect on the BOR. If BOREN <1:0> in Configuration Words = 01: 1 = BOR Enabled 0 = BOR Disabled
bit 6	 BORFS: Brown-out Reset Fast Start bit⁽¹⁾ If BOREN<1:0> = 11 (Always on) or BOREN<1:0> = 00 (Always off) BORFS is Read/Write, but has no effect. If BOREN<1:0> = 10 (Disabled in Sleep) or BOREN<1:0> = 01 (Under software control): 1 = Band gap is forced on always (covers sleep/wake-up/operating cases) 0 = Band gap operates normally, and may turn off
bit 5-1	Unimplemented: Read as '0'
bit 0	BORRDY: Brown-out Reset Circuit Ready Status bit 1 = The Brown-out Reset circuit is active 0 = The Brown-out Reset circuit is inactive

Note 1: BOREN<1:0> bits are located in Configuration Words.

PIC16(L)F1777/8/9

EXAMPLE 10-2: ERASING ONE ROW OF PROGRAM MEMORY

- ; This row erase routine assumes the following:
- ; 1. A valid address within the erase row is loaded in ADDRH:ADDRL

; 2. ADDRH and ADDRL are located in shared data memory $0\,\mathrm{x}70$ - $0\,\mathrm{x}7F$ (common RAM)

	BCF BANKSEL MOVF MOVF MOVF BCF BCF BSF BSF	INTCON, GIE PMADRL ADDRL,W PMADRL ADDRH,W PMADRH PMCON1,CFGS PMCON1,FREE PMCON1,WREN	<pre>; Disable ints so required sequences will execute properly ; Load lower 8 bits of erase address boundary ; Load upper 6 bits of erase address boundary ; Not configuration space ; Specify an erase operation ; Enable writes</pre>
Required Sequence	MOVLW MOVUF MOVLW MOVWF BSF NOP NOP	55h PMCON2 0AAh PMCON2 PMCON1,WR	<pre>; Start of required sequence to initiate erase ; Write 55h ; ; Write AAh ; Set WR bit to begin erase ; NOP instructions are forced as processor starts ; row erase of program memory. ; ; The processor stalls until the erase process is complete ; after erase processor continues with 3rd instruction</pre>
	BCF BSF	PMCON1,WREN INTCON,GIE	; Disable writes ; Enable interrupts

-n/n = Value at POR and BOR/Value at all other Resets

Legend:							
bit 7							bit 0
SLRD7	SLRD6	SLRD5	SLRD4	SLRD3	SLRD2	SLRD1	SLRD0
R/W-1/1							

REGISTER 11-32: SLRCOND: PORTD SLEW RATE CONTROL REGISTER

bit 7-0 SLRD<7:0>: PORTD Slew Rate Enable bits For RD<7:0> pins 1 = Port pin slew rate is limited 0 = Port pin slews at maximum rate

u = Bit is unchanged

'1' = Bit is set

REGISTER 11-33: INLVLD: PORTD INPUT LEVEL CONTROL REGISTER

x = Bit is unknown

'0' = Bit is cleared

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| INLVLD7 | INLVLD6 | INLVLD5 | INLVLD4 | INLVLD3 | INLVLD2 | INLVLD1 | INLVLD0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 INLVLD<7:0>: PORTD Input Level Select bits

For RD<7:0> pins

1 = Port pin digital input operates with ST thresholds

0 = Port pin digital input operates with TTL thresholds

12.0 PERIPHERAL PIN SELECT (PPS) MODULE

The Peripheral Pin Select (PPS) module connects peripheral inputs and outputs to the device I/O pins. Only digital signals are included in the selections. All analog inputs and outputs remain fixed to their assigned pins. Input and output selections are independent as shown in the simplified block diagram Figure 12-1.

12.1 PPS Inputs

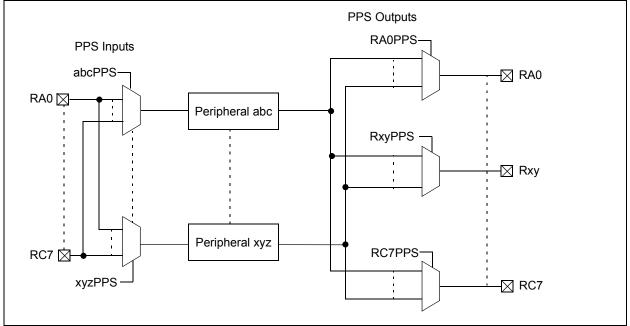
Each peripheral has a PPS register with which the inputs to the peripheral are selected. Inputs include the device pins.

Multiple peripherals can operate from the same source simultaneously. Port reads always return the pin level regardless of peripheral PPS selection. If a pin also has associated analog functions, the ANSEL bit for that pin must be cleared to enable the digital input buffer.

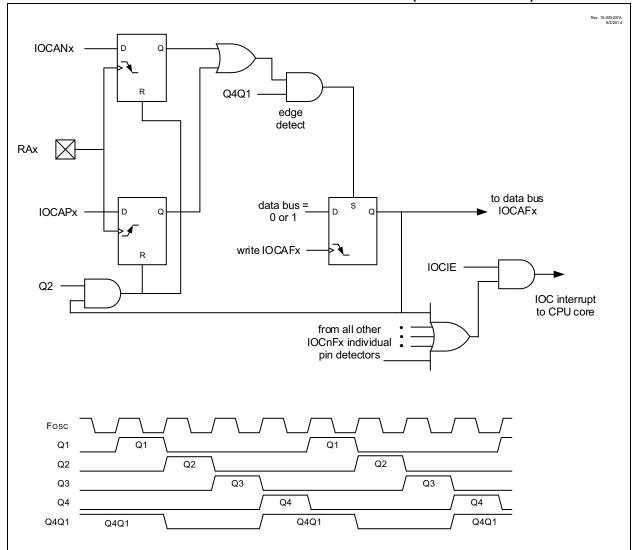
Although every peripheral has its own PPS input selection register, the selections are identical for every peripheral as shown in Register 12-1.

Note: The notation "xxx" in the register name is a place holder for the peripheral identifier. For example, CLC1PPS.

12.2 PPS Outputs


Each I/O pin has a PPS register with which the pin output source is selected. With few exceptions, the port TRIS control associated with that pin retains control over the pin output driver. Peripherals that control the pin output driver as part of the peripheral operation will override the TRIS control as needed. These peripherals include:

- EUSART (synchronous operation)
- MSSP (I²C)
- · COG (auto-shutdown)


Although every pin has its own PPS peripheral selection register, the selections are identical for every pin as shown in Register 12-2.

Note: The notation "Rxy" is a place holder for the pin identifier. For example, RA0PPS.

FIGURE 12-1: SIMPLIFIED PPS BLOCK DIAGRAM

PIC16(L)F1777/8/9

FIGURE 13-1: INTERRUPT-ON-CHANGE BLOCK DIAGRAM (PORTA EXAMPLE)

REGISTER 13-7: IOCCP: INTERRUPT-ON-CHANGE PORTC POSITIVE EDGE REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| IOCCP7 | IOCCP6 | IOCCP5 | IOCCP4 | IOCCP3 | IOCCP2 | IOCCP1 | IOCCP0 |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

0 **IOCCP<7:0>:** Interrupt-on-Change PORTC Positive Edge Enable bits

1 = Interrupt-on-Change enabled on the pin for a positive going edge. IOCCFx bit and IOCIF flag will be set upon detecting an edge.

0 = Interrupt-on-Change disabled for the associated pin.

REGISTER 13-8: IOCCN: INTERRUPT-ON-CHANGE PORTC NEGATIVE EDGE REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| IOCCN7 | IOCCN6 | IOCCN5 | IOCCN4 | IOCCN3 | IOCCN2 | IOCCN1 | IOCCN0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

IOCCN<7:0>: Interrupt-on-Change PORTC Negative Edge Enable bits

1 = Interrupt-on-Change enabled on the pin for a negative going edge. IOCCFx bit and IOCIF flag will be set upon detecting an edge.

0 = Interrupt-on-Change disabled for the associated pin.

REGISTER 13-9: IOCCF: INTERRUPT-ON-CHANGE PORTC FLAG REGISTER

	R/W/HS-0/0							
ſ	IOCCF7	IOCCF6	IOCCF5	IOCCF4	IOCCF3	IOCCF2	IOCCF1	IOCCF0
	bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS - Bit is set in hardware

bit 7-0

IOCCF<7:0>: Interrupt-on-Change PORTC Flag bits

1 = An enabled change was detected on the associated pin.

Set when IOCCPx = 1 and a rising edge was detected on RCx, or when IOCCNx = 1 and a falling edge was detected on RCx.

0 = No change was detected, or the user cleared the detected change.

14.4 **Register Definitions: FVR Control**

REGISTER 14-1: FVRCON: FIXED VOLTAGE REFERENCE CONTROL REGISTER

R/W-0/0	R-q/q	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
FVREN	FVRRDY ⁽¹⁾	TSEN ⁽³⁾	TSRNG ⁽³⁾	CDAFVR<1:0>		ADFVI	R<1:0>	
bit 7 bit 0								

Legend:				
R = Readal	ole bit	W = Writable bit	U = Unimplemented bit, read as '0'	
u = Bit is ur	nchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets	
'1' = Bit is set		'0' = Bit is cleared	q = Value depends on condition	
bit 7	1 = Fixed	Fixed Voltage Reference Ena I Voltage Reference is enable I Voltage Reference is disable	ed	
bit 6	1 = Fixed	: Fixed Voltage Reference Re I Voltage Reference output is I Voltage Reference output is	ready for use	
bit 5	 TSEN: Temperature Indicator Enable bit⁽³⁾ 1 = Temperature Indicator is enabled 0 = Temperature Indicator is disabled 			
bit 4	1 = VOUT	Temperature Indicator Range ⁻ = V _{DD} - 4VT (High Range) ⁻ = V _{DD} - 2VT (Low Range)	e Selection bit ⁽³⁾	
bit 3-2	11 = Com 10 = Com 01 = Com	nparator/DAC FVR Buffer Gai	in is 4x, with output VCDAFVR = 4x VFVR ⁽²⁾ in is 2x, with output VCDAFVR = 2x VFVR ⁽²⁾ in is 1x, with output VCDAFVR = 1x VFVR	
bit 1-0	11 = ADC 10 = ADC 01 = ADC	1:0>: ADC FVR Buffer Gain S C FVR Buffer Gain is 4x, with C FVR Buffer Gain is 2x, with C FVR Buffer Gain is 1x, with C FVR Buffer is off	output VADEVR = $4x VEVR^{(2)}$ output VADEVR = $2x VEVR^{(2)}$	
		ways '1' on PIC16F1773/6 or Reference output cannot exc	•	

- **2:** Fixed Voltage Reference output cannot exceed VDD.
- 3: See Section 15.0 "Temperature Indicator Module" for additional information.

TABLE 14-2: SUMMARY OF REGISTERS ASSOCIATED WITH FIXED VOLTAGE REFERENCE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFVR<1:0>		ADFVF	<1:0>	223

Legend: Shaded cells are not used with the Fixed Voltage Reference.

21.1.3 SOFTWARE PROGRAMMABLE PRESCALER

A software programmable prescaler is available for exclusive use with Timer0. The prescaler is enabled by clearing the PSA bit of the OPTION_REG register.

Note:	The Watchdog Timer (WDT) uses its own
	independent prescaler.

There are eight prescaler options for the Timer0 module ranging from 1:2 to 1:256. The prescale values are selectable via the PS<2:0> bits of the OPTION_REG register. In order to have a 1:1 prescaler value for the Timer0 module, the prescaler must be disabled by setting the PSA bit of the OPTION_REG register.

The prescaler is not readable or writable. All instructions writing to the TMR0 register will clear the prescaler.

21.1.4 TIMER0 INTERRUPT

Timer0 will generate an interrupt when the TMR0 register overflows from FFh to 00h. The TMR0IF interrupt flag bit of the INTCON register is set every time the TMR0 register overflows, regardless of whether or not the Timer0 interrupt is enabled. The TMR0IF bit can only be cleared in software. The Timer0 interrupt enable is the TMR0IE bit of the INTCON register.

Note:	The Timer0 interrupt cannot wake the							
	processor from Sleep since the timer is							
	frozen during Sleep.							

21.1.5 8-BIT COUNTER MODE SYNCHRONIZATION

When in 8-Bit Counter mode, the incrementing edge on the T0CKI pin must be synchronized to the instruction clock. Synchronization can be accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the instruction clock. The high and low periods of the external clocking source must meet the timing requirements as shown in Table 36-12: Timer0 and Timer1 External Clock Requirements.

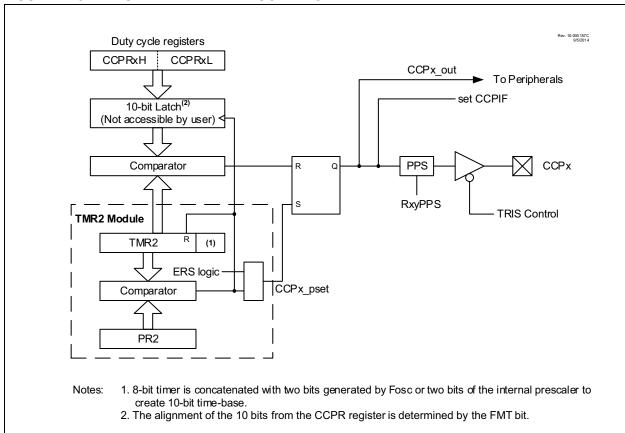
21.1.6 OPERATION DURING SLEEP

Timer0 cannot operate while the processor is in Sleep mode. The contents of the TMR0 register will remain unchanged while the processor is in Sleep mode.

23.5 Timer2 Interrupt

Timer2 can also generate a device interrupt. The interrupt is generated when the postscaler counter matches one of 16 postscale options (from 1:1 through 1:16), which are selected with the postscaler control bits, OUTPS<3:0> of the T2CON register. The interrupt is enabled by setting the TMR2IE interrupt enable bit of the PIE1 register. Interrupt timing is illustrated in Figure 23-3.

FIGURE 23-3: TIMER2 PRESCALER, POSTSCALER, AND INTERRUPT TIMING DIAGRAM


	Rev. 10.000056A 4/72016
CKPS	0b010
PRx	1
OUTPS	0b0001
TMRx_clk	
TMRx	
TMRx_postscaled	
TMRxIF	(1) (1)
Note 1: 2:	Synchronization may take as many as 2 instruction cycles

24.3 **PWM Overview**

Pulse-Width Modulation (PWM) is a scheme that provides power to a load by switching quickly between fully on and fully off states. The PWM signal resembles a square wave where the high portion of the signal is considered the on state and the low portion of the signal is considered the off state. The high portion, also known as the pulse width, can vary in time and is defined in steps. A larger number of steps applied, which lengthens the pulse width, also supplies more power to the load. Lowering the number of steps applied, which shortens the pulse width, supplies less power. The PWM period is defined as the duration of one complete cycle or the total amount of on and off time combined. PWM resolution defines the maximum number of steps that can be present in a single PWM period. A higher resolution allows for more precise control of the pulse width time and in turn the power that is applied to the load.

The term duty cycle describes the proportion of the on time to the off time and is expressed in percentages, where 0% is fully off and 100% is fully on. A lower duty cycle corresponds to less power applied and a higher duty cycle corresponds to more power applied.

Figure 24-3 shows a typical waveform of the PWM signal.

FIGURE 24-3: SIMPLIFIED PWM BLOCK DIAGRAM

32.4.9 ACKNOWLEDGE SEQUENCE

The ninth SCL pulse for any transferred byte in I^2C is dedicated as an Acknowledge. It allows receiving devices to respond back to the transmitter by pulling the SDA line low. The transmitter must release control of the line during this time to shift in the response. The Acknowledge (ACK) is an active-low signal, pulling the SDA line low indicates to the transmitter that the device has received the transmitted data and is ready to receive more.

The result of an \overline{ACK} is placed in the ACKSTAT bit of the SSPxCON2 register.

Slave software, when the AHEN and DHEN bits are set, allow the user to set the ACK value sent back to the transmitter. The ACKDT bit of the SSPxCON2 register is set/cleared to determine the response.

Slave hardware will generate an ACK response if the AHEN and DHEN bits of the SSPxCON3 register are clear.

There are certain conditions where an \overline{ACK} will not be sent by the slave. If the BF bit of the SSPxSTAT register or the SSPOV bit of the SSPxCON1 register are set when a byte is received.

When the module is addressed, after the eighth falling edge of SCL on the bus, the ACKTIM bit of the SSPxCON3 register is set. The ACKTIM bit indicates the acknowledge time of the active bus. The ACKTIM Status bit is only active when the AHEN bit or DHEN bit is enabled.

32.5 I²C SLAVE MODE OPERATION

The MSSP Slave mode operates in one of four modes selected by the SSPM bits of SSPxCON1 register. The modes can be divided into 7-bit and 10-bit Addressing mode. 10-bit Addressing modes operate the same as 7-bit with some additional overhead for handling the larger addresses.

Modes with Start and Stop bit interrupts operate the same as the other modes with SSPxIF additionally getting set upon detection of a Start, Restart, or Stop condition.

32.5.1 SLAVE MODE ADDRESSES

The SSPxADD register (Register 32-6) contains the Slave mode address. The first byte received after a Start or Restart condition is compared against the value stored in this register. If the byte matches, the value is loaded into the SSPxBUF register and an interrupt is generated. If the value does not match, the module goes idle and no indication is given to the software that anything happened.

The SSP Mask register (Register 32-5) affects the address matching process. See **Section 32.5.8** "**SSP Mask Register**" for more information.

32.5.1.1 I²C Slave 7-bit Addressing Mode

In 7-bit Addressing mode, the LSb of the received data byte is ignored when determining if there is an address match.

32.5.1.2 I²C Slave 10-bit Addressing Mode

In 10-bit Addressing mode, the first received byte is compared to the binary value of '1 1 1 1 0 A9 A8 0'. A9 and A8 are the two MSb's of the 10-bit address and stored in bits 2 and 1 of the SSPxADD register.

After the acknowledge of the high byte the UA bit is set and SCL is held low until the user updates SSPxADD with the low address. The low address byte is clocked in and all eight bits are compared to the low address value in SSPxADD. Even if there is not an address match; SSPxIF and UA are set, and SCL is held low until SSPxADD is updated to receive a high byte again. When SSPxADD is updated the UA bit is cleared. This ensures the module is ready to receive the high address byte on the next communication.

A high and low address match as a write request is required at the start of all 10-bit addressing communication. A transmission can be initiated by issuing a Restart once the slave is addressed, and clocking in the high address with the R/W bit set. The slave hardware will then acknowledge the read request and prepare to clock out data. This is only valid for a slave after it has received a complete high and low address byte match.

R-0/0	R-1/1	U-0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0				
ABDOVF	RCIDL	_	SCKP	BRG16	—	WUE	ABDEN				
bit 7							bit 0				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'					
u = Bit is uncl	hanged	x = Bit is unk	nown	-n/n = Value	at POR and BC	R/Value at all c	other Resets				
'1' = Bit is set		'0' = Bit is cle	ared								
bit 7		uto-Baud Dete	t Overflow bit								
	Asynchronou										
	-	<u>id timer overflo</u>	wed								
		id timer did not									
	<u>Synchronous</u> Don't care	<u>s mode</u> :									
bit 6	RCIDL: Rece	eive Idle Flag b	it								
	<u>Asynchronou</u>	is mode:									
	1 = Receiver										
		 0 = Start bit has been received and the receiver is receiving Synchronous mode: 									
	Don't care	<u>s mode</u> .									
bit 5	Unimplemer	nted: Read as	ʻ0'								
bit 4	SCKP: Synchronous Clock Polarity Select bit										
	Asynchronous mode:										
	 1 = Transmit inverted data to the TX/CK pin 0 = Transmit non-inverted data to the TX/CK pin 										
	Synchronous mode:										
		 1 = Data is clocked on rising edge of the clock 0 = Data is clocked on falling edge of the clock 									
bit 3	BRG16: 16-t	oit Baud Rate C	Generator bit								
		aud Rate Gene ud Rate Genera									
bit 2	Unimplemer	nted: Read as	0'								
bit 1	WUE: Wake-	up Enable bit									
	<u>Asynchronou</u>	Asynchronous mode:									
		is waiting for a natically clear a			will be received	l, byte RCIF wil	l be set. WUE				
		is operating n	ormally								
	Synchronous	<u>s mode</u> :									
	Don't care										
bit 0		o-Baud Detect	Enable bit								
	Asynchronou				uta havat ta ar u	nlata)					
		ud Detect mod ud Detect mod		liears when at	uto-baud is com	piete)					
	Synchronous		E IS UISADIEU								
	Don't care										

REGISTER 33-3: BAUD1CON: BAUD RATE CONTROL REGISTER

RETFIE	Return from Interrupt						
Syntax:	[<i>label</i>] RETFIE k						
Operands: None							
Operation:	$\begin{array}{l} TOS \to PC, \\ 1 \to GIE \end{array}$						
Status Affected:	None						
Description:	Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in the PC. Interrupts are enabled by setting Global Interrupt Enable bit, GIE (INTCON<7>). This is a 2-cycle instruction.						
Words:	1						
Cycles:	2						
Example:	RETFIE						
	After Interrupt PC = TOS GIE = 1						

RETURN	Return from Subroutine					
Syntax:	[label] RETURN					
Operands:	None					
Operation:	$TOS\toPC$					
Status Affected:	None					
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a 2-cycle instruction.					

RETLW	Return with literal in W	D 1 C	
Syntax:	[<i>label</i>] RETLW k	RLF	Rotate Left f through Carry
Operands:	$0 \le k \le 255$	Syntax:	[<i>label</i>] RLF f,d
Operation:	$k \rightarrow (W);$ TOS \rightarrow PC	Operands:	$0 \le f \le 127$ $d \in [0,1]$
Status Affected:	None	Operation:	See description below
Description:	The W register is loaded with the 8-bit	Status Affected:	С
Description.	literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a 2-cycle instruction.	Description:	The contents of register 'f' are rotated one bit to the left through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is
Words:	1		stored back in register 'f'.
Cycles:	2		C Register f
Example:	CALL TABLE;W contains table	Words:	1
	<pre>;offset value , W now has table value</pre>	Cycles:	1
TABLE	•	Example:	RLF REG1,0
	• ADDWF PC ;W = offset RETLW k1 ;Begin table RETLW k2 ; • • RETLW kn ; End of table		Before Instruction REG1 = 1110 0110 C = 0 -
	Before Instruction W = 0x07 After Instruction W = value of k8		

PIC16LF1	777/8/9	Operating Conditions: (unless otherwise stated) Low-Power Sleep Mode								
PIC16F17	77/8/9	Low-Po	ower Sle	p Mode, VREGPM = 1						
Param	Device Characteristics	Min.	Тур†	Max.	Max.	Units		Conditions		
No.	Device Characteristics	WIIII.	וקעי	+85°C	+125°C	Units	Vdd	Note		
D023	Base IPD		0.05	1.0	8.0	μA	1.8	WDT, BOR, FVR, and SOSC		
		—	0.08	2.0	9.0	μA	3.0	disabled, all Peripherals Inactive		
D023	Base IPD		0.3	2.4	10	μA	2.3	WDT, BOR, FVR, and SOSC		
			0.4	4	12	μA	3.0	disabled, all Peripherals Inactive, Low-Power Sleep mode		
		_	0.5	6	15	μA	5.0	Low-Power Sleep mode		
D023A	Base IPD	_	9.8	17	28	μA	2.3	WDT, BOR, FVR and SOSC		
		_	10.3	20	40	μA	3.0	disabled, all Peripherals inactive,		
		_	11.5	22	44	μA	5.0	Normal Power Sleep mode VREGPM = 0		
D024		_	0.5	6	14	μA	1.8	WDT Current		
		—	0.8	7	17	μA	3.0			
D024		—	0.8	6	15	μA	2.3	WDT Current		
		—	0.9	7	20	μA	3.0			
		_	1.0	8	22	μA	5.0]		
D025		_	15	28	30	μA	1.8	FVR Current (ADC)		
		_	24	35	38	μA	3.0			
D025		_	18	33	35	μA	2.3	FVR Current (ADC)		
			24	35	40	μA	3.0	1		
			26	37	44	μA	5.0	1		
D025A		_	25	50	55	μA	1.8	FVR Current (DAC)		
			30	65	70	μA	3.0	1		
D025A		_	30	55	66	μA	2.3	FVR Current (DAC)		
			32	68	82	μA	3.0	1		
			35	77	90	μA	5.0	1		
D026		_	7.5	25	28	μA	3.0	BOR Current		
D026		_	10	25	28	μA	3.0	BOR Current		
			12	28	31	μA	5.0	1		
D027		-	0.5	4	10	μA	3.0	LPBOR Current		
D027			0.8	6	15	μA	3.0	LPBOR Current		
			1	8	17	μA	5.0			
D028			0.5	5	9	μA	1.8	SOSC Current		
			0.8	8.5	12	μA	3.0			
D028		_	1.1	6	10	μA	2.3	SOSC Current		
		_	1.3	8.5	20	μA	3.0			
			1.4	10	25	μA	5.0			

TABLE 36-3: POWER-DOWN CURRENTS (IPD)^(1,2)

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral current is the sum of the base IPD and the additional current consumed when this peripheral is enabled. The peripheral △ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to Vss.

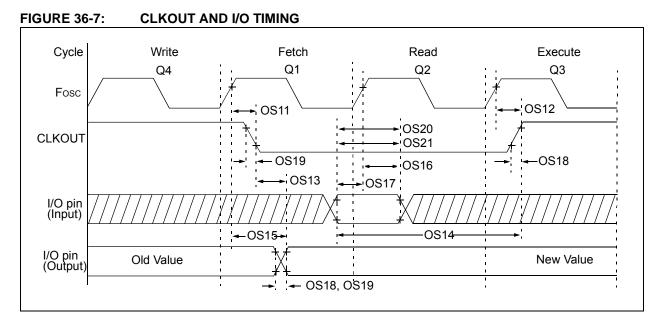

3: ADC clock source is FRC.

TABLE 36-9: PLL CLOCK TIMING SPECIFICATIONS

Standar Param No.	d Opera Sym.	ating Conditions (unless otherwise stated) Characteristic	Min.	Тур†	Max.	Units	Conditions
F10	Fosc	Oscillator Frequency Range	4	_	8	MHz	
F11	Fsys	On-Chip VCO System Frequency	16	_	32	MHz	
F12	TRC	PLL Start-up Time (Lock Time)		_	2	ms	
F13*	ΔCLK	CLKOUT Stability (Jitter)	-0.25%	_	+0.25%	%	

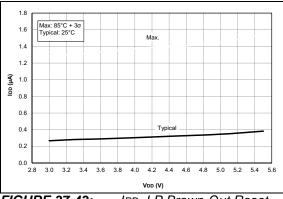
These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Standard Operating Conditions (unless otherwise stated)							
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
OS11	TosH2ckL	Fosc↑ to CLKOUT↓ ⁽¹⁾	—	_	70	ns	$3.3V \le V\text{DD} \le 5.0V$
OS12	TosH2ckH	Fosc↑ to CLKOUT↑ (1)	—		72	ns	$3.3V \leq V\text{DD} \leq 5.0V$
OS13	TckL2ioV	CLKOUT↓ to Port out valid ⁽¹⁾	—		20	ns	
OS14	TioV2ckH	Port input valid before CLKOUT ⁽¹⁾	Tosc + 200 ns			ns	
OS15	TosH2ioV	Fosc↑ (Q1 cycle) to Port out valid	—	50	70*	ns	$3.3V \leq V\text{DD} \leq 5.0V$
OS16	TosH2iol	Fosc↑ (Q2 cycle) to Port input invalid (I/O in hold time)	50	—	—	ns	$3.3V \le V\text{DD} \le 5.0V$
OS17	TioV2osH	Port input valid to Fosc↑ (Q2 cycle) (I/O in setup time)	20	—	—	ns	
OS18*	TioR	Port output rise time ⁽²⁾		40 15	72 32	ns	$\begin{array}{l} VDD = 1.8V \\ 3.3V \leq VDD \leq 5.0V \end{array}$
OS19*	TioF	Port output fall time ⁽²⁾		28 15	55 30	ns	$\begin{array}{l} VDD = 1.8V \\ 3.3V \leq VDD \leq 5.0V \end{array}$
OS20*	Tinp	INT pin input high or low time	25	—	—	ns	
OS21*	Tioc	Interrupt-on-change new input level time	25	—		ns	

Standard Operating Conditions (unless otherwise stated)

* These parameters are characterized but not tested.


† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated.

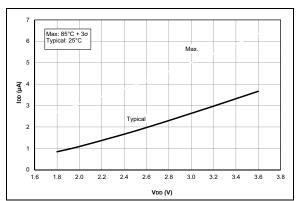
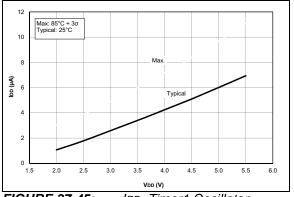
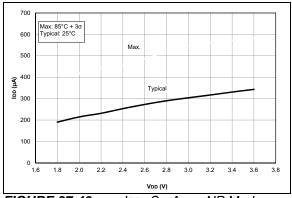
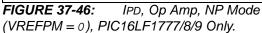
Note 1: Measurements are taken in EXTRC mode where CLKOUT output is 4 x Tosc.

2: Slew rate limited.

PIC16(L)F1777/8/9

Note: Unless otherwise noted, VIN = 5V, Fosc = 300 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 37-43: IPD, LP Brown-Out Reset (LPBOR = 0), PIC16F1777/8/9 Only.

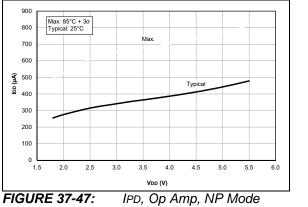

FIGURE 37-44: IPD, Timer1 Oscillator, Fosc = 32 kHz, PIC16LF1777/8/9 Only.

FIGURE 37-45: IPD, Timer1 Oscillator, Fosc = 32 kHz, PIC16F1777/8/9 Only.

(VREFPM = 0), PIC16F1777/8/9 Only.

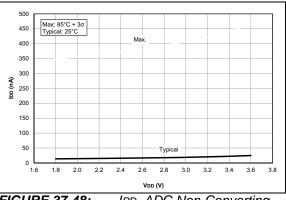


FIGURE 37-48: IPD, ADC Non-Converting, PIC16LF1777/8/9 Only.