

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	36
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 28x10b; D/A 4x5b, 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1777-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16(L)F1777/8/9

3.4 Register Definitions: Status

REGISTER 3-1: STATUS: STATUS REGISTER

U-0	U-0	U-0	R-1/q	R-1/q	R/W-0/u	R/W-0/u	R/W-0/u				
_	_	_	TO	PD	Z	DC ⁽¹⁾	C ⁽¹⁾				
bit 7	•						bit 0				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'					
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value	at POR and BOI	R/Value at all o	ther Resets				
'1' = Bit is set		'0' = Bit is clea	ared	q = Value de	pends on conditi	ion					
bit 7-5	Unimplemen	ted: Read as '	כ'								
bit 4	TO: Time-Out	TO: Time-Out bit									
		er-up, CLRWDT		SLEEP instruc	tion						
	0 = A WDT T	ime-out occurre	ed								
bit 3	PD: Power-D	own bit									
	1 = After power-up or by the CLRWDT instruction 0 = By execution of the SLEEP instruction										
	•	tion of the SLEI	EP Instruction								
bit 2	Z: Zero bit			<i></i> .							
		t of an arithmet t of an arithmet			ero						
bit 1			÷ .		SUBWF instruction	one)(1)					
DIT I	•	ut from the 4th				5113)**					
		out from the 4th			curreu						
bit 0	-	ow bit (ADDWF,			ructions) ⁽¹⁾						
	•	ut from the Mos			,						
		out from the Mo	U U								
Note 1: For	Borrow the po	larity is reverse	d A subtract	ion is executed	by adding the t	wo's compleme	ent of the				

Note 1: For Borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand.

TABLE 3-18: S	SPECIAL FUNCTION REGISTER SUMMARY
---------------	--

										Value on	Value on all
Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	POR, BOR	other Resets
Bank	< 0										
00Ch	PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	XXXX XXXX	uuuu uuuu
00Dh	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	XXXX XXXX	uuuu uuuu
00Eh	PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	XXXX XXXX	uuuu uuuu
00Fh	PORTD ⁽³⁾	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	XXXX XXXX	uuuu uuuu
010h	PORTE	—			_	RE3	RE2 ⁽³⁾	RE1 ⁽³⁾	RE0 ⁽³⁾	xxxx	uuuu
011h	PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
012h	PIR2	OSFIF	C2IF	C1IF	COG1IF	BCL1IF	C4IF	C3IF	CCP2IF	0000 0000	0000 0000
013h	PIR3	—		COG2IF	ZCDIF	CLC4IF	CLC3IF	CLC2IF	CLC1IF	00 0000	00 0000
014h	PIR4	—	TMR8IF	TMR5GIF	TMR5IF	TMR3GIF	TMR3IF	TMR6IF	TRM4IF	-000 0000	-000 0000
015h	PIR5	CCP8IF ⁽³⁾	CCP7IF	COG4IF ⁽³⁾	COG3IF	C8IF ⁽³⁾	C7IF ⁽³⁾	C6IF	C5IF	000000	000000
016h	PIR6	—			_	PWM12IF ⁽³⁾	PWM11IF	PWM6IF	PWM5IF	0000	0000
017h	TMR0	Timer0 Module Re	egister							0000 0000	0000 0000
018h	TMR1L	Holding Register f	or the Least Signif	cant Byte of the 16	6-bit TMR1 Registe	er				XXXX XXXX	uuuu uuuu
019h	TMR1H	Holding Register f	or the Most Signifi	cant Byte of the 16	-bit TMR1 Registe	r				XXXX XXXX	uuuu uuuu
01Ah	T1CON	CS<	1:0>	CKPS	6<1:0>	OSCEN	SYNC	—	ON	0000 00-0	uuuu uu-u
01Bh	T1GCON	GE	GPOL	GTM	GSPM	GGO/DONE	GVAL	GSS	<1:0>	0000 0x00	uuuu uxuu
01Ch	TMR3L	Holding Register f	or the Least Signif	cant Byte of the 16	5-bit TMR3 Registe	er				XXXX XXXX	uuuu uuuu
01Dh	TMR3H	Holding Register f	or the Most Signific	cant Byte of the 16	-bit TMR3 Registe	r				XXXX XXXX	uuuu uuuu
01Eh	T3CON	CS<	1:0>	CKPS	6<1:0>	OSCEN	SYNC	_	ON	0000 00-0	uuuu uu-u
01Fh	T3GCON	GE	GPOL	GTM	GSPM	GGO/DONE	GVAL	GSS	<1:0>	00x0 0x00	uuuu uxuu

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: Unimplemented, read as '1'.

2: Unimplemented on PIC16LF1777/8/9.

3: Unimplemented on PIC16(L)F1778.

TABLE 3-18: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank	30 (Continued)										
F2Bh	CLC3GLS1	G2D4T	G2D4N	G2D4N G2D3T G2D3N G2D2T G2D2N G2D1T G2D1N						xxxx xxxx	uuuu uuuu
F2Ch	CLC3GLS2	G3D4T	G3D4N	G3D3T	G3D3N	G3D2T	G3D2N	G3D2N G3D1T G3D1N			uuuu uuuu
F2Dh	CLC3GLS3	G4D4T	G4D4N	G4D3T	G4D3N	G4D2T	G4D2N	G4D1T	G4D1N	xxxx xxxx	uuuu uuuu
F2Eh	CLC4CON	EN	OE	OUT	INTP	INTN		MODE<2:0>	0000 0000	0000 0000	
F2Fh	CLC4POL	POL	—	—	—	G4POL	G3POL	G2POL	G1POL	0 xxxx	0 uuuu
F30h	CLC4SEL0		D1S<7:0>								
F31h	CLC4SEL1		D2S<7:0>								uuuu uuuu
F32h	CLC4SEL2				D3S-	<7:0>				xxxx xxxx	uuuu uuuu
F33h	CLC4SEL3				D4S•	<7:0>				xxxx xxxx	uuuu uuuu
F34h	CLC4GLS0	G1D4T	G1D4N	G1D3T	G1D3N	G1D2T	G1D2N	G1D1T	G1D1N	xxxx xxxx	uuuu uuuu
F35h	CLC4GLS1	G2D4T	G2D4N	G2D3T	G2D3N	G2D2T	G2D2N	G2D1T	G2D1N	XXXX XXXX	uuuu uuuu
F36h	CLC4GLS2	G3D4T	G3D4N	G3D3T	G3D3N	G3D2T	G3D2N	G3D1T	G3D1N	XXXX XXXX	uuuu uuuu
F37h	CLC4GLS3	G4D4T	G4D4N	G4D3T	G4D3N	G4D2T	G4D2N	G4D1T	G4D1N	XXXX XXXX	uuuu uuuu
F2Eh — F6Fh	_	Unimplemented					-			_	_

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: Unimplemented, read as '1'.

2: Unimplemented on PIC16LF1777/8/9.

3: Unimplemented on PIC16(L)F1778.

REGISTER 11-17: HIDRVB: PORTB HIGH DRIVE CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0
—	—	—	—	—	—	HIDB1	HIDB0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-2 Unimplemented: Read as '0'

bit 1-0 HIDB<1:0>: PORTB High Drive Enable bits For RB<1:0> pins 1 = High current source and sink enabled

0 = Standard current source and sink

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELB	—		ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	182
HIDRVB	—	_	_	—	—	—	HIDB1	HIDB0	184
INLVLB	INLVLB7	INLVLB6	INLVLB5	INLVLB4	INLVLB3	INLVLB2	INLVLB1	INLVLB0	183
LATB	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	181
ODCONB	ODB7	ODB6	ODB5	ODB4	ODB3	ODB2	ODB1	ODB0	183
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	181
SLRCONB	SLRB7	SLRB6	SLRB5	SLRB4	SLRB3	SLRB2	SLRB1	SLRB0	183
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	183
WPUB	WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0	182

TABLE 11-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTB.

REGISTER 12-3: PPSLOCK: PPS LOCK REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0		
—	—	—	—	—	_	_	PPSLOCKED		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable I	oit	U = Unimplemented bit, read as '0'					
u = Bit is unchanged x = Bit is unknown			own	-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is clea	ared						

bit 7-1 Unimplemented: Read as '0'

bit 0 PPSLOCKED: PPS Locked bit

1 = PPS is locked. PPS selections can not be changed.

0 = PPS is not locked. PPS selections can be changed.

14.4 **Register Definitions: FVR Control**

REGISTER 14-1: FVRCON: FIXED VOLTAGE REFERENCE CONTROL REGISTER

R/W-0/0	R-q/q	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
FVREN	FVRRDY ⁽¹⁾	TSEN ⁽³⁾	TSRNG ⁽³⁾	CDAFVR<1:0>		ADFVI	R<1:0>
bit 7							bit 0

Legend:			
R = Readal	ole bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is ur	nchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is s	et	'0' = Bit is cleared	q = Value depends on condition
bit 7	1 = Fixed	Fixed Voltage Reference Ena I Voltage Reference is enable I Voltage Reference is disable	ed
bit 6	1 = Fixed	: Fixed Voltage Reference Re I Voltage Reference output is I Voltage Reference output is	ready for use
bit 5	1 = Temp	emperature Indicator Enable to perature Indicator is enabled perature Indicator is disabled	bit ⁽³⁾
bit 4	1 = VOUT	Temperature Indicator Range ⁻ = V _{DD} - 4VT (High Range) ⁻ = V _{DD} - 2VT (Low Range)	e Selection bit ⁽³⁾
bit 3-2	11 = Com 10 = Com 01 = Com	nparator/DAC FVR Buffer Gai	in is 4x, with output VCDAFVR = 4x VFVR ⁽²⁾ in is 2x, with output VCDAFVR = 2x VFVR ⁽²⁾ in is 1x, with output VCDAFVR = 1x VFVR
bit 1-0	11 = ADC 10 = ADC 01 = ADC	1:0>: ADC FVR Buffer Gain S C FVR Buffer Gain is 4x, with C FVR Buffer Gain is 2x, with C FVR Buffer Gain is 1x, with C FVR Buffer is off	output VADEVR = $4x VEVR^{(2)}$ output VADEVR = $2x VEVR^{(2)}$
		ways '1' on PIC16F1773/6 or Reference output cannot exc	•

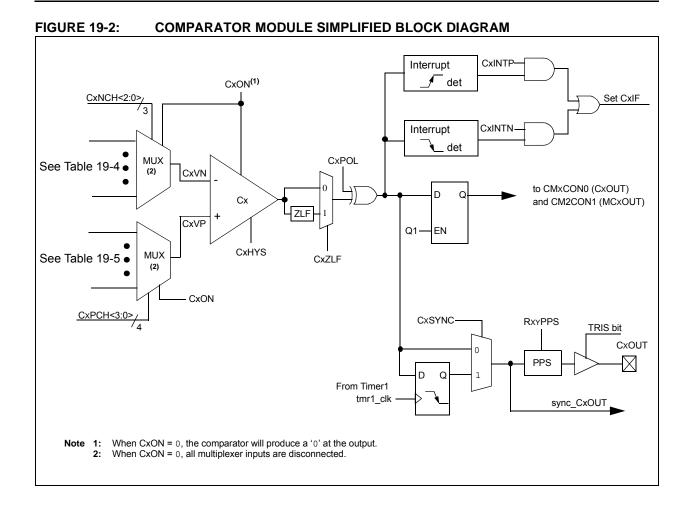

- **2:** Fixed Voltage Reference output cannot exceed VDD.
- 3: See Section 15.0 "Temperature Indicator Module" for additional information.

TABLE 14-2: SUMMARY OF REGISTERS ASSOCIATED WITH FIXED VOLTAGE REFERENCE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFVR<1:0>		ADFVF	<1:0>	223

Legend: Shaded cells are not used with the Fixed Voltage Reference.

PIC16(L)F1777/8/9

22.6.2 TIMER1 GATE SOURCE SELECTION

Timer1 gate source selections are shown in Table 22-4. Source selection is controlled by the T1GSS bits of the T1GCON register. The polarity for each available source is also selectable. Polarity selection is controlled by the T1GPOL bit of the T1GCON register.

TABLE 22-4 :	TIMER1	GATE SOURCE	S
---------------------	--------	-------------	---

T1GSS	Timer1 Gate Source
11	Comparator 2 Output sync_C2OUT (optionally Timer1 synchronized output)
10	Comparator 1 Output sync_C1OUT (optionally Timer1 synchronized output)
01	Overflow of Timer0 (TMR0 increments from FFh to 00h)
00	Timer1 Gate Pin

22.6.2.1 T1G Pin Gate Operation

The T1G pin is one source for Timer1 gate control. It can be used to supply an external source to the Timer1 gate circuitry.

22.6.2.2 Timer0 Overflow Gate Operation

When Timer0 increments from FFh to 00h, a low-to-high pulse will automatically be generated and internally supplied to the Timer1 gate circuitry.

22.6.2.3 Comparator C1 Gate Operation

The output resulting from a Comparator 1 operation can be selected as a source for Timer1 gate control. The Comparator 1 output (sync_C1OUT) can be synchronized to the Timer1 clock or left asynchronous. For more information see **Section 19.4.1 "Comparator Output Synchronization"**.

22.6.2.4 Comparator C2 Gate Operation

The output resulting from a Comparator 2 operation can be selected as a source for Timer1 gate control. The Comparator 2 output (sync_C2OUT) can be synchronized to the Timer1 clock or left asynchronous. For more information see **Section 19.4.1 "Comparator Output Synchronization**".

22.6.3 TIMER1 GATE TOGGLE MODE

When Timer1 Gate Toggle mode is enabled, it is possible to measure the full-cycle length of a Timer1 gate signal, as opposed to the duration of a single level pulse.

The Timer1 gate source is routed through a flip-flop that changes state on every incrementing edge of the signal. See Figure 22-4 for timing details.

Timer1 Gate Toggle mode is enabled by setting the T1GTM bit of the T1GCON register. When the T1GTM bit is cleared, the flip-flop is cleared and held clear. This is necessary in order to control which edge is measured.

Note:	Enabling Toggle mode at the same time					
	as changing the gate polarity may result in					
	indeterminate operation.					

22.6.4 TIMER1 GATE SINGLE-PULSE MODE

When Timer1 Gate Single-Pulse mode is enabled, it is possible to capture a single-pulse gate event. Timer1 Gate Single-Pulse mode is first enabled by setting the T1GSPM bit in the T1GCON register. Next, the T1GGO/DONE bit in the T1GCON register must be set. The Timer1 will be fully enabled on the next incrementing edge. On the next trailing edge of the pulse, the T1GGO/DONE bit will automatically be cleared. No other gate events will be allowed to increment Timer1 until the T1GGO/DONE bit is once again set in software. See Figure 22-5 for timing details.

If the Single-Pulse Gate mode is disabled by clearing the T1GSPM bit in the T1GCON register, the T1GGO/DONE bit should also be cleared.

Enabling the Toggle mode and the Single-Pulse mode simultaneously will permit both sections to work together. This allows the cycle times on the Timer1 gate source to be measured. See Figure 22-6 for timing details.

22.6.5 TIMER1 GATE VALUE STATUS

When Timer1 Gate Value Status is utilized, it is possible to read the most current level of the gate control value. The value is stored in the T1GVAL bit in the T1GCON register. The T1GVAL bit is valid even when the Timer1 gate is not enabled (TMR1GE bit is cleared).

22.6.6 TIMER1 GATE EVENT INTERRUPT

When Timer1 Gate Event Interrupt is enabled, it is possible to generate an interrupt upon the completion of a gate event. When the falling edge of T1GVAL occurs, the TMR1GIF flag bit in the PIR1 register will be set. If the TMR1GIE bit in the PIE1 register is set, then an interrupt will be recognized.

The TMR1GIF flag bit operates even when the Timer1 gate is not enabled (TMR1GE bit is cleared).

Mada	MODE	E<4:0>	Output	Onenetien	Timer Control				
Mode	<4:3>	<2:0>	Operation	Operation	Start	Reset	Stop		
		000		Software gate (Figure 23-4)	ON = 1	_	ON = 0		
Free Running 00		001	Period Pulse	Hardware gate, active-high (Figure 23-5)	ON = 1 and TMRx_ers = 1	_	ON = 0 or TMRx_ers = 0		
		010	r uise	Hardware gate, active-low	ON = 1 and TMRx_ers = 0	_	ON = 0 or TMRx_ers = 1		
	011		Rising or falling edge Reset		TMRx_ers				
Period	00	100	Period	Rising edge Reset (Figure 23-6)		TMRx_ers ↑	ON = 0		
		101	Pulse	Falling edge Reset	-	TMRx_ers ↓			
		110	with Hardware	Low level Reset	ON = 1	TMRx_ers = 0	ON = 0 or TMRx_ers = 0		
		111	Reset	High level Reset (Figure 23-7)		TMRx_ers = 1	ON = 0 or TMRx_ers = 1		
		000	One-shot	Software start (Figure 23-8)	ON = 1	_			
		001	Edge	Rising edge start (Figure 23-9)	ON = 1 and TMRx_ers ↑	_			
		010	triggered start	Falling edge start	ON = 1 and TMRx_ers ↓	_			
		011	(Note 1)	Any edge start	ON = 1 and TMRx_ers	_	ON = 0 or		
One-shot	01	100	Edge	Rising edge start and Rising edge Reset (Figure 23-10)	ON = 1 and TMRx_ers ↑	TMRx_ers ↑	Next clock after TMRx = PRx		
		101	triggered start and hardware Reset	Falling edge start and Falling edge Reset	ON = 1 and TMRx_ers ↓	TMRx_ers ↓	(Note 2)		
		110		Rising edge start and Low level Reset (Figure 23-11)	ON = 1 and TMRx_ers ↑	TMRx_ers = 0			
		111	(Note 1)	Falling edge start and High level Reset	ON = 1 and TMRx_ers ↓	TMRx_ers = 1			
		000		Rese	erved				
		001	Edge	Rising edge start (Figure 23-12)	ON = 1 and TMRx_ers ↑	—	ON = 0 or		
Mono-stable		010	triggered start	Falling edge start	ON = 1 and TMRx_ers ↓	—	Next clock after		
		011	(Note 1)	Any edge start	ON = 1 and TMRx_ers	_	TMRx = PRx (Note 3)		
Reserved	10	100		Rese	erved				
Reserved	/ed 101			Rese	erved				
		110	Level triggered	High level start and Low level Reset (Figure 23-13)	ON = 1 and TMRx_ers = 1	TMRx_ers = 0	ON = 0 or		
One-shot		111	start and hardware Reset	Low level start & High level Reset	ON = 1 and TMRx_ers = 0	TMRx_ers = 1	Held in Rese (Note 2)		
Reserved	11	xxx		Rese	erved				

TABLE 23-1: TIMER2 OPERATING MODES

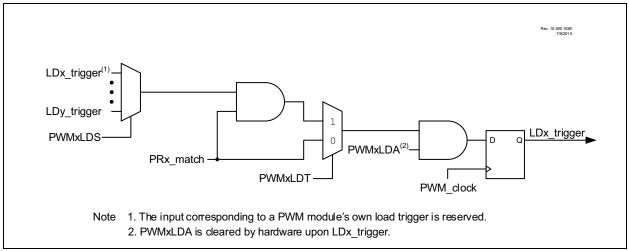
Note 1: If ON = 0 then an edge is required to restart the timer after ON = 1.

2: When TMRx = PRx then the next clock clears ON and stops TMRx at 00h.

3: When TMRx = PRx then the next clock stops TMRx at 00h but does not clear ON.

23.7 PR2 Period Register

The PR2 period register (T2PR) is double-buffered. Software reads and writes the PR2 register. However, the timer uses a buffered PR2 register for operation. Software does not have direct access to the buffered PR2 register. The contents of the PR2 register are transferred to the buffer by any of the following events:


- A write to the TMR2 register
- A write to the TMR2CON register
- When TMR2 = PR2 buffer and the prescaler rolls over
- An external Reset event

23.8 Timer2 Operation During Sleep

When PSYNC = 1, Timer2 cannot be operated while the processor is in Sleep mode. The contents of the TMR2 and T2PR registers will remain unchanged while processor is in Sleep mode.

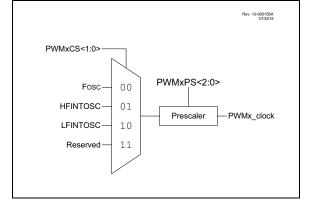
When PSYNC = 0, Timer2 will operate in Sleep as long as the clock source selected is also still running. Selecting the LFINTOSC, MFINTOSC, or HFINTOSC oscillator as the timer clock source will keep the selected oscillator running during Sleep.

FIGURE 26-2: LOAD TRIGGER BLOCK DIAGRAM

26.1 Fundamental Operation

The PWM module produces a 16-bit resolution pulse-width modulated output.

Each PWM module has an independent timer driven by a selection of clock sources determined by the PWMxCLKCON register (Register 26-4). The timer value is compared to event count registers to generate the various events of a the PWM waveform, such as the period and duty cycle. For a block diagram describing the clock sources refer to Figure 26-3.


Each PWM module can be enabled individually using the EN bit of the PWMxCON register, or several PWM modules can be enabled simultaneously using the MPWMxEN bits of the PWMEN register.

The current state of the PWM output can be read using the OUT bit of the PWMxCON register. In some modes this bit can be set and cleared by software giving additional software control over the PWM waveform. This bit is synchronized to Fosc/4 and therefore does not change in real time with respect to the PWM_clock.

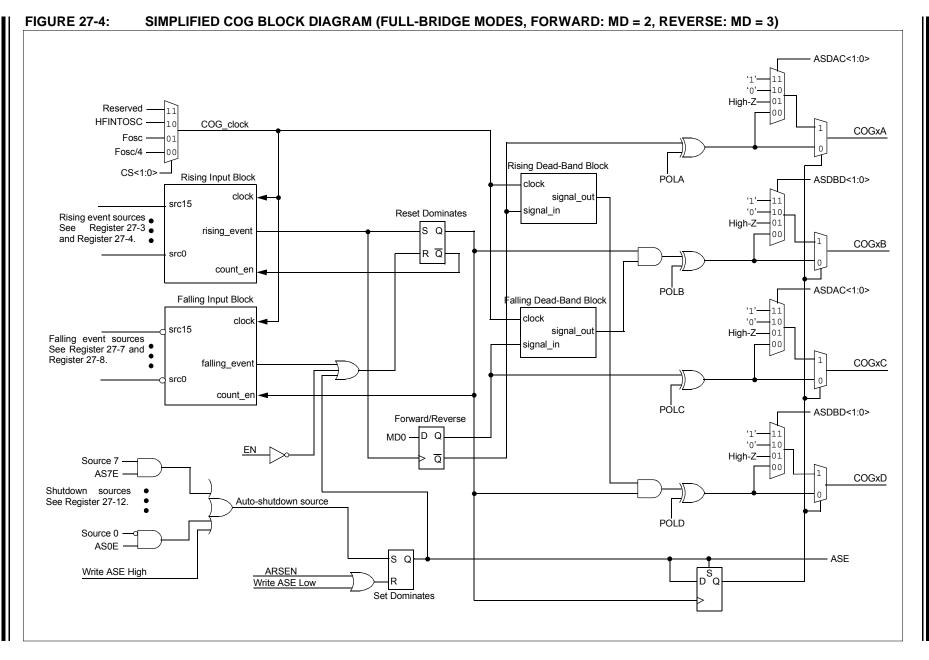
Note: If PWM_clock > Fosc/4, the OUT bit may not accurately represent the output state of the PWM.

FIGURE 26-3:

PWM CLOCK SOURCE BLOCK DIAGRAM

26.1.1 PWMx PIN CONFIGURATION

This device uses the PPS control circuitry to route peripherals to any device I/O pin. Select the desired pin, or pins, for PWM output with the device pin RxyPPS control registers (Register 12-2).


All PWM outputs are multiplexed with the PORT data latch, so the pins must also be configured as outputs by clearing the associated PORT TRIS bits.

The slew rate feature may be configured to optimize the rate to be used in conjunction with the PWM outputs. High-speed output switching is attained by clearing the associated PORT SLRCON bits.

The PWM outputs can be configured to be open-drain outputs by setting the associated PORT ODCON bits.

26.1.2 PWMx Output Polarity

The output polarity is inverted by setting the POL bit of the PWMxCON register. The polarity control affects the PWM output even when the module is not enabled.

REGISTER 27-16: COGxBLKR: COG RISING EVENT BLANKING COUNT REGISTER

U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u			
			BLKF	R<5:0>					
	·					bit 0			
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'						
u = Bit is unchanged x = Bit is unknown			-n/n = Value at POR and BOR/Value at all other Resets						
	'0' = Bit is clea	ared	q = Value depends on condition						
	bit	bit W = Writable anged x = Bit is unkr	bit W = Writable bit	bit W = Writable bit U = Unimplen anged x = Bit is unknown -n/n = Value a	BLKR<5:0> bit W = Writable bit U = Unimplemented bit, read anged x = Bit is unknown -n/n = Value at POR and BO	BLKR < 5:0 > bit W = Writable bit U = Unimplemented bit, read as '0' anged x = Bit is unknown -n/n = Value at POR and BOR/Value at all or			

bit 7-6 Unimplemented: Read as '0'

bit 5-0 BLKR<5:0>: Rising Event Blanking Count Value bits

= Number of COGx clock periods to inhibit falling event inputs

REGISTER 27-17: COGxBLKF: COG FALLING EVENT BLANKING COUNT REGISTER

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
		BLKF<5:0>								
bit 7							bit 0			

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-6 Unimplemented: Read as '0'

bit 5-0 BLKF<5:0>: Falling Event Blanking Count Value bits

= Number of COGx clock periods to inhibit rising event inputs

REGISTER 27-18: COGxPHR: COG RISING EVENT PHASE DELAY COUNT REGISTER

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0				
—	_		PHR<5:0>								
bit 7							bit 0				
Legend:											
R = Readable b	oit	W = Writable I	oit	U = Unimplemented bit, read as '0'							
u = Bit is uncha	anged	x = Bit is unkn	x = Bit is unknown -n/n = Value at POR and BOR/Value at all c				ther Resets				
'1' = Bit is set '0' = Bit is cleared q = Value depends on condition						ion					

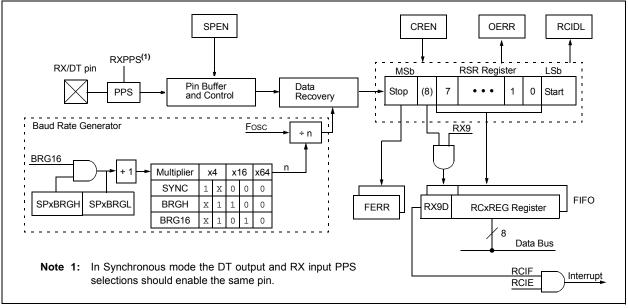
bit 7-6	Unimplemented: Read as '0'
---------	----------------------------

bit 5-0 PHR<5:0>: Rising Event Phase Delay Count Value bits

= Number of COGx clock periods to delay rising event

REGISTER 27-19: COGxPHF: COG FALLING EVENT PHASE DELAY COUNT REGISTER

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
—	_		PHF<5:0>							
bit 7							bit 0			


Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-6 Unimplemented: Read as '0'

bit 5-0 PHF<5:0>: Falling Event Phase Delay Count Value bits

= Number of COGx clock periods to delay falling event

The operation of the EUSART module is controlled through three registers:

- Transmit Status and Control (TXxSTA)
- Receive Status and Control (RCxSTA)
- Baud Rate Control (BAUDxCON)

These registers are detailed in Register 33-1, Register 33-2 and Register 33-3, respectively.

The RX and CK input pins are selected with the RXPPS and CKPPS registers, respectively. TX, CK, and DT output pins are selected with each pin's RxyPPS register. Since the RX input is coupled with the DT output in Synchronous mode, it is the user's responsibility to select the same pin for both of these functions when operating in Synchronous mode. The EUSART control logic will control the data direction drivers automatically.

34.0 IN-CIRCUIT SERIAL PROGRAMMING[™] (ICSP[™])

ICSP[™] programming allows customers to manufacture circuit boards with unprogrammed devices. Programming can be done after the assembly process, allowing the device to be programmed with the most recent firmware or a custom firmware. Five pins are needed for ICSP[™] programming:

- ICSPCLK
- ICSPDAT
- MCLR/VPP
- VDD
- Vss

In Program/Verify mode the program memory, User IDs and the Configuration Words are programmed through serial communications. The ICSPDAT pin is a bidirectional I/O used for transferring the serial data and the ICSPCLK pin is the clock input. For more information on ICSP™ refer to the "*PIC16(L)F177X Memory Programming Specification*" (DS40001792).

34.1 High-Voltage Programming Entry Mode

The device is placed into High-Voltage Programming Entry mode by holding the ICSPCLK and ICSPDAT pins low then raising the voltage on MCLR/VPP to VIHH.

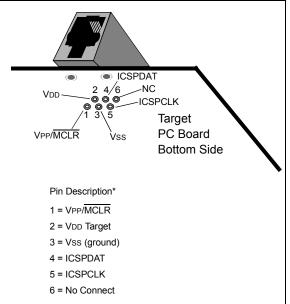
34.2 Low-Voltage Programming Entry Mode

The Low-Voltage Programming Entry mode allows the PIC[®] Flash MCUs to be programmed using VDD only, without high voltage. When the LVP bit of Configuration Words is set to '1', the low-voltage ICSP programming entry is enabled. To disable the Low-Voltage ICSP mode, the LVP bit must be programmed to '0'.

Entry into the Low-Voltage Programming Entry mode requires the following steps:

- 1. MCLR is brought to VIL.
- 2. A 32-bit key sequence is presented on ICSPDAT, while clocking ICSPCLK.

Once the key sequence is complete, $\overline{\text{MCLR}}$ must be held at VIL for as long as Program/Verify mode is to be maintained.


If low-voltage programming is enabled (LVP = 1), the $\overline{\text{MCLR}}$ Reset function is automatically enabled and cannot be disabled. See **Section 6.5 "MCLR"** for more information.

The LVP bit can only be reprogrammed to '0' by using the High-Voltage Programming mode.

34.3 Common Programming Interfaces

Connection to a target device is typically done through an ICSP[™] header. A commonly found connector on development tools is the RJ-11 in the 6P6C (6-pin, 6-connector) configuration. See Figure 34-1.

Another connector often found in use with the PICkit[™] programmers is a standard 6-pin header with 0.1 inch spacing. Refer to Figure 34-2.

For additional interface recommendations, refer to your specific device programmer manual prior to PCB design.

It is recommended that isolation devices be used to separate the programming pins from other circuitry. The type of isolation is highly dependent on the specific application and may include devices such as resistors, diodes, or even jumpers. See Figure 34-3 for more information.

Mnemonic, Operands		Description	Cycles		14-Bit Opcode				Notes
		Description	Cycles	MSb			LSb	Affected	Notes
		CONTROL OPER	ATIONS						
BRA	k	Relative Branch	2	11	001k	kkkk	kkkk		
BRW	-	Relative Branch with W	2	00	0000	0000	1011		
CALL	k	Call Subroutine	2	10	0kkk	kkkk	kkkk		
CALLW	-	Call Subroutine with W	2	00	0000	0000	1010		
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
RETFIE	k	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	0100	kkkk	kkkk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
		INHERENT OPER	ATIONS						
CLRWDT	_	Clear Watchdog Timer	1	00	0000	0110	0100	TO, PD	
NOP	-	No Operation	1	00	0000	0000	0000		
OPTION	_	Load OPTION_REG register with W	1	00	0000	0110	0010		
RESET	-	Software device Reset	1	00	0000	0000	0001		
SLEEP	-	Go into Standby mode	1	00	0000	0110	0011	TO, PD	
TRIS	f	Load TRIS register with W	1	00	0000	0110	Offf		
		C-COMPILER OPT	IMIZED						
ADDFSR	n, k	Add Literal k to FSRn	1	11	0001	0nkk	kkkk		
MOVIW	n mm	Move Indirect FSRn to W with pre/post inc/dec	1	00	0000	0001	0nmm	Z	2, 3
		modifier, mm							
	k[n]	Move INDFn to W, Indexed Indirect.	1	11	1111	0nkk	kkkk	Z	2
MOVWI	n mm	Move W to Indirect FSRn with pre/post inc/dec	1	00	0000	0001	lnmm		2, 3
		modifier, mm							
	k[n]	Move W to INDFn, Indexed Indirect.	1	11	1111	1nkk	kkkk		2

TABLE 35-3: INSTRUCTION SET (CONTINUED)

Note 1: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one additional instruction cycle.

3: See Table in the MOVIW and MOVWI instruction descriptions.

PIC16LF1777/8/9 PIC16F1777/8/9		Operating Conditions: (unless otherwise stated) Low-Power Sleep Mode Low-Power Sleep Mode, VREGPM = 1								
No.	Device Characteristics	e Characteristics Min. Typ† +85°C +125°C	Units	Vdd	Note					
D023	Base IPD		0.05	1.0	8.0	μA	1.8	DT, BOR, FVR, and SOSC		
		—	0.08	2.0	9.0	μA	3.0	disabled, all Peripherals Inactive		
D023	Base IPD		0.3	2.4	10	μA	2.3	WDT, BOR, FVR, and SOSC		
			0.4	4	12	μA	3.0	disabled, all Peripherals Inactive, Low-Power Sleep mode		
		_	0.5	6	15	μA	5.0	Low-Power Sleep mode		
D023A	Base IPD	_	9.8	17	28	μA	2.3	WDT, BOR, FVR and SOSC		
		_	10.3	20	40	μA	3.0	disabled, all Peripherals inactive,		
		_	11.5	22	44	μA	5.0	Normal Power Sleep mode VREGPM = 0		
D024		_	0.5	6	14	μA	1.8	WDT Current		
		—	0.8	7	17	μA	3.0			
D024		—	0.8	6	15	μA	2.3	WDT Current		
		—	0.9	7	20	μA	3.0			
		_	1.0	8	22	μA	5.0]		
D025		_	15	28	30	μA	1.8	FVR Current (ADC)		
		_	24	35	38	μA	3.0			
D025		_	18	33	35	μA	2.3	FVR Current (ADC)		
			24	35	40	μA	3.0	1		
			26	37	44	μA	5.0	1		
D025A		_	25	50	55	μA	1.8	FVR Current (DAC)		
			30	65	70	μA	3.0	1		
D025A		_	30	55	66	μA	2.3	FVR Current (DAC)		
			32	68	82	μA	3.0	1		
			35	77	90	μA	5.0	1		
D026		_	7.5	25	28	μA	3.0	BOR Current		
D026		_	10	25	28	μA	3.0	BOR Current		
			12	28	31	μA	5.0	1		
D027		-	0.5	4	10	μA	3.0	LPBOR Current		
D027			0.8	6	15	μA	3.0	LPBOR Current		
			1	8	17	μA	5.0			
D028			0.5	5	9	μA	1.8	SOSC Current		
			0.8	8.5	12	μA	3.0			
D028		_	1.1	6	10	μA	2.3	SOSC Current		
		_	1.3	8.5	20	μA	3.0			
			1.4	10	25	μA	5.0			

TABLE 36-3: POWER-DOWN CURRENTS (IPD)^(1,2)

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral current is the sum of the base IPD and the additional current consumed when this peripheral is enabled. The peripheral △ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

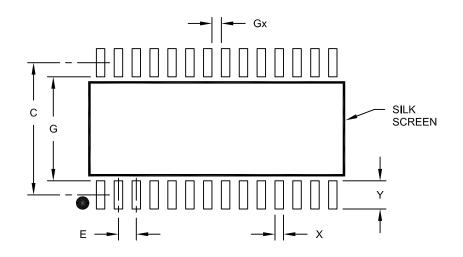
2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to Vss.

3: ADC clock source is FRC.

Standa	Standard Operating Conditions (unless otherwise stated)								
Param No.	Sym.	Sym. Characteristic		Тур†	Max.	Units	Conditions		
		Program Memory Programming Specifications							
D110	Vінн	Voltage on MCLR/VPP pin	8.0	—	9.0	V	(Note 2, Note 3)		
D111	IDDP	Supply Current during Programming	—	—	10	mA			
D112	VBE	VDD for Bulk Erase	2.7	_	VDDMAX	V			
D113	VPEW	VDD for Write or Row Erase	VDDMIN	_	VDDMAX	V			
D114	IPPPGM	Current on MCLR/VPP during Erase/Write	_	1.0	_	mA			
D115	D115 IDDPGM Current on VDD during Erase/Write			5.0	—	mA			
		Program Flash Memory							
D121	Ер	Cell Endurance	10K	—	_	E/W	-40°C ≤ TA ≤ +85°C (Note 1)		
D122	Vprw	VDD for Read/Write	VDDMIN	—	VDDMAX	V			
D123	Tiw	Self-timed Write Cycle Time	—	2	2.5	ms			
D124	TRETD	Characteristic Retention	—	40	_	Year	Provided no other specifications are violated		
D125	EHEFC	High-Endurance Flash Cell	100K	—	—	E/W	$-0^{\circ}C \le TA \le +60^{\circ}C$, Lower byte last 128 addresses		

TABLE 36-5: MEMORY PROGRAMMING SPECIFICATIONS

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


Note 1: Self-write and Block Erase.

2: Required only if single-supply programming is disabled.

3: The MPLAB ICD 2 does not support variable VPP output. Circuitry to limit the ICD 2 VPP voltage must be placed between the ICD 2 and target system when programming or debugging with the ICD 2.

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimensior	MIN	NOM	MAX	
Contact Pitch	E	1.27 BSC		
Contact Pad Spacing	С		9.40	
Contact Pad Width (X28)	Х			0.60
Contact Pad Length (X28)	Y			2.00
Distance Between Pads	Gx	0.67		
Distance Between Pads	G	7.40		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2052A