

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	36
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 28x10b; D/A 4x5b, 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1777-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3-18: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Banl	x 5										
28Ch	ODCONA	ODA7	ODA6	ODA5	ODA4	ODA3	ODA2	ODA1	ODA0	0000 0000	0000 0000
28Dh	ODCONB	ODB7	ODB6	ODB5	ODB4	ODB3	ODB2	ODB1	ODB0	0000 0000	0000 0000
28Eh	ODCONC	ODC7	ODC6	ODC5	ODC4	ODC3	ODC2	ODC1	ODC0	0000 0000	0000 0000
28Fh	ODCOND ⁽³⁾	ODD7	ODD6	ODD5	ODD4	ODD3	ODD2	ODD1	ODD0	0000 0000	0000 0000
290h	ODCONE ⁽³⁾	_			_		ODE2	ODE1	ODE0	000	000
291h	CCPR1L	Capture/Compare	/PWM Register 1 (LSB)						XXXX XXXX	uuuu uuuu
292h	CCPR1H	Capture/Compare	/PWM Register 1 (MSB)						XXXX XXXX	uuuu uuuu
293h	CCP1CON	EN		OUT	FMT		MODE	=<3:0>		0-00 0000	0-00 0000
294h	CCP1CAP	—	_	—	—		CTS	<3:0>		0000	0000
295h	CCPR2L	Capture/Compare	/PWM Register 2 (LSB)						XXXX XXXX	uuuu uuuu
296h	CCPR2H	Capture/Compare	/PWM Register 2 (MSB)						XXXX XXXX	uuuu uuuu
297h	CCP2CON	EN	_	OUT	FMT		MODE	=<3:0>		0-00 0000	0-00 0000
298h	CCP2CAP	—	_	—	—		CTS	<3:0>		0000	0000
299h	CCPR7L	Capture/Compare	/PWM Register 7 (LSB)						XXXX XXXX	uuuu uuuu
29Ah	CCPR7H	Capture/Compare	PWM Register 7 (MSB)						XXXX XXXX	uuuu uuuu
29Bh	CCP7CON	EN		OUT	FMT	MODE<3:0>				0-00 0000	0-00 0000
29Ch	CCP7CAP	_			_		CTS	0000	0000		
29Dh	_	Unimplemented								—	—
29Eh	CCPTMRS1	C8TSEL	<1:0> ⁽³⁾	C7TSE	L<1:0>	C2TSE	L<1:0>	C1TSE	L<1:0>	00 0000	00 0000
29Fh	CCPTMRS2	P10TSEI	L<1:0> ⁽³⁾	P9TSE	L<1:0>	P4TSE	L<1:0>	P3TSE	L<1:0>	00 0000	00 0000

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'. Legend:

Unimplemented, read as '1'.

Note 1: 2:

Unimplemented on PIC16LF1777/8/9.

3: Unimplemented on PIC16(L)F1778.

TABLE 3-18: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Ban	nk 28										
E0Ch	—				Unimple	emented				_	—
 E0Bh											
E0Ch	PPSLOCK	_	_	_	_	_	_	_	PPSLOCKED	0	0
E0Dh	INTPPS	_	_			INTPP	S<5:0>	•	•	00 1000	uu uuuu
E0Eh	TOCKIPPS	_	_			TOCKIP	PS<5:0>			00 0100	uu uuuu
E0Fh	T1CKIPPS	—	_			T1CKIP	PS<5:0>			01 0000	uu uuuu
E10h	T1GPPS	—	_			T1GPP	S<5:0>			00 1101	uu uuuu
E11h	T3CKIPPS	—	_			T3CKIP	PS<5:0>			01 0000	uu uuuu
E12h	T3GPPS	—	_			T3GPP	S<5:0>			01 0000	uu uuuu
E13h	T5CKIPPS	—				T5CKIP	PS<5:0>			01 0000	uu uuuu
E14h	T5GPPS	_				T5GPP	S<5:0>			00 1100	uu uuuu
E15h	T2INPPS	_				T2INPF	PS<5:0>			01 0011	uu uuuu
E16h	T4INPPS	_				T4INPF	PS<5:0>			01 0101	uu uuuu
E17h	T6INPPS	_				T6INPF	PS<5:0>			01 0100	uu uuuu
E18h	T8INPPS	_				T8INPF	PS<5:0>			01 0010	uu uuuu
E19h	CCP1PPS	—	_			CCP1PI	PS<5:0>			01 0010	uu uuuu
E1Ah	CCP2PPS	—	_			CCP2PI	PS<5:0>			01 0001	uu uuuu
E1Bh	CCP7PPS	—	_			CCP7PI	PS<5:0>			00 1101	uu uuuu
E1Ch	CCP8PPS ⁽³⁾	—	_			CCP8PI	PS<5:0>			00 1101	uu uuuu
E1Dh	COGIN1PPS	—	_			COG1P	PS<5:0>			00 1000	uu uuuu
E1Eh	COG2INPPS	—	_			COG2P	PS<5:0>			00 1001	uu uuuu
E1Fh	COG3INPPS	—	_			COG3P	PS<5:0>			00 1010	uu uuuu
E20h	COG4INPPS ⁽³⁾	—	_			COG4P	PS<5:0>			00 1010	uu uuuu
E21h	MD1CLPPS	—	_		MD1CLPPS<5:0>						uu uuuu
E22h	MD1CHPPS	—	_			MD1CHF	PPS<5:0>			00 0011	uu uuuu
E23h	MD1MODPPS	_	_		MD1MODPPS<5:0>						uu uuuu
E24h	MD2CLPPS	_	_			MD2CLF	PS<5:0>			00 0100	uu uuuu
E25h	MD2CHPPS	_	_		MD2CHPPS<5:0>						uu uuuu
E26h	MD2MODPPS					MD2MOD	PPS<5:0>			00 0101	uu uuuu
Legen	gend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved.										

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Unimplemented, read as '1'. Note 1:

> 2: Unimplemented on PIC16LF1777/8/9.

3: Unimplemented on PIC16(L)F1778. PIC16(L)F1777/8/9

3.5 PCL and PCLATH

The Program Counter (PC) is 15 bits wide. The low byte comes from the PCL register, which is a readable and writable register. The high byte (PC<14:8>) is not directly readable or writable and comes from PCLATH. On any Reset, the PC is cleared. Figure 3-4 shows the five situations for the loading of the PC.

FIGURE 3-4: LOADING OF PC IN DIFFERENT SITUATIONS

3.5.1 MODIFYING PCL

Executing any instruction with the PCL register as the destination simultaneously causes the Program Counter PC<14:8> bits (PCH) to be replaced by the contents of the PCLATH register. This allows the entire contents of the program counter to be changed by writing the desired upper seven bits to the PCLATH register. When the lower eight bits are written to the PCL register, all 15 bits of the program counter will change to the values contained in the PCLATH register.

3.5.2 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When performing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256-byte block). Refer to Application Note AN556, *"Implementing a Table Read"* (DS00556).

3.5.3 COMPUTED FUNCTION CALLS

A computed function CALL allows programs to maintain tables of functions and provide another way to execute state machines or look-up tables. When performing a table read using a computed function CALL, care should be exercised if the table location crosses a PCL memory boundary (each 256-byte block).

If using the CALL instruction, the PCH<2:0> and PCL registers are loaded with the operand of the CALL instruction. PCH<6:3> is loaded with PCLATH<6:3>.

The CALLW instruction enables computed calls by combining PCLATH and W to form the destination address. A computed CALLW is accomplished by loading the W register with the desired address and executing CALLW. The PCL register is loaded with the value of W and PCH is loaded with PCLATH.

3.5.4 BRANCHING

The branching instructions add an offset to the PC. This allows relocatable code and code that crosses page boundaries. There are two forms of branching, BRW and BRA. The PC will have incremented to fetch the next instruction in both cases. When using either branching instruction, a PCL memory boundary may be crossed.

If using BRW, load the W register with the desired unsigned address and execute BRW. The entire PC will be loaded with the address PC + 1 + W.

If using BRA, the entire PC will be loaded with PC + 1 +, the signed value of the operand of the BRA instruction.

PIC16(L)F1777/8/9

HS MODE)

Rev. 10-000059A

FIGURE 5-3: QUARTZ CRYSTAL OPERATION (LP, XT OR

- 2: The value of RF varies with the Oscillator mode selected (typically between 2 M Ω and 10 M Ω).
- Note 1: Quartz crystal characteristics vary according to type, package and manufacturer. The user should consult the manufacturer data sheets for specifications and recommended application.
 - 2: Always verify oscillator performance over the VDD and temperature range that is expected for the application.
 - **3:** For oscillator design assistance, reference the following Microchip Application Notes:
 - AN826, "Crystal Oscillator Basics and Crystal Selection for rfPIC[®] and PIC[®] Devices" (DS00826)
 - AN849, "Basic PIC[®] Oscillator Design" (DS00849)
 - AN943, "Practical PIC[®] Oscillator Analysis and Design" (DS00943)
 - AN949, "Making Your Oscillator Work" (DS00949)

FIGURE 5-4: CERAMIC RESONATOR OPERATION (XT OR HS MODE)

5.2.1.3 Oscillator Start-up Timer (OST)

If the oscillator module is configured for LP, XT or HS modes, the Oscillator Start-up Timer (OST) counts 1024 oscillations from OSC1. This occurs following a Power-on Reset (POR) and when the Power-up Timer (PWRT) has expired (if configured), or a wake-up from Sleep. During this time, the program counter does not increment and program execution is suspended, unless either FSCM or Two-Speed Start-Up are enabled. In this case, code will continue to execute at the selected INTOSC frequency while the OST is counting. The OST ensures that the oscillator circuit, using a quartz crystal resonator or ceramic resonator, has started and is providing a stable system clock to the oscillator module.

In order to minimize latency between external oscillator start-up and code execution, the Two-Speed Clock Start-up mode can be selected (see **Section 5.4 "Two-Speed Clock Start-up Mode"**).

R/W-0/0	R/W-0/0	R-0/0	R-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is und	changed	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is se	t	'0' = Bit is clea	ared				
bit 7	TMR1GIF: Tir	ner1 Gate Inte	rrupt Flag bit				
	1 = Interrupt is	s pending					
h:1 0		s not penaing					
DILO	ADIF: Analog	-IO-DIGITAI CON	verter (ADC)	interrupt Flag b	n		
	0 = Interrupt is	s not pending					
bit 5	RCIF: EUSAF	RT Receive Inte	errupt Flag bit				
	1 = Interrupt is	s pending					
	0 = Interrupt is	s not pending					
bit 4	TXIF: EUSAR	T Transmit Inte	errupt Flag bi	t			
	1 = Interrupt is	s pending					
hit 2		s not pending) Interrupt Elea	hit		
DIL 3	1 = Interrunt is		1 FULL (1033F) interrupt Flag	DIL		
	0 = Interrupt is	s not pending					
bit 2	CCP1IF: CCF	91 Interrupt Fla	g bit				
	1 = Interrupt is	s pending	-				
	0 = Interrupt is	s not pending					
bit 1	TMR2IF: Time	er2 to T2PR Inf	terrupt Flag b	it			
	1 = Interrupt is	s pending					
bit 0	TMP1IE- Time	s not pending	iterrunt Elan h	sit			
DILU	1 = Interrunt is	s pendina	nen upt i lag t	Л			
	0 = Interrupt is	s not pending					
	1		1.1				
Note: In	iterrupt flag bits a	re set when an	interrupt e state of				
its	s corresponding e	enable bit or th	e Global				
E	nable bit, GIE, o	f the INTCON	register.				
U	ser software	should ensu	ure the				
ar Dr	ppropriate interru	upt tiag bits a n interrupt	are clear				
P							

REGISTER 7-8: PIR1: PERIPHERAL INTERRUPT REQUEST REGISTER 1

REGISTER 12-3: PPSLOCK: PPS LOCK REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0
—	—	—	_	—	—		PPSLOCKED
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimplem	nented bit, read	l as '0'	
u = Bit is unch	nanged	x = Bit is unkn	iown	-n/n = Value a	t POR and BO	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-1 Unimplemented: Read as '0'

bit 0 PPSLOCKED: PPS Locked bit

1 = PPS is locked. PPS selections can not be changed.

0 = PPS is not locked. PPS selections can be changed.

16.2 ADC Operation

16.2.1 STARTING A CONVERSION

To enable the ADC module, the ADON bit of the ADCON0 register must be set to a '1'. Setting the GO/DONE bit of the ADCON0 register to a '1' will start the Analog-to-Digital conversion.

Note:	The GO/DONE bit should not be set in the
	same instruction that turns on the ADC.
	Refer to Section 16.2.6 "ADC Conver-
	sion Procedure".

16.2.2 COMPLETION OF A CONVERSION

When the conversion is complete, the ADC module will:

- Clear the GO/DONE bit
- · Set the ADIF Interrupt Flag bit
- Update the ADRESH and ADRESL registers with new conversion result

16.2.3 TERMINATING A CONVERSION

If a conversion must be terminated before completion, the GO/DONE bit can be cleared in software. The ADRESH and ADRESL registers will be updated with the partially complete Analog-to-Digital conversion sample. Incomplete bits will match the last bit converted.

Note:	A device Reset forces all registers to their						
	Reset state. Thus, the ADC module is						
	turned off and any pending conversion is						
	terminated.						

16.2.4 ADC OPERATION DURING SLEEP

The ADC module can operate during Sleep. This requires the ADC clock source to be set to the FRC option. When the FRC oscillator source is selected, the ADC waits one additional instruction before starting the conversion. This allows the SLEEP instruction to be executed, which can reduce system noise during the conversion. If the ADC interrupt is enabled, the device will wake-up from Sleep when the conversion completes. If the ADC interrupt is disabled, the ADC module is turned off after the conversion completes, although the ADON bit remains set.

When the ADC clock source is something other than FRC, a SLEEP instruction causes the present conversion to be aborted and the ADC module is turned off, although the ADON bit remains set.

16.2.5 AUTO-CONVERSION TRIGGER

The Auto-conversion Trigger allows periodic ADC measurements without software intervention. When a rising edge of the selected source occurs, the GO/DONE bit is set by hardware.

The Auto-conversion Trigger source is selected with the TRIGSEL<5:0> bits of the ADCON2 register.

Using the Auto-conversion Trigger does not assure proper ADC timing. It is the user's responsibility to ensure that the ADC timing requirements are met.

See	Table	16-2	for	auto	-co	nve	ersi	ion	so	urc	ces	
						_						

TABLE 16-2: AUTO-CONVERSION SOURCES

Source Peripheral	Signal Name
CCP1	CCP1_trigger
CCP2	CCP2_trigger
CCP7	CCP7_trigger
CCP8 ⁽¹⁾	CCP8_trigger
Timer0	T0_overflow
Timer1	T1_overflow
Timer3	T3_overflow
Timer5	T5_overflow
Timer2	T2_postscaled
Timer4	T4_postscaled
Timer6	T6_postscaled
Timer8	T8_postscaled
Comparator C1	sync_C1OUT
Comparator C2	sync_C2OUT
Comparator C3	sync_C3OUT
Comparator C4	sync_C4OUT
Comparator C5	sync_C5OUT
Comparator C6	sync_C6OUT
Comparator C7 ⁽¹⁾	sync_C7OUT
Comparator C8 ⁽¹⁾	sync_C8OUT
CLC1	LC1_out
CLC2	LC2_out
CLC3	LC3_out
CLC4	LC4_out
PWM3	PWM3OUT
PWM4	PWM4OUT
PWM9	PWM9OUT
PWM9	PR/PH/OF/DC9_match
PWM5	PR/PH/OF/DC5_match
PWM6	PR/PH/OF/DC6_match
PWM10 ⁽¹⁾	PR/PH/OF/DC10_match
PWM11	PR/PH/OF/DC11_match
PWM12 ⁽¹⁾	PR/PH/OF/DC12_match
ADCACT	ADCACTPPS Pin

Note 1: PIC16(L)F1777/9 only.

REGISTER 19-4: CMxPSEL: COMPARATOR Cx POSITIVE CHANNEL SELECT REGISTER 1

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	_	_	_		PCH	<3:0>	
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 Unimplemented: Read as '0'

bit 3-0 **PCH<3:0>:** Comparator Positive Input Channel Select bits CxVP connects to input source indicated by Table 19-5: Positive Input Sources

TABLE 19-5: POSITIVE INPUT SOURCES

PCH<3:0>	C1, C2, C3, C4	C5, C6, C7 ⁽¹⁾ , C8 ⁽¹⁾			
1111	Reserved. Do not use	Reserved. Do not use			
1110	Reserved. Do not use	Reserved. Do not use			
1101	Reserved. Do not use	Reserved. Do not use			
1100	Reserved. Do not use	Reserved. Do not use			
1011	Reserved. Do not use	Reserved. Do not use			
1010	Reserved. Do not use	Reserved. Do not use			
1001	AGND	AGND			
1000	DAC4_out	DAC8_out ⁽¹⁾			
0111	DAC3_out	DAC7_out			
0110	DAC2_out	DAC6_out ⁽¹⁾			
0101	DAC1_out	DAC5_out			
0100	PRG2_out	PRG4_out ⁽¹⁾			
0011	PRG1_out	PRG3_out			
0010	FVR_Buffer2	FVR_Buffer2			
0001	CxIN1+ pin	CxIN1+ pin			
0000	CxIN0+ pin	CxIN0+ pin			

Note 1: PIC16(L)F1777/9 only.

22.0 TIMER1/3/5 MODULE WITH GATE CONTROL

The Timer1 module is a 16-bit timer/counter with the following features:

- 16-bit timer/counter register pair (TMR1H:TMR1L)
- Programmable internal or external clock source
- · 2-bit prescaler
- · Dedicated 32 kHz oscillator circuit
- · Optionally synchronized comparator out
- Multiple Timer1 gate (count enable) sources
- Interrupt-on-overflow
- Wake-up on overflow (external clock, Asynchronous mode only)
- Time base for the Capture/Compare function
- Auto-conversion Trigger (with CCP)

- Selectable Gate Source Polarity
- Gate Toggle mode
- Gate Single-pulse mode
- Gate Value Status
- Gate Event Interrupt

Figure 22-1 is a block diagram of the Timer1 module.

This device has three instances of Timer1 type modules. They include:

- Timer1
- Timer3
- Timer5

Note: All references to Timer1 and Timer1 Gate apply to Timer3 and Timer5.

REGISTER 23-4: TxRST: TIMERx EXTERNAL RESET SIGNAL SELECTION REGISTER

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
	-				RSEL<4:0>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RSEL<4:0>:** TimerX External Reset Signal Source Selection bits See Table 23-4.

TABLE 23-4: EXTERNAL RESET SOURCES

RSEL<4:0>	Timer2	Timer4	Timer6	Timer8
11111	Reserved	Reserved	Reserved	Reserved
11110	Reserved	Reserved	Reserved	Reserved
11101	LC4_out	LC4_out	LC4_out	LC4_out
11100	LC3_out	LC3_out	LC3_out	LC3_out
11011	LC2_out	LC2_out	LC2_out	LC2_out
11010	LC1_out	LC1_out	LC1_out	LC1_out
11001	ZCD_out	ZCD_out	ZCD_out	ZCD_out
11000 (1)	sync_C8OUT	sync_C8OUT	sync_C8OUT	sync_C8OUT
10111(1)	sync_C7OUT	sync_C7OUT	sync_C7OUT	sync_C7OUT
10110	sync_C6OUT	sync_C6OUT	sync_C6OUT	sync_C6OUT
10101	sync_C5OUT	sync_C5OUT	sync_C5OUT	sync_C5OUT
10100	sync_C4OUT	sync_C4OUT	sync_C4OUT	sync_C4OUT
10011	sync_C3OUT	sync_C3OUT	sync_C3OUT	sync_C3OUT
10010	sync_C2OUT	sync_C2OUT	sync_C2OUT	sync_C2OUT
10001	sync_C1OUT	sync_C1OUT	sync_C1OUT	sync_C1OUT
10000(1)	PWM12_out	PWM12_out	PWM12_out	PWM12_out
01111	PWM11_out	PWM11_out	PWM11_out	PWM11_out
01110	PWM6_out	PWM6_out	PWM6_out	PWM6_out
01101	PWM5_out	PWM5_out	PWM5_out	PWM5_out
₀₁₁₀₀ (1)	PWM10_out	PWM10_out	PWM10_out	PWM10_out
01011	PWM9_out	PWM9_out	PWM9_out	PWM9_out
01010	PWM4_out	PWM4_out	PWM4_out	PWM4_out
01001	PWM3_out	PWM3_out	PWM3_out	PWM3_out
01000 (1)	CCP8_out	CCP8_out	CCP8_out	CCP8_out
00111	CCP7_out	CCP7_out	CCP7_out	CCP7_out
00110	CCP2_out	CCP2_out	CCP2_out	CCP2_out
00101	CCP1_out	CCP1_out	CCP1_out	CCP1_out
00100	TMR8_postscaled	TMR8_postscaled	TMR8_postscaled	Reserved
00011	TMR6_postscaled	TMR6_postscaled	Reserved	TMR6_postscaled
00010	TMR4_postscaled	Reserved	TMR4_postscaled	TMR4_postscaled
00001	Reserved	TMR2_postscaled	TMR2_postscaled	TMR2_postscaled
00000	Pin selected byT2INPPS	Pin selected by T4INPPS	Pin selected by T6INPPS	Pin selected by T6INPPS

Note 1: PIC16LF1777/9 only.

AVAILABLE 10-BIT PWM

PWM4

•

PWM9

•

PWM10

•

MODULES

PWM3

•

TABLE 25-1:

PIC16(L)F1778

PIC16(L)F1777/9

Device

25.0 10-BIT PULSE-WIDTH MODULATION (PWM) MODULE

The 10-bit PWM module generates a Pulse-Width Modulated signal determined by the duty cycle, period, and resolution that are configured by the following registers:

- T2PR
- T2CON
- PWMxDCH
- PWMxDCL
- PWMxCON

Figure 25-1 shows a simplified block diagram of PWM operation.

Figure 25-2 shows a typical waveform of the PWM signal.

FIGURE 25-1: SIMPLIFIED PWM BLOCK DIAGRAM

For a step-by-step procedure on how to set up this module for PWM operation, refer to Section 25.1.9 "Setup for PWM Operation using PWMx Output Pins".

25.2 Register Definitions: 10-Bit PWM Control

Long bit name prefixes for the DSM peripherals are shown in Table 25-4. Refer to **Section 1.1.2.2 "Long Bit Names"** for more information

TABLE 25-4:

Peripheral	Bit Name Prefix
PWM3	PWM3
PWM4	PWM4
PWM9	PWM9
PWM10 ⁽¹⁾	PWM10

Note 1: PIC16(L)F1777/9 only.

REGISTER 25-1: PWMxCON: PWM CONTROL REGISTER

R/W-0/0	U-0	R-0/0	R/W-0/0	U-0	U-0	U-0	U-0
EN	—	OUT	POL	—	—	—	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7 EN: PWM Module Enable bit

1 = PWM module is enabled

0 = PWM module is disabled

bit 6 Unimplemented: Read as '0'

bit 5 **OUT:** PWM module output level when bit is read.

bit 4 POL: PWMx Output Polarity Select bit

1 = PWM output is active-low

0 = PWM output is active-high

bit 3-0 Unimplemented: Read as '0'

PIC16(L)F1777/8/9

30.9 Slope Compensation Application

An example slope compensation circuit is shown in Figure 30-6. The PRG input voltage is PRGxIN which shares an I/O pin with the op amp output. The op amp output is designed to operate at the expected peak current sense voltage (i.e., VREF). The PRG output voltage starts at VREF and should fall at a rate less than half the target circuit current sense voltage rate of rise. Therefore, the compensator slope expressed as volts per µs can be computed by Equation 30-1.

EQUATION 30-1:

For example, when the circuit is using a 1 Ω current sense resistor and the peak current is 1A, then the peak current expressed as a voltage is 1V. Therefore, for this example, the op amp output should be designed to operate at 1V. If the power supply PWM frequency is 1 MHz, then the period is 1 μ s. Therefore, the desired slope is 0.5 V/ μ s, which is computed as shown in Equation 30-2.

EQUATION 30-2:

$$\frac{\frac{VREF}{2}}{PWM Period (\mu s)} = \frac{\frac{1}{2}}{1\mu s} = 0.5 V/\mu s$$

Note: The setting for $0.5V/\mu s$ is ISET<4:0> = 6

FIGURE 30-6: EXAMPLE SLOPE COMPENSATION CIRCUIT

PIC16(L)F1777/8/9

32.2.4 SPI SLAVE MODE

In Slave mode, the data is transmitted and received as external clock pulses appear on SCK. When the last bit is latched, the SSPxIF interrupt flag bit is set.

Before enabling the module in SPI Slave mode, the clock line must match the proper Idle state. The clock line can be observed by reading the SCK pin. The Idle state is determined by the CKP bit of the SSPxCON1 register.

While in Slave mode, the external clock is supplied by the external clock source on the SCK pin. This external clock must meet the minimum high and low times as specified in the electrical specifications.

While in Sleep mode, the slave can transmit/receive data. The shift register is clocked from the SCK pin input and when a byte is received, the device will generate an interrupt. If enabled, the device will wake-up from Sleep.

32.2.4.1 Daisy-Chain Configuration

The SPI bus can sometimes be connected in a daisy-chain configuration. The first slave output is connected to the second slave input, the second slave output is connected to the third slave input, and so on. The final slave output is connected to the master input. Each slave sends out, during a second group of clock pulses, an exact copy of what was received during the first group of clock pulses. The whole chain acts as one large communication shift register. The daisy-chain feature only requires a single Slave Select line from the master device.

Figure 32-7 shows the block diagram of a typical daisy-chain connection when operating in SPI mode.

In a daisy-chain configuration, only the most recent byte on the bus is required by the slave. Setting the BOEN bit of the SSPxCON3 register will enable writes to the SSPxBUF register, even if the previous byte has not been read. This allows the software to ignore data that may not apply to it.

32.4 I²C MODE OPERATION

All MSSP I²C communication is byte oriented and shifted out MSb first. Six SFR registers and two interrupt flags interface the module with the $PIC^{\mathbb{R}}$ microcontroller and user software. Two pins, SDA and SCL, are exercised by the module to communicate with other external I²C devices.

32.4.1 BYTE FORMAT

All communication in I^2C is done in 9-bit segments. A byte is sent from a master to a slave or vice-versa, followed by an Acknowledge bit sent back. After the eighth falling edge of the SCL line, the device outputting data on the SDA changes that pin to an input and reads in an acknowledge value on the next clock pulse.

The clock signal, SCL, is provided by the master. Data is valid to change while the SCL signal is low, and sampled on the rising edge of the clock. Changes on the SDA line while the SCL line is high define special conditions on the bus, explained below.

32.4.2 DEFINITION OF I²C TERMINOLOGY

There is language and terminology in the description of I^2C communication that have definitions specific to I^2C . That word usage is defined below and may be used in the rest of this document without explanation. This table was adapted from the Philips I^2C specification.

32.4.3 SDA AND SCL PINS

Selection of any I^2C mode with the SSPEN bit set, forces the SCL and SDA pins to be open-drain. These pins should be set by the user to inputs by setting the appropriate TRIS bits.

- Note 1: Data is tied to output zero when an I²C mode is enabled.
 - 2: Any device pin can be selected for SDA and SCL functions with the PPS peripheral. These functions are bidirectional. The SDA input is selected with the SSPDATPPS registers. The SCL input is selected with the SSPCLKPPS registers. Outputs are selected with the RxyPPS registers. It is the user's responsibility to make the selections so that both the input and the output for each function is on the same pin.

32.4.4 SDA HOLD TIME

The hold time of the SDA pin is selected by the SDAHT bit of the SSPxCON3 register. Hold time is the time SDA is held valid after the falling edge of SCL. Setting the SDAHT bit selects a longer 300 ns minimum hold time and may help on buses with large capacitance.

TABLE 32-2:I²C BUS TERMS

TERM	Description
Transmitter	The device which shifts data out onto the bus.
Receiver	The device which shifts data in from the bus.
Master	The device that initiates a transfer, generates clock signals and termi- nates a transfer.
Slave	The device addressed by the master.
Multi-master	A bus with more than one device that can initiate data transfers.
Arbitration	Procedure to ensure that only one master at a time controls the bus. Winning arbitration ensures that the message is not corrupted.
Synchronization	Procedure to synchronize the clocks of two or more devices on the bus.
Idle	No master is controlling the bus, and both SDA and SCL lines are high.
Active	Any time one or more master devices are controlling the bus.
Addressed Slave	Slave device that has received a matching address and is actively being clocked by a master.
Matching Address	Address byte that is clocked into a slave that matches the value stored in SSPxADD.
Write Request	Slave receives a matching address with R/W bit clear, and is ready to clock in data.
Read Request	Master sends an address byte with the R/W bit set, indicating that it wishes to clock data out of the Slave. This data is the next and all following bytes until a Restart or Stop.
Clock Stretching	When a device on the bus hold SCL low to stall communication.
Bus Collision	Any time the SDA line is sampled low by the module while it is out- putting and expected high state.

TABLE 33-1: SUMMARY OF REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	—	—	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	177
ANSELB	—	—	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	182
ANSELC	ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2	—	—	187
BAUD1CON	ABDOVF	RCIDL	—	SCKP	BRG16	—	WUE	ABDEN	505
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	132
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	133
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	139
RC1STA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	504
RxyPPS	RxyPPS<5:0>							205, 207	
SP1BRGL	SP1BRG<7:0>							506*	
SP1BRGH				SP1BR0	G<15:8>				506*
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	176
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	181
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	186
TX1REG	EUSART Tra	nsmit Data F	Register						495*
TX1STA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	503

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for asynchronous transmission.

Page provides register information.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R-0/0	R-0/0	R-0/0
SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D
bit 7					I		bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value	at POR and BOI	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	SPEN: Serial	Port Enable bi	t				
	1 = Serial po	rt enabled					
	0 = Serial po	rt disabled (hel	d in Reset)				
bit 6	RX9: 9-Bit Re	eceive Enable t	bit				
	1 = Selects 9 0 = Selects 8	B-bit reception					
bit 5	SREN: Single	Receive Enab	le bit				
	Asynchronous	<u>s mode</u> :					
	Don't care						
	Synchronous	mode – Maste	<u>r</u> :				
	1 = Enables	single receive					
	0 = Disables	single receive	ntion is comple	ete			
	Synchronous	mode – Slave		010.			
	Don't care						
bit 4	CREN: Contir	nuous Receive	Enable bit				
	Asynchronous	<u>s mode</u> :					
	1 = Enables	receiver					
	0 = Disables	receiver					
	<u>Synchronous</u>	<u>mode</u> :	oivo until onok	ala hit CDEN is	olograd (CDEN		
	0 = Disables	continuous rec	eive until enat				_IN)
bit 3	ADDEN: Add	ress Detect En	able bit				
	Asynchronous	<u>s mode 9-bit (R</u>	2 X9 = 1):				
	1 = Enables	address detect	ion, enable in	terrupt and loa	d the receive bu	Iffer when RSR	<8> is set
	0 = Disables	address detect	tion, all bytes	are received a	nd ninth bit can	be used as par	rity bit
	Asynchronous		xy = 0				
hit 2	EEPP. Fromi	ng Error hit					
	1 = Framing	error (can be u	ndated hv rea	ding RCyREG	register and reg	ceive next valid	hyte)
	0 = No framing	ng error					bytc)
bit 1	OERR: Overr	un Error bit					
	1 = Overrun 0 = No overr	error (can be c un error	eared by clea	ring bit CREN)		
bit 0	RX9D: Ninth	bit of Received	Data				
	This can be a	ddress/data bit	or a parity bit	and must be	calculated by us	er firmware.	

REGISTER 33-2: RC1STA: RECEIVE STATUS AND CONTROL REGISTER

PIC16(L)F1777/8/9

Note: Unless otherwise noted, VIN = 5V, Fosc = 300 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 37-25: IDD Typical, HFINTOSC Mode, PIC16F1777/8/9 Only.

FIGURE 37-26: IDD Maximum, HFINTOSC Mode, PIC16F1777/8/9 Only.

FIGURE 37-27: IDD Typical, HS Oscillator, 25°C, PIC16LF1777/8/9 Only.

FIGURE 37-28: IDD Maximum, HS Oscillator, PIC16LF1777/8/9 Only.

FIGURE 37-29: IDD Typical, HS Oscillator, 25°C, PIC16F1777/8/9 Only.

FIGURE 37-30: IDD, HS Oscillator (8 MHz + 4x PLL), PIC16LF1777/8/9 Only.

40-Lead Ultra Thin Plastic Quad Flat, No Lead Package (MV) – 5x5x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-156A Sheet 1 of 2