

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	36
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 28x10b; D/A 4x5b, 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1779-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16(L)F1777/8/9

28-PIN SPDIP, SOIC, SSOP

PIN DIAGRAMS

FIGURE 1:

	F		
VPP/MC	LR/RE3 1	\bigcirc	28 RB7/ICSPDAT
	RA0 🗌 2		27 RB6/ICSPCLK
	RA1 🗌 3		26 RB5
	RA2 🗌 4		25 RB4
	RA3 🗌 5		24 RB3
	RA4 🗌 6	82	²³ RB2
	RA5 🗌 7	12	²² RB1
	Vss 🗌 8	Ľ	21 RB0
	RA7 🗌 9	16(
	RA6 🗌 10	<u>C</u>	19 Vss
	RC0 🗌 11		18 RC7
	RC1 🗌 12		17 RC6
	RC2 🗌 13		16 RC5
	RC3 🗌 14		15 RC4
Notes - One Table O fee loop fing of a			
Note: See Table 3 for location of a	all peripheral fund	ctions.	

FIGURE 2: 28-PIN UQFN (6x6x0.5 mm)

PIC16(L)F1777/8/9

3.2.1 READING PROGRAM MEMORY AS DATA

There are two methods of accessing constants in program memory. The first method is to use tables of RETLW instructions. The second method is to set an FSR to point to the program memory.

3.2.1.1 RETLW Instruction

The RETLW instruction can be used to provide access to tables of constants. The recommended way to create such a table is shown in Example 3-1.

EXAMPLE 3-1: RETLW INSTRUCTION

constants	
BRW	;Add Index in W to
	;program counter to
	;select data
RETLW DATA0	;Index0 data
RETLW DATA1	;Index1 data
RETLW DATA2	
RETLW DATA3	
my_function	
; LOTS OF CODE	
MOVLW DATA_IN	DEX
call constants	
; THE CONSTANT IS	IN W

The BRW instruction makes this type of table very simple to implement. If your code must remain portable with previous generations of microcontrollers, then the BRW instruction is not available so the older table read method must be used.

3.2.1.2 Indirect Read with FSR

The program memory can be accessed as data by setting bit 7 of the FSRxH register and reading the matching INDFx register. The MOVIW instruction will place the lower eight bits of the addressed word in the W register. Writes to the program memory cannot be performed via the INDF registers. Instructions that access the program memory via the FSR require one extra instruction cycle to complete. Example 3-2 demonstrates accessing the program memory via an FSR.

The high directive will set bit<7> if a label points to a location in program memory.

EXAMPLE 3-2: ACCESSING PROGRAM MEMORY VIA FSR

constants		
DW DATA	0	;First constant
DW DATA	1	;Second constant
DW DATA	2	
DW DATA	3	
my_function	on	
;… LOTS	OF CODE	
MOVLW	DATA_INDEX	
ADDLW	LOW constants	
MOVWF	FSR1L	
MOVLW	HIGH constants	;MSb sets
		automatically
MOVWF	FSR1H	
BTFSC	STATUS, C	<pre>;carry from ADDLW?</pre>
INCF	FSR1H, f	;yes
MOVIW	0[FSR1]	
; THE PROG	RAM MEMORY IS	IN W

TABLE 3-14: PIC16(L)F1778 MEMORY MAP, BANK 27-30

D8Ch D8Dh D8Eh D8Fh		E0Ch E0Dh	PPSLOCK	E8Ch	_	F0Ch	_
D8Dh D8Eh D8Fh		E0Dh					
D8Eh D8Fh			INTPP5	E8Dh	—	F0Dh	—
D8Fh	PWWEN	E0Eh	T0CKIPPS	E8Eh	_	F0Eh	—
	PWMLD	E0Fh	T1CKIPPS	E8Fh	_	F0Fh	CLCDATA
	PWMOUT	E10h	T1GPPS	E90h	RA0PPS	F10h	CLC1CON
D91h	PWM5PHL	E11h	T3CKIPPS	E91h	RA1PPS	F11h	CLC1POL
D92h	PWM5PHH	E12h	T3GPPS	E92h	RA2PPS	F12h	CLC1SEL0
D93h	PWM5DCL	E13h	T5CKIPPS	E93h	RA3PPS	F13h	CLC1SEL1
D94h	PWM5DCH	E14h	T5GPPS	E94h	RA4PPS	F14h	CLC1SEL2
D95h	PWM5PRL	E15h	T2INPPS	E95h	RA5PPS	F15h	CLC1SEL3
D96h	PWM5PRH	E16h	T4INPPS	E96h	RA6PPS	F16h	CLC1GLS0
D97h	PWM5OFL	E17h	T6INPPS	E97h	RA7PPS	F17h	CLC1GLS1
D98h	PWM50FH	E18h	T8INPPS	E98h	RB0PPS	F18h	CLC1GLS2
D99h	PWM5TMRL	E19h	CCP1PPS	E99h	RB1PPS	F19h	CLC1GLS3
D9Ah	PWM5TMRH	E1Ah	CCP2PPS	E9Ah	RB2PPS	F1Ah	CLC2CON
D9Bh	PWM5CON	E1Bh	CCP7PPS	E9Bh	RB3PPS	F1Bh	CLC2POL
D9Ch	PWM5INTE	E1Ch	_	E9Ch	RB4PPS	F1Ch	CLC2SEL0
D9Dh	PWM5INTF	E1Dh	COG1INPPS	E9Dh	RB5PPS	F1Dh	CLC2SEL1
D9Eh	PWM5CLKCON	E1Eh	COG2INPPS	E9Eh	RB6PPS	F1Eh	CLC2SEL2
D9Fh	PWM5LDCON	E1Fh	COG3INPPS	E9Fh	RB7PPS	F1Fh	CLC2SEL3
DA0h	PWM50FCON	E20h	—	EA0h	RC0PPS	F20h	CLC2GLS0
DA1h	PWM6PHL	E21h	MD1CLPPS	EA1h	RC1PPS	F21h	CLC2GLS1
DA2h	PWM6PHH	E22h	MD1CHPPS	EA2h	RC2PPS	F22h	CLC2GLS2
DA3h	PWM6DCL	E23h	MD1MODPPS	EA3h	RC3PPS	F23h	CLC2GLS3
DA4h	PWM6DCH	E24h	MD2CLPPS	EA4h	RC4PPS	F24h	CLC3CON
DA5h	PWM6PRL	E25h	MD2CHPPS	EA5h	RC5PPS	F25h	CLC3POL
DA6h	PWM6PRH	E26h	MD2MODPPS	EA6h	RC6PPS	F26h	CLC3SEL0
DA7h	PWM6OFL	E27h	MD3CLPPS	EA7h	RC7PPS	F27h	CLC3SEL1
DA8h	PWM60FH	E28h	MD3CHPPS	EA8h	—	F28h	CLC3SEL2
DA9h	PWM6TMRL	E29h	MD3MODPPS	EA9h	—	F29h	CLC3SEL3
JAAh L	PWM6TMRH	E2Ah	—	EAAh	—	F2Ah	CLC3GLS0
JABh	PWM6CON	E2Bh	_	EABh	—	F2Bh	CLC3GLS1
JACh	PWM6INTE	E2Ch	—	EACh	—	F2Ch	CLC3GLS2
DADh	PWM6INTF	E2Dh	PRG1RPPS	EADh	—	F2Dh	CLC3GLS3
JAEh	PWM6CLKCON	E2Eh	PRG1FPPS	EAEh	—	F2Eh	CLC4CON
DAFh	PWM6LDCON	E2Fh	PRG2RPPS	EAFh	—	F2Fh	CLC4POL
DB0h	PWM60FC0N	E30h	PRG2FPPS	EB0h	—	F30h	CLC4SEL0
DB1h	PWM11PHL	E31h	PRG3FPPS	EB1h	—	F31h	CLC4SEL1
JB2n	PWM11PHH	E32h	PRG3RPPS	EB2n	—	F32h	CLC4SEL2
DB3h	PWM11DCL	E33h		EB3h	—	F33h	CLC4SEL3
DB4h	PWM11DCH	E34h	01.011/17777	EB4h	_	F34h	CLC4GLS0
JB5h	PWM11PRL	E35h	CLCINOPPS	EB5h	_	F35h	CLC4GLS1
JB6h	PWM11PRH	E360	CLCIN1PPS	EB6h		F36h	CLC4GLS2
JB/h	PWM110FL	E37h	CLCIN2PPS	EB7h	—	F37h	CLC4GLS3
JB8h	PWM110FH	E38h	CLCIN3PPS	EB8h	_	F38h	—
	PWM11TMRL	E39h	ADCACTPPS	EB9h	—	F39h	—
	PWM11TMRH	E3Ah	SSPCLKPPS	EBAN	—	F3Ah	—
	PWM11CON	E3Bh	SSPDATPPS	EBBh	—	F3Bh	—
DRCH	PWM11INTE	ESCH	SSPSSPPS	EBCh	—	F3Ch	—
	PWM11IN IF	E3Dh	RXPPS	EBDh	—	F3Dh	_
	PWM11CLKCON	EJEN	CKPPS	EBEh		F3Eh	—
	PWM11LDCON	E3Fh	—	EBFh	_	F3Fh	—
	PWM110FCON	⊑40n		ECON		F40N	
C1h	_		-		—		_
DEFh		E6Fh		EEFh		F6Fh	
	11.2	l otob bote	memoryleastions	rood oo '	o'		

TABLE 3-18: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Ban	k 30										
F0Ch — F0Eh	_	Unimplemented								_	—
F0Fh	CLCDATA	—	_	_	_	MLC4OUT	MLC3OUT	MLC2OUT	MLC1OUT	x000	u000
F10h	CLC1CON	EN	—	OUT	INTP	INTN		MODE<2:0>		0-00 0000	0-00 0000
F11h	CLC1POL	POL	—		_	G4POL	G3POL	G2POL	G1POL	0 xxxx	0 uuuu
F12h	CLC1SEL0	—	_			D1S•	<5:0>			xx xxxx	uu uuuu
F13h	CLC1SEL1	—	—			D2S4	<5:0>			xx xxxx	uu uuuu
F14h	CLC1SEL2	—	—			D3S•	<5:0>			xx xxxx	uu uuuu
F15h	CLC1SEL3	—	—			D4S•	<5:0>			xx xxxx	uu uuuu
F16h	CLC1GLS0	G1D4T	G1D4N	G1D3T	G1D3N	G1D2T	G1D2N	G1D1T	G1D1N	xxxx xxxx	uuuu uuuu
F17h	CLC1GLS1	G2D4T	G2D4N	G2D3T	G2D3N	G2D2T	G2D2N	G2D1T	G2D1N	xxxx xxxx	uuuu uuuu
F18h	CLC1GLS2	G3D4T	G3D4N	G3D3T	G3D3N	G3D2T	G3D2N	G3D1T	G3D1N	xxxx xxxx	uuuu uuuu
F19h	CLC1GLS3	G4D4T	G4D4N	G4D3T	G4D3N	G4D2T	G4D2N	G4D1T	G4D1N	xxxx xxxx	uuuu uuuu
F1Ah	CLC2CON	EN	—	OUT	INTP	INTN		MODE<2:0>		0-00 0000	0-00 0000
F1Bh	CLC2POL	POL	—	_	—	G4POL	G3POL	G2POL	G1POL	0 xxxx	0 uuuu
F1Ch	CLC2SEL0	—	—			D1S•	<5:0>			xx xxxx	uu uuuu
F1Dh	CLC2SEL1	—	—			D2S•	<5:0>			xx xxxx	uu uuuu
F1Eh	CLC2SEL2	—	—			D3S•	<5:0>			xx xxxx	uu uuuu
F1Fh	CLC2SEL3	—	—			D4S•	<5:0>			xx xxxx	uu uuuu
F20h	CLC2GLS0	G1D4T	G1D4N	G1D3T	G1D3N	G1D2T	G1D2N	G1D1T	G1D1N	xxxx xxxx	uuuu uuuu
F21h	CLC2GLS1	G2D4T	G2D4N	G2D3T	G2D3N	G2D2T	G2D2N	G2D1T	G2D1N	xxxx xxxx	uuuu uuuu
F22h	CLC2GLS2	G3D4T	G3D4N	G3D3T	G3D3N	G3D2T	G3D2N	G3D1T	G3D1N	xxxx xxxx	uuuu uuuu
F23h	CLC2GLS3	G4D4T	G4D4N	G4D3T	G4D3N	G4D2T	G4D2N	G4D1T	G4D1N	xxxx xxxx	uuuu uuuu
F24h	CLC3CON	EN	—	OUT	INTP	INTN		MODE<2:0>		0-00 0000	0-00 0000
F25h	CLC3POL	POL	—	_	—	G4POL	G3POL	G2POL	G1POL	0 xxxx	0 uuuu
F26h	CLC3SEL0	—	—		D1S<5:0>						uu uuuu
F27h	CLC3SEL1	—	—			D2S	<5:0>			xx xxxx	uu uuuu
F28h	CLC3SEL2	—	—			D3S-	<5:0>			xx xxxx	uu uuuu
F29h	CLC3SEL3	—	_			D4S•	<5:0>		-	xx xxxx	uu uuuu
F2Ah	CLC3GLS0	G1D4T	G1D4N	G1D3T	G1D3N	G1D2T	G1D2N	G1D1T	G1D1N	xxxx xxxx	uuuu uuuu

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: Unimplemented, read as '1'.

2: Unimplemented on PIC16LF1777/8/9.

3: Unimplemented on PIC16(L)F1778.

7.0 INTERRUPTS

The interrupt feature allows certain events to preempt normal program flow. Firmware is used to determine the source of the interrupt and act accordingly. Some interrupts can be configured to wake the MCU from Sleep mode.

This chapter contains the following information for Interrupts:

- Operation
- Interrupt Latency
- Interrupts During Sleep
- INT Pin
- · Automatic Context Saving

Many peripherals produce interrupts. Refer to the corresponding chapters for details.

A block diagram of the interrupt logic is shown in Figure 7-1.

FIGURE 10-6: FLASH PROGRAM MEMORY WRITE FLOWCHART

10.3 Modifying Flash Program Memory

When modifying existing data in a program memory row, and data within that row must be preserved, it must first be read and saved in a RAM image. Program memory is modified using the following steps:

- 1. Load the starting address of the row to be modified.
- 2. Read the existing data from the row into a RAM image.
- 3. Modify the RAM image to contain the new data to be written into program memory.
- 4. Load the starting address of the row to be rewritten.
- 5. Erase the program memory row.
- 6. Load the write latches with data from the RAM image.
- 7. Initiate a programming operation.

FIGURE 10-7:

FLASH PROGRAM MEMORY MODIFY FLOWCHART

	U-1	R/W-0/0	R/W-0/0	R/W/HC-0/0	R/W/HC-x/q ⁽²⁾	R/W-0/0	R/S/HC-0/0	R/S/HC-0/0
	(1)	CFGS	LWLO ⁽³⁾	FREE	WRERR	WREN	WR	RD
bit 7								bit 0
Lege	nd:							
R = F	Reada	able bit	W = Writable I	bit	U = Unimpleme	nted bit, read as	s 'O'	
S = B	lit car	n only be set	x = Bit is unkn	lown	-n/n = Value at	POR and BOR/	Value at all othe	er Resets
'1' = E	Bit is :	set	'0' = Bit is clea	ared	HC = Bit is clea	red by hardware	e	
bit 7		Unimplemen	ted: Read as '1	,				
bit 6		CFGS: Config	guration Select b	pit				
		1 = Access C 0 = Access F	Jonfiguration, Us	ser ID and Devi	ce ID Registers			
bit 5		LWLO: Load	Write Latches O	nly bit ⁽³⁾				
2.00		1 = Only the	addressed prog	ram memory w	rite latch is loade	d/updated on th	e next WR cor	nmand
		0 = The addr	essed program	memory write la	atch is loaded/up	dated and a writ	e of all program	n memory write
L 11 A		latches w	vill be initiated of	n the next WR	command			
DIT 4		1 = Performs	am Flash Erase s an erase opera	Enable bit	t WR command	(hardware clear	ed upon compl	etion)
		0 = Performs	a write operation	on on the next \	VR command			
bit 3		WRERR: Prog	gram/Erase Erro	or Flag bit				
		1 = Condition	n indicates an im	proper program	n or erase seque	nce attempt or t	ermination (bit	is set automat-
		0 = The prod	any set attempt iram or erase or	eration comple	ted normally			
bit 2		WREN: Progr	am/Erase Enab	le bit	,			
		1 = Allows p	rogram/erase cy	cles				
		0 = Inhibits p	orogramming/era	ising of program	n Flash			
bit 1		WR: Write Co	ontrol bit					
		⊥ = Initiates a The oper	a program Flash	ed and the bit is	s cleared by hard	ware once oper	ation is comple	te
		The WR	bit can only be	set (not cleared) in software.	nale ence oper		
		0 = Program	/erase operatior	to the Flash is	complete and in	active		
bit 0		RD: Read Con	trol bit					
		1 = Initiates a	ı program Flash r red) in software	ead. Read takes	s one cycle. RD is	cleared in hardw	are. The RD bit	can only be set
		0 = Does not	initiate a program	n Flash read				
Note	1:	Unimplemented bit,	read as '1'.					
	2:	The WRERR bit is a	utomatically set t	by hardware whe	en a program men	nory write or eras	e operation is st	arted (WR = 1).
	3:	I ne LWLO bit is iand	ored during a pro	gram memory e	rase operation (FI	(++) = 1		

REGISTER 10-5: PMCON1: PROGRAM MEMORY CONTROL 1 REGISTER

PIC16(L)F1777/8/9

REGISTER '	16-2: ADC	ON1: ADC CO	NTROL REC	GISTER 1				
R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	
ADFM		ADCS<2:0>			ADNREF	ADPRE	EF<1:0>	
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable b	bit	U = Unimpler	mented bit, read	l as '0'		
u = Bit is unc	hanged	x = Bit is unkn	own	-n/n = Value a	at POR and BO	R/Value at all	other Resets	
'1' = Bit is set		'0' = Bit is clea	ired					
bit 7	ADFM: ADC 1 = Right ju loaded. 0 = Left jus loaded.	C Result Format S Istified. Six Most tified. Six Least	Select bit Significant bi Significant bit	ts of ADRESH s of ADRESL a	are set to '0' w	then the conve	ersion result is ersion result is	
Dit 6-4	bit 6-4 ADCS<2:0>: ADC Conversion Clock Select bits 111 = FRC (clock supplied from an internal RC oscillator) 110 = Fosc/64 101 = Fosc/16 100 = Fosc/4 011 = FRC (clock supplied from an internal RC oscillator) 010 = Fosc/32 001 = Fosc/8							
bit 3	Unimpleme	nted: Read as '0)'					
bit 2	ADNREF: A 1 = VREF- 0 = VREF-	DC Negative Vol is connected to e is connected to V	tage Referen external VREF- /ss	ce Configuratic - pin	on bit			
bit 1-0	ADPREF<1 11 = VREF+ 10 = VREF+ 01 = Resen 00 = VREF+	:0>: ADC Positiv is connected to is connected to ved is connected to	e Voltage Ref internal Fixed external VREF VDD	erence Configu Voltage Refere + pin ⁽¹⁾	uration bits ence (FVR) mod	dule ⁽¹⁾		
Note 1: W	hen selectina t	he VRFF+ pin as	the source of	the positive ret	ference, be awa	are that a minir	num voltage	

Note 1: When selecting the VREF+ pin as the source of the positive reference, be aware that a minimum voltag specification exists. See Table 36-16: ADC Conversion Requirements for details.

U-0 U-0 U-0 U-0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 _ CTS<3:0> ____ ____ ____ bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' u = Bit is unchanged -n/n = Value at POR and BOR/Value at all other Reset x = Bit is unknown '1' = Bit is set '0' = Bit is cleared bit 7-4 Unimplemented: Read as '0' bit 3-0 CTS<3:0>: Capture Trigger Input Selection bits 1101 = IOC event 1100 = LC4 output 1011 = LC3_output 1010 = LC2_output 1001 = LC1_output 1000 = C8_sync_out⁽¹⁾ 0111 = C7_sync_out⁽¹⁾ 0110 = C6_sync_out 0101 = C5_sync_out 0100 = C4_sync_out 0011 = C3_sync_out

REGISTER 24-4: CCPxCAP: CCPx CAPTURE INPUT SELECTION REGISTER

Note 1: PIC16LF1777/9 only.

0010 = C2_sync_out 0001 = C1 sync out

0000 = Pin selected with the CCPxPPS register

REGISTER 25-2: PWMxDCH: PWM DUTY CYCLE HIGH BITS

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			DC	<9:2>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimplen	nented bit, read	l as '0'	
u = Bit is unch	nanged	x = Bit is unkn	own	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-0 DC<9:2>: PWM Duty Cycle Most Significant bits These bits are the MSbs of the PWM duty cycle. The two LSbs are found in the PWMxDCL Register.

REGISTER 25-3: PWMxDCL: PWM DUTY CYCLE LOW BITS

R/W-x/u	R/W-x/u	U-0	U-0	U-0	U-0	U-0	U-0
DC<1:0>		—	—	—	—	—	—
bit 7							bit 0
Logondi							

Legenu.		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 DC<1:0>: PWM Duty Cycle Least Significant bits

These bits are the LSbs of the PWM duty cycle. The MSbs are found in the PWMxDCH Register.

bit 5-0 Unimplemented: Read as '0'

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	—	—	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	177
ANSELB	—	_	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	182
ANSELC	ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2	_	_	187
COGxASD0	ASE	ARSEN	ASDB	D<1:0>	ASDA	C<1:0>	—	—	384
COGxASD1	AS7E	AS6E	AS5E	AS4E	AS3E	AS2E	AS1E	AS0E	385
COGxBLKR	—	_			BLKR	<5:0>			388
COGxBLKF	—	_			BLKF	<5:0>			388
COGxCON0	EN	LD	—	CS<	:1:0>		MD<2:0>		378
COGxCON1	RDBS	FDBS	—	—	POLD	POLC	POLB	POLA	379
COGxDBR	—	_			DBR	<5:0>			387
COGxDBF	—	_			DBF	<5:0>			387
COGxFIS0	FIS7	FIS6	FIS5	FIS4	FIS3	FIS2	FIS1	FIS0	382
COGxFIS1	FIS15	FIS14	FIS13	FIS12	FIS11	FIS10	FIS9	FIS8	382
COGxFSIM0	FSIM7	FSIM6	FSIM5	FSIM4	FSIM3	FSIM2	FSIM1	FSIM0	383
COGxFSIM1	FSIM15	FSIM14	FSIM13	FSIM12	FSIM11	FSIM10	FSIM9	FSIM8	383
COGxPHR	—				PHR	<5:0>			389
COGxPHF	—	_			PHF	<5:0>			389
COGxPPS	—	_			COG1P	PS<5:0>			205, 207
COGxRIS0	RIS7	RIS6	RIS5	RIS4	RIS3	RIS2	RIS1	RIS0	380
COGxRIS1	RIS15	RIS14	RIS13	RIS12	RIS11	RIS10	RIS9	RIS8	380
COGxRSIM0	RSIM7	RSIM6	RSIM5	RSIM4	RSIM3	RSIM2	RSIM1	RSIM0	381
COGxRSIM1	RSIM15	RSIM14	RSIM13	RSIM12	RSIM11	RSIM10	RSIM9	RSIM8	381
COGxSTR	SDATD	SDATC	SDATB	SDATA	STRD	STRC	STRB	STRA	386
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	132
RxyPPS	—	—			RxyPP	S<5:0>			205

TABLE 27-7: SUMMARY OF REGISTERS ASSOCIATED WITH COGx⁽¹⁾

Legend: x = unknown, u = unchanged, – = unimplemented locations read as '0'. Shaded cells are not used by COG. **Note 1:** COG4 is available on PIC16(L)F1777/9 only.

28.6 Register Definitions: CLC Control

Long bit name prefixes for the CLC peripherals are shown in Table 28-3. Refer to **Section 1.1** "**Register and Bit naming conventions**" for more information **TABLE 28-3:**

Peripheral	Bit Name Prefix
CLC1	LC1
CLC2	LC2
CLC3	LC3
CLC4	LC4

REGISTER 28-1: CLCxCON: CONFIGURABLE LOGIC CELL CONTROL REGISTER

R/W-0/0	U-0	R-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
EN	—	OUT	INTP	INTN		MODE<2:0>	
bit 7							bit 0

Legend:			
R = Readable	bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unch	anged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set		'0' = Bit is cleared	
bit 7	EN: Configura	able Logic Cell Enable bit	
	1 = Configura 0 = Configura	able logic cell is enabled an able logic cell is disabled ar	d mixing input signals id has logic zero output
bit 6	Unimplemen	ited: Read as '0'	
bit 5	OUT: Configu	rable Logic Cell Data Outpu	ut bit
	Read-only: lo	gic cell output data, after Po	DL; sampled from lcx_out wire.
bit 4	INTP: Config	urable Logic Cell Positive E	dge Going Interrupt Enable bit
	1 = CLCxIF x $0 = CLCxIF x$	will be set when a rising edg will not be set	je occurs on lcx_out
bit 3	INTN: Config	urable Logic Cell Negative I	Edge Going Interrupt Enable bit
	1 = CLCxIF v $0 = CLCxIF v$	will be set when a falling ed will not be set	ge occurs on lcx_out
bit 2-0	MODE<2:0>:	Configurable Logic Cell Fu	nctional Mode bits
	111 = Cell is	1-input transparent latch w	ith S and R
	110 = Cell is	J-K flip-flop with R	
	101 = Cell is	2-Input D flip-flop with R	d B
	011 = Cell is	S-R latch	
	010 = Cell is	4-input AND	
	001 = Cell is	OR-XOR	

The MSSP consists of a transmit/receive shift register (SSPSR) and a buffer register (SSPxBUF). The SSPSR shifts the data in and out of the device, MSb first. The SSPxBUF holds the data that was written to the SSPSR until the received data is ready. Once the eight bits of data have been received, that byte is moved to the SSPxBUF register. Then, the Buffer Full Detect bit, BF of the SSPxSTAT register, and the interrupt flag bit, SSPxIF, are set. This double-buffering of the received data (SSPxBUF) allows the next byte to start reception before reading the data that was just received. Any write to the SSPxBUF register during transmission/reception of data will be ignored and the Write Collision Detect bit WCOL of the SSPxCON1 register, will be set. User software must clear the WCOL bit to allow the following write(s) to the SSPxBUF register to complete successfully.

When the application software is expecting to receive valid data, the SSPxBUF should be read before the next byte of data to transfer is written to the SSPxBUF. The Buffer Full bit, BF of the SSPxSTAT register, indicates when SSPxBUF has been loaded with the received data (transmission is complete). When the SSPxBUF is read, the BF bit is cleared. This data may be irrelevant if the SPI is only a transmitter. Generally, the MSSP interrupt is used to determine when the transmission/reception has completed. If the interrupt method is not going to be used, then software polling can be done to ensure that a write collision does not occur.

The SSPSR is not directly readable or writable and can only be accessed by addressing the SSPxBUF register. Additionally, the SSPxSTAT register indicates the various Status conditions.

FIGURE 32-5: SPI MASTER/SLAVE CONNECTION

	SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1											
BAUD	Foso	c = 32.00	2.000 MHz Fosc = 20.000 MHz			0 MHz	Foso	c = 18.43	2 MHz	Fosc = 11.0592 MHz		
RATE	Actual Rate	% Error	SPxBRG value (decimal)	Actual Rate	% Error	SPxBRG value (decimal)	Actual Rate	% Error	SPxBRG value (decimal)	Actual Rate	% Error	SPxBRG value (decimal)
300	300.0	0.00	26666	300.0	0.00	16665	300.0	0.00	15359	300.0	0.00	9215
1200	1200	0.00	6666	1200	-0.01	4166	1200	0.00	3839	1200	0.00	2303
2400	2400	0.01	3332	2400	0.02	2082	2400	0.00	1919	2400	0.00	1151
9600	9604	0.04	832	9597	-0.03	520	9600	0.00	479	9600	0.00	287
10417	10417	0.00	767	10417	0.00	479	10425	0.08	441	10433	0.16	264
19.2k	19.18k	-0.08	416	19.23k	0.16	259	19.20k	0.00	239	19.20k	0.00	143
57.6k	57.55k	-0.08	138	57.47k	-0.22	86	57.60k	0.00	79	57.60k	0.00	47
115.2k	115.9k	0.64	68	116.3k	0.94	42	115.2k	0.00	39	115.2k	0.00	23

TABLE 33-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)

				SYNC = 0	YNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1							
		c = 8.00	0 MHz	Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPxBRG value (decimal)	Actual Rate	% Error	SPxBRG value (decimal)	Actual Rate	% Error	SPxBRG value (decimal)	Actual Rate	% Error	SPxBRG value (decimal)
300	300.0	0.00	6666	300.0	0.01	3332	300.0	0.00	3071	300.1	0.04	832
1200	1200	-0.02	1666	1200	0.04	832	1200	0.00	767	1202	0.16	207
2400	2401	0.04	832	2398	0.08	416	2400	0.00	383	2404	0.16	103
9600	9615	0.16	207	9615	0.16	103	9600	0.00	95	9615	0.16	25
10417	10417	0	191	10417	0.00	95	10473	0.53	87	10417	0.00	23
19.2k	19.23k	0.16	103	19.23k	0.16	51	19.20k	0.00	47	19.23k	0.16	12
57.6k	57.14k	-0.79	34	58.82k	2.12	16	57.60k	0.00	15	—	—	_
115.2k	117.6k	2.12	16	111.1k	-3.55	8	115.2k	0.00	7	—	_	_

PIC16LF1	PIC16LF1777/8/9 Operating Conditions: (unless otherwise stated) Low-Power Sleep Mode											
PIC16F17	77/8/9	Low-Po	ower Sle	ep Mode,	VREGPM	=1						
Param	Device Characteristics	Min.	Typt	Max.	Max.	Units		Conditions				
No.				+85°C	+125°C		VDD	Note				
D023	Base IPD		0.05	1.0	8.0	μA	1.8	WDT, BOR, FVR, and SOSC				
		—	0.08	2.0	9.0	μA	3.0	disabled, all Peripherals Inactive				
D023	Base IPD		0.3	2.4	10	μA	2.3	WDT, BOR, FVR, and SOSC				
			0.4	4	12	μA	3.0	disabled, all Peripherals Inactive,				
		—	0.5	6	15	μA	5.0	Low-Power Sleep mode				
D023A	Base IPD		9.8	17	28	μA	2.3	WDT, BOR, FVR and SOSC				
			10.3	20	40	μA	3.0	disabled, all Peripherals inactive,				
		—	11.5	22	44	μA	5.0	VREGPM = 0				
D024		—	0.5	6	14	μA	1.8	WDT Current				
			0.8	7	17	μA	3.0					
D024		_	0.8	6	15	μA	2.3	WDT Current				
		—	0.9	7	20	μA	3.0					
		_	1.0	8	22	μA	5.0					
D025		—	15	28	30	μA	1.8	FVR Current (ADC)				
		—	24	35	38	μA	3.0					
D025			18	33	35	μA	2.3	FVR Current (ADC)				
			24	35	40	μA	3.0					
			26	37	44	μA	5.0					
D025A		—	25	50	55	μA	1.8	FVR Current (DAC)				
		—	30	65	70	μA	3.0					
D025A			30	55	66	μA	2.3	FVR Current (DAC)				
			32	68	82	μA	3.0					
			35	77	90	μA	5.0					
D026		—	7.5	25	28	μA	3.0	BOR Current				
D026		—	10	25	28	μA	3.0	BOR Current				
			12	28	31	μA	5.0					
D027		—	0.5	4	10	μA	3.0	LPBOR Current				
D027			0.8	6	15	μA	3.0	LPBOR Current				
		—	1	8	17	μA	5.0					
D028			0.5	5	9	μA	1.8	SOSC Current				
		—	0.8	8.5	12	μA	3.0					
D028			1.1	6	10	μA	2.3	SOSC Current				
			1.3	8.5	20	μA	3.0					
		_	1.4	10	25	μA	5.0					

TABLE 36-3: POWER-DOWN CURRENTS (IPD)^(1,2)

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral current is the sum of the base IPD and the additional current consumed when this peripheral is enabled. The peripheral △ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to Vss.

3: ADC clock source is FRC.

PIC16(L)F1777/8/9

Note: Unless otherwise noted, VIN = 5V, FOSC = 300 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 37-91: Temperature Indicator Slope Normalized to 20°C, Low Range, VDD = 3.0V, PIC16F1777/8/9 only.

FIGURE 37-92: Temp. Indicator Slope Normalized to 20°C, Low Range, VDD = 1.8V, PIC16LF1773/6 Only.

FIGURE 37-93: Temp. Indicator Slope Normalized to 20°C, Low Range, VDD = 3.0V, PIC16LF1773/6 Only.

FIGURE 37-95: Op Amp, Common Mode Rejection Ratio (CMRR), VDD = 3.0V.

FIGURE 37-94: Temp. Indicator Slope Normalized to 20°C, High Range, VDD = 3.6V, PIC16LF1773/6 Only.

28-Lead Plastic Quad Flat, No Lead Package (MX) - 6x6 mm Body [UQFN] With 0.60mm Contact Length And Corner Anchors

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Ν	/ILLIMETER	S			
Dimension	MIN	NOM	MAX			
Contact Pitch	E		0.65 BSC			
Optional Center Pad Width	W1			4.05		
Optional Center Pad Length	T2			4.05		
Contact Pad Spacing	C1		5.70			
Contact Pad Spacing	C2		5.70			
Contact Pad Width (X28)	X1			0.45		
Contact Pad Length (X28)	Y1			1.00		
Corner Pad Width (X4)	X2			0.90		
Corner Pad Length (X4)	Y2			0.90		
Distance Between Pads	G	0.20				

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2209B

40-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) - 5x5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS					
Dimension	MIN	NOM	MAX			
Contact Pitch	E		0.40 BSC			
Optional Center Pad Width	W2			3.80		
Optional Center Pad Length	T2			3.80		
Contact Pad Spacing	C1		5.00			
Contact Pad Spacing	C2		5.00			
Contact Pad Width (X40)	X1			0.20		
Contact Pad Length (X40)	Y1			0.75		
Distance Between Pads	G	0.20				

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2156B