

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	36
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 28x10b; D/A 4x5b, 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1779-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

											Ре	riph	nera	Inp	ut										
Peripheral Output	ADC Trigger	COG Clock	COG Rising/Falling	COG Shutdown	10-bit DAC	5-bit DAC	PRG Analog Input	PRG Rising/Falling	Comparator +	Comparator -	CLC	DSM CH	DSM CL	DSM Mod	Op Amp +	Op Amp -	Op Amp Override	10-bit PWM	16-bit PWM	CCP Capture	CCP Clock	Timer2/4/6/8 Clock	Timer2/4/6/8 Reset	Timer1/3/5 Gate	Timer0 Clock
FVR					•	•	٠		٠	٠					•	•									
ZCD											•						•					•			
PRG									•						•	•									
10-bit DAC							•		•						•	•									
5-bit DAC							•		•						•	•									
CCP	•		٠					٠			٠	٠	•	٠			•						•		
Comparator (sync)	•							•			•						•			•			•	•	
Comparator (async)			•	•										•											
CLC	•		•	•							•	•	•	•			•			•		•	•		
DSM																									
COG																	•								
EUSART TX/CK											•			•											
EUSART DT											•			•											
MSSP SCK/SCL											•			•											
MSSP SDO/SDA											•			•											
Op Amp							•																		
10-bit PWM	•		•					•			•	•	•	•			•						•		
16-bit PWM	•		•					•			•	•	•	•			•						•		
Timer0 overflow	•										•													•	
Timer2 = T2PR				٠							•							•			•		•		
Timer4 = T4PR				٠							•							•			•		•		
Timer6 = T6PR				•							•							•			•		•		
Timer8 = T8PR				•							•							•			•		•		
Timer2 Postscale	•			•							•							•			•		•		
Timer4 Postscale	•			•							•							•			•		•		
Timer6 Postscale	•			•							•							•			•		•		
Timer8 Postscale	•			٠							•							•			•		•		
Timer1 overflow	٠										•							•			•				
Timer3 overflow	•										•							٠			•				
Timer5 overflow	•										•							•			•				
SOSC																			•			٠			
Fosc/4		٠																				•			
Fosc		•									•	•	•						•			٠			
HFINTOSC		•									•	•	•						•			٠			
LFINTOSC											•								•			•			
MFINTOSC																						٠			
IOCIF											•									•	•				
PPS Input pin			•	٠				•				•	•	•						•	•	•	•	•	•

TABLE 1-4: PERIPHERAL CONNECTION MATRIX

TABLE 3-18: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Banl	k7										
38Ch	INLVLA	INLVLA7	INLVLA6	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0	1111 1111	1111 1111
38Dh	INLVLB	INLVLB7	INLVLB6	INLVLB5	INLVLB4	INLVLB3	INLVLB2	INLVLB1	INLVLB0	1111 1111	1111 1111
38Eh	INLVLC	INLVLC7	INLVLC6	INLVLC5	INLVLC4	INLVLC3	INLVLC2	INLVLC1	INLVLC0	1111 1111	1111 1111
	INLVLD ⁽³⁾	INLVLD7	INLVLD6	INLVLD5	INLVLD4	INLVLD3	INLVLD2	INLVLD1	INLVLD0	1111 1111	1111 1111
390h	INLVLE ⁽³⁾	_	—	—	_	INLVLE3	INLVLE2	INLVLE1	INLVLE0	1111	1111
391h	IOCAP	IOCAP7	IOCAP6	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0	0000 0000	0000 0000
392h	IOCAN	IOCAN7	IOCAN6	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0	0000 0000	0000 0000
393h	IOCAF	IOCAF7	IOCAF6	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0	0000 0000	0000 0000
394h	IOCBP	IOCBP7	IOCBP6	IOCBP5	IOCBP4	IOCBP3	IOCBP2	IOCBP1	IOCBP0	0000 0000	0000 0000
395h	IOCBN	IOCBN7	IOCBN6	IOCBN5	IOCBN4	IOCBN3	IOCBN2	IOCBN1	IOCBN0	0000 0000	0000 0000
396h	IOCBF	IOCBF7	IOCBF6	IOCBF5	IOCBF4	IOCBF3	IOCBF2	IOCBF1	IOCBF0	0000 0000	0000 0000
397h	IOCCP	IOCCP7	IOCCP6	IOCCP5	IOCCP4	IOCCP3	IOCCP2	IOCCP1	IOCCP0	0000 0000	0000 0000
398h	IOCCN	IOCCN7	IOCCN6	IOCCN5	IOCCN4	IOCCN3	IOCCN2	IOCCN1	IOCCN0	0000 0000	0000 0000
399h	IOCCF	IOCCF7	IOCCF6	IOCCF5	IOCCF4	IOCCF3	IOCCF2	IOCCF1	IOCCF0	0000 0000	0000 0000
39Ah	—	Unimplemented								—	—
39Bh	—	Unimplemented								—	—
39Ch	—	Unimplemented								_	_
39Dh	IOCEP		_	—		IOCEP3	_	_	_	0	0
39Eh	IOCEN		_	_		IOCEN3	_	_	_	0	0
39Fh	IOCEF	_	_	—	_	IOCEF3	—	—	—	0	0

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'. Legend:

Unimplemented, read as '1'.

Note 1:

Unimplemented on PIC16LF1777/8/9. 2:

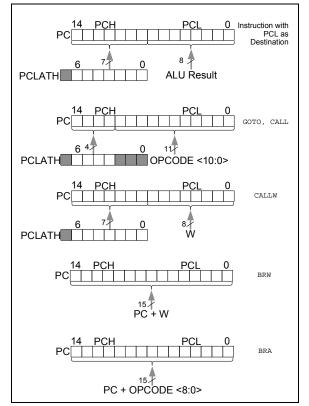
3: Unimplemented on PIC16(L)F1778.

TABLE 3-18: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets		
Ban	k 30					1	1						
F0Ch — F0Eh	_	Unimplemented											
F0Fh	CLCDATA	—	—	_	_	MLC4OUT	MLC3OUT	MLC2OUT	MLC1OUT	x000	u000		
F10h	CLC1CON	EN	—	OUT	INTP	INTN		MODE<2:0>		0-00 0000	0-00 0000		
F11h	CLC1POL	POL	—	_		G4POL	G3POL	G2POL	G1POL	0 xxxx	0 uuuu		
F12h	CLC1SEL0	—	—			D1S·	<5:0>			xx xxxx	uu uuuu		
F13h	CLC1SEL1	—	_			D2S·	<5:0>			xx xxxx	uu uuuu		
F14h	CLC1SEL2	—	_			D3S-	<5:0>			xx xxxx	uu uuuu		
F15h	CLC1SEL3	—	_			D4S·	<5:0>			xx xxxx	uu uuuu		
F16h	CLC1GLS0	G1D4T	G1D4N	G1D3T	G1D3N	G1D2T	G1D2N	G1D1T	G1D1N	XXXX XXXX	uuuu uuuu		
F17h	CLC1GLS1	G2D4T	G2D4N	G2D3T	G2D3N	G2D2T	G2D2N	G2D1T	G2D1N	XXXX XXXX	uuuu uuuu		
F18h	CLC1GLS2	G3D4T	G3D4N	G3D3T	G3D3N	G3D2T	G3D2N	G3D1T	G3D1N	XXXX XXXX	uuuu uuuu		
F19h	CLC1GLS3	G4D4T	G4D4N	G4D3T	G4D3N	G4D2T	G4D2N	G4D1T	G4D1N	XXXX XXXX	uuuu uuuu		
F1Ah	CLC2CON	EN	_	OUT	INTP	INTN		MODE<2:0>		0-00 0000	0-00 0000		
F1Bh	CLC2POL	POL	_			G4POL	G3POL	G2POL	G1POL	0 xxxx	0 uuuu		
F1Ch	CLC2SEL0	—	_			D1S·	<5:0>			xx xxxx	uu uuuu		
F1Dh	CLC2SEL1	—	—			D2S-	<5:0>			xx xxxx	uu uuuu		
F1Eh	CLC2SEL2	—	—			D3S-	<5:0>			xx xxxx	uu uuuu		
F1Fh	CLC2SEL3	—	—			D4S·	<5:0>			xx xxxx	uu uuuu		
F20h	CLC2GLS0	G1D4T	G1D4N	G1D3T	G1D3N	G1D2T	G1D2N	G1D1T	G1D1N	XXXX XXXX	uuuu uuuu		
F21h	CLC2GLS1	G2D4T	G2D4N	G2D3T	G2D3N	G2D2T	G2D2N	G2D1T	G2D1N	XXXX XXXX	uuuu uuuu		
F22h	CLC2GLS2	G3D4T	G3D4N	G3D3T	G3D3N	G3D2T	G3D2N	G3D1T	G3D1N	XXXX XXXX	uuuu uuuu		
F23h	CLC2GLS3	G4D4T	G4D4N	G4D3T	G4D3N	G4D2T	G4D2N	G4D1T	G4D1N	XXXX XXXX	uuuu uuuu		
F24h	CLC3CON	EN	—	OUT	INTP	INTN		MODE<2:0>		0-00 0000	0-00 0000		
F25h	CLC3POL	POL	—	_	_	G4POL	G3POL	G2POL	G1POL	0 xxxx	0 uuuu		
F26h	CLC3SEL0	—	—	D1S<5:0>							uu uuuu		
F27h	CLC3SEL1	—	_	D2S<5:0>							uu uuuu		
F28h	CLC3SEL2	—	_	D3S<5:0>							uu uuuu		
F29h	CLC3SEL3	—	_	D4S<5:0>							uu uuuu		
F2Ah	CLC3GLS0	G1D4T	G1D4N	G1D3T	G1D3N	G1D2T	G1D2N	G1D1T	G1D1N	xxxx xxxx	uuuu uuuu		

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: Unimplemented, read as '1'.


2: Unimplemented on PIC16LF1777/8/9.

3: Unimplemented on PIC16(L)F1778.

3.5 PCL and PCLATH

The Program Counter (PC) is 15 bits wide. The low byte comes from the PCL register, which is a readable and writable register. The high byte (PC<14:8>) is not directly readable or writable and comes from PCLATH. On any Reset, the PC is cleared. Figure 3-4 shows the five situations for the loading of the PC.

FIGURE 3-4: LOADING OF PC IN DIFFERENT SITUATIONS

3.5.1 MODIFYING PCL

Executing any instruction with the PCL register as the destination simultaneously causes the Program Counter PC<14:8> bits (PCH) to be replaced by the contents of the PCLATH register. This allows the entire contents of the program counter to be changed by writing the desired upper seven bits to the PCLATH register. When the lower eight bits are written to the PCL register, all 15 bits of the program counter will change to the values contained in the PCLATH register.

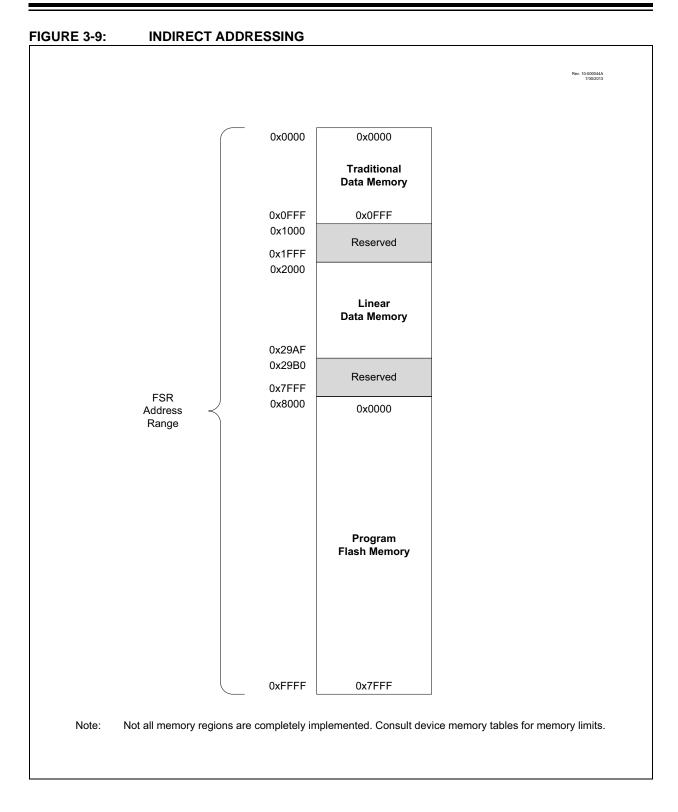
3.5.2 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When performing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256-byte block). Refer to Application Note AN556, *"Implementing a Table Read"* (DS00556).

3.5.3 COMPUTED FUNCTION CALLS

A computed function CALL allows programs to maintain tables of functions and provide another way to execute state machines or look-up tables. When performing a table read using a computed function CALL, care should be exercised if the table location crosses a PCL memory boundary (each 256-byte block).

If using the CALL instruction, the PCH<2:0> and PCL registers are loaded with the operand of the CALL instruction. PCH<6:3> is loaded with PCLATH<6:3>.


The CALLW instruction enables computed calls by combining PCLATH and W to form the destination address. A computed CALLW is accomplished by loading the W register with the desired address and executing CALLW. The PCL register is loaded with the value of W and PCH is loaded with PCLATH.

3.5.4 BRANCHING

The branching instructions add an offset to the PC. This allows relocatable code and code that crosses page boundaries. There are two forms of branching, BRW and BRA. The PC will have incremented to fetch the next instruction in both cases. When using either branching instruction, a PCL memory boundary may be crossed.

If using BRW, load the W register with the desired unsigned address and execute BRW. The entire PC will be loaded with the address PC + 1 + W.

If using BRA, the entire PC will be loaded with PC + 1 +, the signed value of the operand of the BRA instruction.

FIGURE 5-7:	INTERNAL OSCILLATOR SWITCH TIMING
MENEROSC/	LFINYOSC (FSCM and WOY disabled)
HFINTOSC/ MEINTOSC	Citati vas Time Skovite Sync Risming
LFINTOSC	
IRCF <3:0>	$\neq 0$ $X = 0$
System Clock	
99998763867 8859876386	LEWYCOCC (EMMOR FACIAL OF WOY specified)
HFINTOSC/ MEENTOSC	
LFINTOSC	
IRCF <3:0>	$\neq 0$ $\chi = 0$
System Clock	
LEBELOSO	UPPER STATE OF UPPER STATE OF UPPER STATE STATE STATES
xx 224 (xxxxX)	Barnand Bina (Broycle Synce) Recognize
HEINTOSO MEINTOSO	
\$\$\C\$\K\$\C\$\	× 0 X V 0
System Crook	

R/W-0/0) R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
_	_	COG2IE	ZCDIE	CLC4IE	CLC3IE	CLC2IE	CLC1IE
bit 7	·						bit 0
Legend:							
R = Reada	ble bit	W = Writable	bit		nented bit, read		
u = Bit is u	nchanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is s	set	'0' = Bit is cle	ared				
bit 7-6	-	nted: Read as '					
bit 5		DG2 Auto-Shutd	•	Enable bit			
		nterrupt enabled nterrupt disabled					
bit 4		-Cross Detectio		able bit			
	1 = ZCD inte	errupt enabled					
	0 = ZCD inte	errupt disabled					
bit 3		C4 Interrupt Ena	able bit				
		terrupt enabled					
bit 2		iterrupt disabled C3 Interrupt Ena					
		terrupt enabled					
		terrupt disabled					
bit 1	CLC2IE: CL	C2 Interrupt Ena	able bit				
		nterrupt enabled					
		terrupt disabled					
bit 0		C1 Interrupt Ena	able bit				
		terrupt enabled					
	v = CLC1 ln	terrupt disabled					
Nata			market has				
	Bit PEIE of the IN set to enable any						

REGISTER 7-4: PIE3: PERIPHERAL INTERRUPT ENABLE REGISTER 3

REGISTER 16-4: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 0

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			ADRE	S<9:2>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkn	nown	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-0 **ADRES<9:2>**: ADC Result Register bits Upper eight bits of 10-bit conversion result

REGISTER 16-5: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 0

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| ADRES | S<1:0> | — | — | — | — | — | — |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 ADRES<1:0>: ADC Result Register bits Lower two bits of 10-bit conversion result

bit 5-0 **Reserved**: Do not use.

23.6.7 EDGE-TRIGGERED HARDWARE LIMIT ONE-SHOT MODE

In Edge-Triggered Hardware Limit One-Shot modes the timer starts on the first external signal edge after the ON bit is set and resets on all subsequent edges. Only the first edge after the ON bit is set is needed to start the timer. The counter will resume counting automatically two clocks after all subsequent external Reset edges. Edge triggers are as follows:

- Rising edge start and Reset (MODE<4:0> = 01100)
- Falling edge start and Reset (MODE<4:0> = 01101)

The timer resets and clears the ON bit when the timer value matches the PRx period value. External signal edges will have no effect until after software sets the ON bit. Figure 23-10 illustrates the rising edge hardware limit one-shot operation.

When this mode is used in conjunction with the CCP then the first starting edge trigger, and all subsequent Reset edges, will activate the PWM drive. The PWM drive will deactivate when the timer matches the CCPRx pulse-width value and stay deactivated until the timer halts at the PRx period match unless an external signal edge resets the timer before the match occurs.

REGISTER 26-7:	PWMxPHH: PWMx PHASE COUNT HIGH REGISTER	
----------------	---	--

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			PH<	:15:8>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkn	iown	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-0 **PH<15:8>**: PWM Phase High bits Upper eight bits of PWM phase count

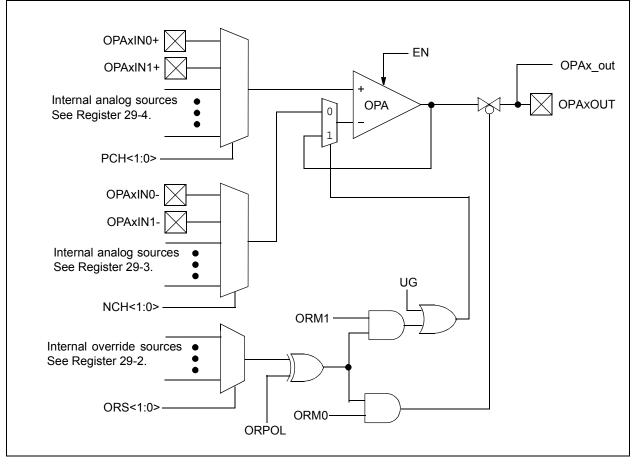
REGISTER 26-8: PWMxPHL: PWMx PHASE COUNT LOW REGISTER

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | PH< | 7:0> | | | |
| bit 7 | | | | | | | bit 0 |
| - | | | | | | | |
| Legend: | | | | | | | |

_ogona.		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **PH<7:0>**: PWM Phase Low bits Lower eight bits of PWM phase count

29.0 OPERATIONAL AMPLIFIER (OPA) MODULES


The Operational Amplifier (OPA) is a standard threeterminal device requiring external feedback to operate. The OPA module has the following features:

- External connections to I/O ports
- · Low leakage inputs
- Factory Calibrated Input Offset Voltage
- Unity gain control
- Programmable positive and negative source selections
- Override controls
 - Forced tri-state output
 - Forced unity gain

FIGURE 29-1: OPAx MODULE BLOCK DIAGRAM

TABLE 29-1: AVAILABLE OP AMP MODULES

Device	OPA1	OP2	OPA3	OPA4
PIC16(L)F1778	•	•	•	
PIC16(L)F1777/9	•	•	•	•

REGISTER 30-2: PRGxCON1: PROGRAMMABLE RAMP GENERATOR CONTROL 1 REGISTER

U-0	U-0	U-0	U-0	U-0	R-0	R/W-0/0	R/W-0/0	
_	—	—	_	—	RDY	FPOL	RPOL	
bit 7							bit (
Legend:								
R = Readable	bit	W = Writable b	it	U = Unimplem	ented bit, read as	s 'O'		
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Rese				Resets				
'1' = Bit is set		'0' = Bit is clear	red	q = value depends on configuration bits				
bit 7-3	Unimplemente	ed: Read as '0'						
bit 2	it 2 RDY: Slope Generator Ready Status bit 1 = PRG is ready 0 = PRG is not ready							
bit 1 FPOL: Fall Event Polarity Select bit 1 = Set_falling timing input is active-low 0 = Set_falling timing input is active-high								
bit 0	RPOL: Rise Ev	ent Polarity Sele	ect bit					

REGISTER 30-3: PRGxINS: VOLTAGE INPUT SELECT REGISTER

1 = Set_rising timing input is active-low0 = Set_rising timing input is active-high

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	_	_	INS<3:0>			
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = value depends on configuration bits

bit 7-4 Unimplemented: Read as '0'

bit 3-0 **INS<3:0>:** Voltage Input Select bits Selects source of voltage level at which the ramp starts. See Table 30-3.

TABLE 30-3: VOLTAGE INPUT SOURCES

INS<2:0>	PRG1 Voltage Source	PRG2 Voltage Source	PRG3 Voltage Source	PRG4 Voltage Source ⁽²⁾
1010-1111	Reserved	Reserved	Reserved	Reserved
1001(1)	Switched PRG1IN1/OPA2OUT	Switched PRG1IN1/OPA2OUT	Switched PRG3IN1/OPA4OUT ⁽²⁾	Switched PRG4IN1/OPA3OUT
1000 (1)	Switched PRG1IN0/OPA1OUT	Switched PRG1IN0/OPA1OUT	Switched PRG3IN0/OPA3OUT	Switched PRG4IN0/OPA4OUT
0111	Reserved	Reserved	Reserved	Reserved
0110	DAC4_output	DAC4_output	DAC8_output ⁽²⁾	DAC8_output
0101	DAC3_output	DAC3_output	DAC7_output	DAC7_output
0100	DAC2_output	DAC2_output	DAC6_output ⁽²⁾	DAC6_output
0011	DAC1_output	DAC1_output	DAC5_output	DAC5_output
0010	FVR_buffer1	FVR_buffer1	FVR_buffer2	FVR_buffer2
0001	PRG1IN1/OPA2OUT	PRG2IN1/OPA1OUT	PRG3IN1/OPA4OUT ⁽²⁾	PRG4IN1/OPA3OUT
0000	PRG1IN0/OPA1OUT	PRG2IN0/OPA2OUT	PRG3IN0/OPA3OUT PRG4IN0/OPA40	
Nata di	l Innut course is suitched off when			ļ

Note 1: Input source is switched off when op amp override is forcing tri-state. See Section 29.3 "Override

Control". 2: PIC16(L)F1777/9 only.

32.5.2 SLAVE RECEPTION

When the R/\overline{W} bit of a matching received address byte is clear, the R/\overline{W} bit of the SSPxSTAT register is cleared. The received address is loaded into the SSPxBUF register and acknowledged.

When the overflow condition exists for a received address, then not Acknowledge is given. An overflow condition is defined as either bit BF of the SSPxSTAT register is set, or bit SSPOV of the SSPxCON1 register is set. The BOEN bit of the SSPxCON3 register modifies this operation. For more information see Register 32-4.

An MSSP interrupt is generated for each transferred data byte. Flag bit, SSPxIF, must be cleared by software.

When the SEN bit of the SSPxCON2 register is set, SCL will be held low (clock stretch) following each received byte. The clock must be released by setting the CKP bit of the SSPxCON1 register, except sometimes in 10-bit mode. See **Section 32.5.6.2 "10-bit Addressing Mode"** for more detail.

32.5.2.1 7-bit Addressing Reception

This section describes a standard sequence of events for the MSSP module configured as an I^2C slave in 7-bit Addressing mode. Figure 32-14 and Figure 32-15 is used as a visual reference for this description.

This is a step by step process of what typically must be done to accomplish I^2C communication.

- 1. Start bit detected.
- 2. S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- 3. Matching address with R/\overline{W} bit clear is received.
- 4. The slave pulls SDA low sending an ACK to the master, and sets SSPxIF bit.
- 5. Software clears the SSPxIF bit.
- 6. Software reads received address from SSPxBUF clearing the BF flag.
- 7. If SEN = 1; Slave software sets CKP bit to release the SCL line.
- 8. The master clocks out a data byte.
- Slave drives SDA low sending an ACK to the master, and sets SSPxIF bit.
- 10. Software clears SSPxIF.
- 11. Software reads the received byte from SSPxBUF clearing BF.
- 12. Steps 8-12 are repeated for all received bytes from the master.
- 13. Master sends Stop condition, setting P bit of SSPxSTAT, and the bus goes idle.

32.5.2.2 7-bit Reception with AHEN and DHEN

Slave device reception with AHEN and DHEN set operate the same as without these options with extra interrupts and clock stretching added after the eighth falling edge of SCL. These additional interrupts allow the slave software to decide whether it wants to ACK the receive address or data byte, rather than the hardware. This functionality adds support for PMBus[™] that was not present on previous versions of this module.

This list describes the steps that need to be taken by slave software to use these options for I^2C communication. Figure 32-16 displays a module using both address and data holding. Figure 32-17 includes the operation with the SEN bit of the SSPxCON2 register set.

- 1. S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- Matching address with R/W bit clear is clocked in. SSPxIF is set and CKP cleared after the eighth falling edge of SCL.
- 3. Slave clears the SSPxIF.
- Slave can look at the ACKTIM bit of the SSPxCON3 register to <u>determine</u> if the SSPxIF was after or before the ACK.
- 5. Slave reads the address value from SSPxBUF, clearing the BF flag.
- 6. Slave sets ACK value clocked out to the master by setting ACKDT.
- 7. Slave releases the clock by setting CKP.
- 8. SSPxIF is set after an \overline{ACK} , not after a NACK.
- 9. If SEN = 1 the slave hardware will stretch the clock after the ACK.
- 10. Slave clears SSPxIF.

Note: SSPxIF is still set after the ninth falling edge of SCL even if there is no clock stretching and BF has been cleared. Only if NACK is sent to master is SSPxIF not set

- 11. SSPxIF set and CKP cleared after eighth falling edge of SCL for a received data byte.
- 12. Slave looks at ACKTIM bit of SSPxCON3 to determine the source of the interrupt.
- 13. Slave reads the received data from SSPxBUF clearing BF.
- 14. Steps 7-14 are the same for each received data byte.
- 15. Communication is ended by either the slave sending an ACK = 1, or the master sending a Stop condition. If a Stop is sent and interrupt on Stop detect is disabled, the slave will only know by polling the P bit of the SSTSTAT register.

32.5.3 SLAVE TRANSMISSION

When the R/W bit of the incoming address byte is set and an address match occurs, the R/W bit of the SSPxSTAT register is set. The received address is loaded into the SSPxBUF register, and an ACK pulse is sent by the slave on the ninth bit.

Following the ACK, slave hardware clears the CKP bit and the SCL pin is held low (see **Section 32.5.6** "**Clock Stretching**" for more detail). By stretching the clock, the master will be unable to assert another clock pulse until the slave is done preparing the transmit data.

The transmit data must be loaded into the SSPxBUF register which also loads the SSPSR register. Then the SCL pin should be released by setting the CKP bit of the SSPxCON1 register. The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time.

The ACK pulse from the master-receiver is latched on the rising edge of the ninth SCL input pulse. This ACK value is copied to the ACKSTAT bit of the SSPxCON2 register. If ACKSTAT is set (not ACK), then the data transfer is complete. In this case, when the not ACK is latched by the slave, the slave goes idle and waits for another occurrence of the Start bit. If the SDA line was low (ACK), the next transmit data must be loaded into the SSPxBUF register. Again, the SCL pin must be released by setting bit CKP.

An MSSP interrupt is generated for each data transfer byte. The SSPxIF bit must be cleared by software and the SSPxSTAT register is used to determine the status of the byte. The SSPxIF bit is set on the falling edge of the ninth clock pulse.

32.5.3.1 Slave Mode Bus Collision

A slave receives a Read request and begins shifting data out on the SDA line. If a bus collision is detected and the SBCDE bit of the SSPxCON3 register is set, the BCLIF bit of the PIR register is set. Once a bus collision is detected, the slave goes idle and waits to be addressed again. User software can use the BCLIF bit to handle a slave bus collision.

32.5.3.2 7-bit Transmission

A master device can transmit a read request to a slave, and then clock data out of the slave. The list below outlines what software for a slave will need to do to accomplish a standard transmission. Figure 32-18 can be used as a reference to this list.

- 1. Master sends a Start condition on SDA and SCL.
- 2. S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- Matching address with R/W bit set is received by the Slave setting SSPxIF bit.
- 4. Slave hardware generates an ACK and sets SSPxIF.
- 5. SSPxIF bit is cleared by user.
- 6. Software reads the received address from SSPxBUF, clearing BF.
- 7. R/\overline{W} is set so CKP was automatically cleared after the ACK.
- 8. The slave software loads the transmit data into SSPxBUF.
- 9. CKP bit is set releasing SCL, allowing the master to clock the data out of the slave.
- 10. SSPxIF is set after the ACK response from the master is loaded into the ACKSTAT register.
- 11. SSPxIF bit is cleared.
- 12. The slave software checks the ACKSTAT bit to see if the master wants to clock out more data.

Note 1: If the master ACKs the clock will be stretched.

2: ACKSTAT is the only bit updated on the rising edge of SCL (9th) rather than the falling.

- 13. Steps 9-13 are repeated for each transmitted byte.
- 14. If the master sends a not ACK; the clock is not held, but SSPxIF is still set.
- 15. The master sends a Restart condition or a Stop.
- 16. The slave is no longer addressed.

34.0 IN-CIRCUIT SERIAL PROGRAMMING[™] (ICSP[™])

ICSP[™] programming allows customers to manufacture circuit boards with unprogrammed devices. Programming can be done after the assembly process, allowing the device to be programmed with the most recent firmware or a custom firmware. Five pins are needed for ICSP[™] programming:

- ICSPCLK
- ICSPDAT
- MCLR/VPP
- VDD
- Vss

In Program/Verify mode the program memory, User IDs and the Configuration Words are programmed through serial communications. The ICSPDAT pin is a bidirectional I/O used for transferring the serial data and the ICSPCLK pin is the clock input. For more information on ICSP™ refer to the "*PIC16(L)F177X Memory Programming Specification*" (DS40001792).

34.1 High-Voltage Programming Entry Mode

The device is placed into High-Voltage Programming Entry mode by holding the ICSPCLK and ICSPDAT pins low then raising the voltage on MCLR/VPP to VIHH.

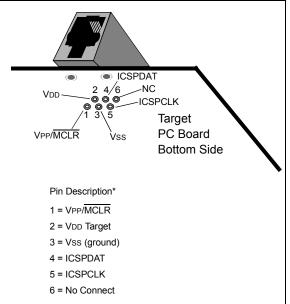
34.2 Low-Voltage Programming Entry Mode

The Low-Voltage Programming Entry mode allows the PIC[®] Flash MCUs to be programmed using VDD only, without high voltage. When the LVP bit of Configuration Words is set to '1', the low-voltage ICSP programming entry is enabled. To disable the Low-Voltage ICSP mode, the LVP bit must be programmed to '0'.

Entry into the Low-Voltage Programming Entry mode requires the following steps:

- 1. MCLR is brought to VIL.
- 2. A 32-bit key sequence is presented on ICSPDAT, while clocking ICSPCLK.

Once the key sequence is complete, $\overline{\text{MCLR}}$ must be held at VIL for as long as Program/Verify mode is to be maintained.


If low-voltage programming is enabled (LVP = 1), the $\overline{\text{MCLR}}$ Reset function is automatically enabled and cannot be disabled. See **Section 6.5 "MCLR"** for more information.

The LVP bit can only be reprogrammed to '0' by using the High-Voltage Programming mode.

34.3 Common Programming Interfaces

Connection to a target device is typically done through an ICSP[™] header. A commonly found connector on development tools is the RJ-11 in the 6P6C (6-pin, 6-connector) configuration. See Figure 34-1.

Another connector often found in use with the PICkit[™] programmers is a standard 6-pin header with 0.1 inch spacing. Refer to Figure 34-2.

For additional interface recommendations, refer to your specific device programmer manual prior to PCB design.

It is recommended that isolation devices be used to separate the programming pins from other circuitry. The type of isolation is highly dependent on the specific application and may include devices such as resistors, diodes, or even jumpers. See Figure 34-3 for more information.

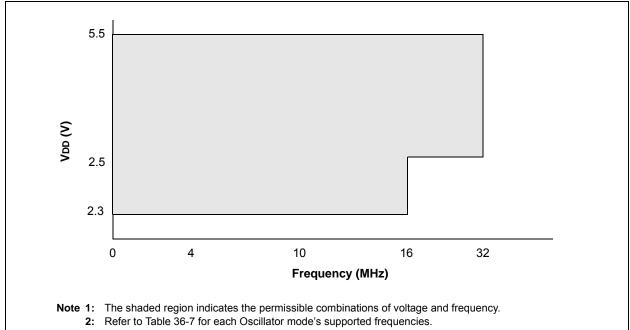
MOVIW	Move INDFn to W
Syntax:	[<i>label</i>] MOVIW ++FSRn [<i>label</i>] MOVIWFSRn [<i>label</i>] MOVIW FSRn++ [<i>label</i>] MOVIW FSRn [<i>label</i>] MOVIW k[FSRn]
Operands:	n ∈ [0,1] mm ∈ [00,01, 10, 11] -32 ≤ k ≤ 31
Operation:	$\begin{split} &\text{INDFn} \rightarrow W \\ &\text{Effective address is determined by} \\ &\text{•} \ &\text{FSR + 1 (preincrement)} \\ &\text{•} \ &\text{FSR - 1 (predecrement)} \\ &\text{•} \ &\text{FSR + k (relative offset)} \\ &\text{After the Move, the FSR value will be} \\ &\text{either:} \\ &\text{•} \ &\text{FSR + 1 (all increments)} \\ &\text{•} \ &\text{FSR - 1 (all decrements)} \\ &\text{•} \ &\text{Unchanged} \end{split}$
Status Affected:	Z

Mode	Syntax	mm
Preincrement	++FSRn	00
Predecrement	FSRn	01
Postincrement	FSRn++	10
Postdecrement	FSRn	11

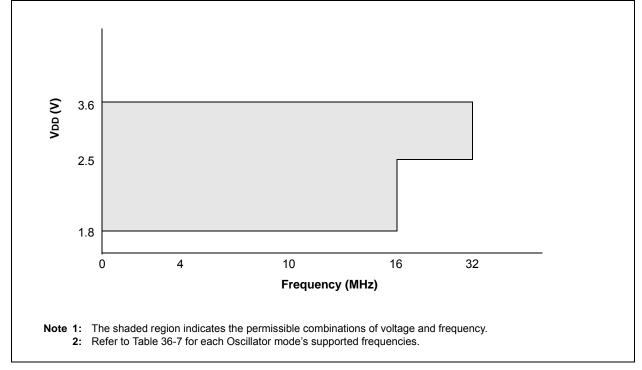
Description:

This instruction is used to move data between W and one of the indirect registers (INDFn). Before/after this move, the pointer (FSRn) is updated by pre/post incrementing/decrementing it.

Note: The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the FSRn.


FSRn is limited to the range 0000h -FFFFh. Incrementing/decrementing it beyond these bounds will cause it to wrap-around.

Syntax:	[<i>label</i>] MOVLB k
Operands:	$0 \leq k \leq 31$
Operation:	$k \rightarrow BSR$
Status Affected:	None
Description:	The 5-bit literal 'k' is loaded into the Bank Select Register (BSR).


MOVLP	Move literal to PCLATH				
Syntax:	[<i>label</i>] MOVLP k				
Operands:	$0 \le k \le 127$				
Operation:	$k \rightarrow PCLATH$				
Status Affected:	None				
Description:	The 7-bit literal 'k' is loaded into the PCLATH register.				
MOVLW	Move literal to W				
Syntax:	[<i>label</i>] MOVLW k				
Operands:	$0 \le k \le 255$				
Operation:	$k \rightarrow (W)$				
Status Affected:	None				
Description:	The 8-bit literal 'k' is loaded into W reg- ister. The "don't cares" will assemble as '0's.				
Words:	1				
Cycles:	1				
Example:	MOVLW 0x5A				
	After Instruction W = 0x5A				
MOVWF	Move W to f				
Syntax:	[<i>label</i>] MOVWF f				
Operands:	$0 \leq f \leq 127$				
Operation:	$(W) \rightarrow (f)$				
Status Affected:	None				
Description:	Move data from W register to register 'f'.				
Words:	1				
Cycles:	1				
Example:	MOVWF OPTION_REG				
	Before Instruction OPTION_REG = 0xFF W = 0x4F				
	After Instruction				

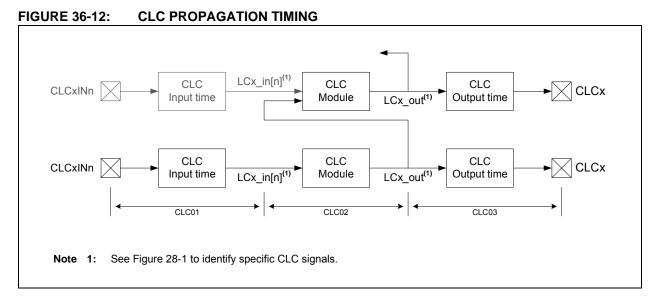
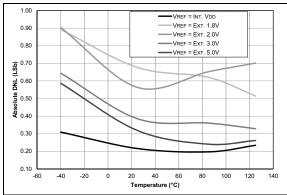

After Instruction OPTION_REG = 0x4F W = 0x4F

TABLE 36-14: CONFIGURATION LOGIC CELL (CLC) CHARACTERISTICS


Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$							
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
CLC01*	TCLCIN	CLC input time		7	OS17	ns	(Note 1)
CLC02*	TCLC	CLC module input to output progagation time		24 12	_	ns ns	VDD = 1.8V VDD > 3.6V
CLC03*	TCLCOUT	CLC output time Rise Time		OS18		ns	(Note 1)
		Fall Time	_	OS19	_	ns	(Note 1)
CLC04*	FCLCMAX	CLC maximum switching frequency	_	45	_	MHz	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: See Table 36-10 for OS17, OS18 and OS19 rise and fall times.

Note: Unless otherwise noted, VIN = 5V, Fosc = 300 kHz, CIN = 0.1 µF, TA = 25°C.

FIGURE 37-127: Absolute Value of DAC DNL Error, VDD = 5.0V, VREF = VDD, PIC16F1777/8/9 Only.

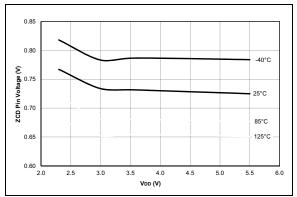


FIGURE 37-129: ZCD Pin Voltage, Typical Measured Values.

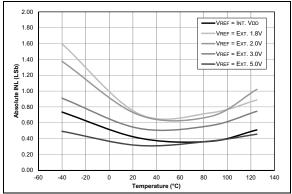


FIGURE 37-128: Absolute Value of DAC INL Error, VDD = 5.0V, VREF = VDD, PIC16F1777/8/9 Only.

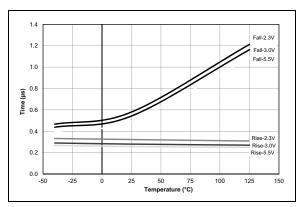
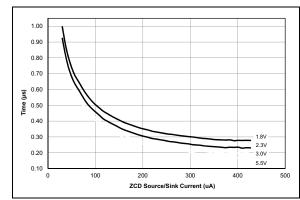
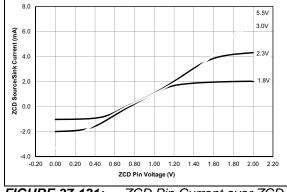




FIGURE 37-130: ZCD Response Time over Voltage, Typical Measured Values.

FIGURE 37-132: ZCD Pin Response Time over Current, Typical Measured Values from -40°C to 125°C.

FIGURE 37-131: ZCD Pin Current over ZCD Pin Voltage, Typical Measured Values from -40°C to 125°C.

38.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16, and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- · Support for the entire device instruction set
- Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

38.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB X IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

38.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

38.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility