

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	36
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 28x10b; D/A 4x5b, 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1777-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3-18: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Ban	k 8										
40Ch 40Ch	_	Unimplemented	Unimplemented							_	_
40Dh	HIDRVB	—	—	_	—	_	—	HIDB1	HIDB0	00	00
40Eh	_	Unimplemented								_	_
40Fh	TMR5L	Holding Register	for the Least Signif	icant Byte of the 16	6-bit TMR5 Registe	er				XXXX XXXX	uuuu uuuu
410h	TMR5H	Holding Register	for the Most Signifi	cant Byte of the 16	-bit TMR5 Registe	r				XXXX XXXX	uuuu uuuu
411h	T5CON	CS<	:1:0>	CKPS	6<1:0>	OSCEN	SYNC	— ON		0000 00-0	uuuu uu-u
412h	T5GCON	GE	GPOL	GTM	GSPM	<u>GGO/</u> DONE	GVAL	GSS	<1:0>	00x0 0x00	uuuu uxuu
413h	T4TMR	Holding Register	Holding Register for the 8-bit TMR4 Register							0000 0000	0000 0000
414h	T4PR	TMR4 Period Reg	gister							1111 1111	1111 1111
415h	T4CON	ON		CKPS<2:0>			OUTP	S<3:0>		0000 0000	0000 0000
416h	T4HLT	PSYNC	CKPOL	CKSYNC			MODE<4:0>			0 0000	0 0000
417h	T4CLKCON	—	—	—	—		CS<	:3:0>		0000	0000
418h	T4RST	—	—	—			RSEL<4:0>			0 0000	0 0000
419h	_	Unimplemented								_	—
41Ah	T6TMR	Holding Register	for the 8-bit TMR6	Register						0000 0000	0000 0000
41Bh	T6PR	TMR6 Period Reg	TMR6 Period Register							1111 1111	1111 1111
41Ch	T6CON	ON		CKPS<2:0>			OUTP	S<3:0>		0000 0000	0000 0000
41Dh	T6HLT	PSYNC	CKPOL	CKSYNC			MODE<4:0>			0 0000	0 0000
41Eh	T6CLKCON	_	_	_	_		CS<	:3:0>		0000	0000
41Fh	T6RST						RSEL<4:0>			0 0000	0 0000

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: Unimplemented, read as '1'.

2: Unimplemented on PIC16LF1777/8/9.

3: Unimplemented on PIC16(L)F1778.

7.6 Register Definitions: Interrupt Control

REGISTER 7-1: INTCON: INTERRUPT CONTROL REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R-0/0
GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF ⁽¹⁾
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, reac	l as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7	GIE: Global Ir 1 = Enables a	nterrupt Enable all active interru	e bit ıpts				
	0 = Disables a	all interrupts					
bit 6	PEIE: Periphe 1 = Enables a 0 = Disables a	eral Interrupt E all active periph all peripheral ir	nable bit neral interrupts nterrupts	3			
bit 5	TMR0IE: Time 1 = Enables t 0 = Disables t	er0 Overflow Ir he Timer0 inter the Timer0 inte	nterrupt Enable rrupt errupt	e bit			
bit 4	INTE: INT Ex 1 = Enables t 0 = Disables t	ternal Interrupt he INT externa the INT externa	: Enable bit Il interrupt al interrupt				
bit 3	IOCIE: Interru 1 = Enables t 0 = Disables t	upt-on-Change he interrupt-on the interrupt-or	Enable bit -change 1-change				
bit 2 TMROIF: Timer0 Overflow Interrupt Flag bi 1 = TMR0 register has overflowed 0 = TMR0 register did not overflow				it			
bit 1 INTF: INT External Interrupt Flag bit 1 = The INT external interrupt occurred 0 = The INT external interrupt did not occu				ır			
bit 0 IOCIF: Interrupt-on-Change Interrupt Flag bit ⁽¹⁾ 1 = When at least one of the interrupt-on-change pins changed state 0 = None of the interrupt-on-change pins have changed state							
Note 1. The	IOCIE Elag bit	is read-only a	nd cleared wh	en all the inter	runt-on-change	flags in the IOC	CyF registers

Note 1: The IOCIF Flag bit is read-only and cleared when all the interrupt-on-change flags in the IOCxF registers have been cleared by software.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit, GIE, of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 11-28: LATD:	PORTD DATA	LATCH REGISTER
-----------------------	------------	----------------

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| LATD7 | LATD6 | LATD5 | LATD4 | LATD3 | LATD2 | LATD1 | LATD0 |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 LATD<7:0>: PORTD Output Latch Value bits

REGISTER 11-29: ANSELD: PORTD ANALOG SELECT REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| ANSD7 | ANSD6 | ANSD5 | ANSD4 | ANSD3 | ANSD2 | ANSD1 | ANSD0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **ANSD<7:0>**: Analog Select between Analog or Digital Function on pins RD<7:0>⁽¹⁾

1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.

0 = Digital I/O. Pin is assigned to port or digital special function.

Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

REGISTER 13-10: IOCEP: INTERRUPT-ON-CHANGE PORTE POSITIVE EDGE REGISTER

U-0	U-0	U-0	U-0	R/W-0/0	U-0	U-0	U-0	
—		—	_	IOCEP3	—	—	_	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
u = Bit is uncha	anged	x = Bit is unkr	iown	-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is clea	ared					
bit 7-4	Unimplemen	ted: Read as '	כ'					
bit 3	IOCEP3: Inte	rrupt-on-Chang	e PORTE Pos	sitive Edge En	able bits			
1 = Interrupt-on-Change enabled on the			abled on the p	in for a positiv	e going edge. IC	DCEFx bit and	OCIF flag will	
be set upon detecting an edge.								
	0 = interrupt-	on-Change dis	abled for the a	associated pin				
bit 2-0	Unimplemen	ted: Read as '	o'					

REGISTER 13-11: IOCEN: INTERRUPT-ON-CHANGE PORTE NEGATIVE EDGE REGISTER

U-0	U-0	U-0	U-0	R/W-0/0	U-0	U-0	U-0
—	—	—	_	IOCEN3	—	—	—
bit 7						bit 0	

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4	Unimplemented: Read as '0'
bit 3	 IOCEN3: Interrupt-on-Change PORTE Negative Edge Enable bits 1 = Interrupt-on-Change enabled on the pin for a negative going edge. IOCEFx bit and IOCIF flag will be set upon detecting an edge. 0 = Interrupt-on-Change disabled for the associated pin.
bit 2-0	Unimplemented: Read as '0'

16.2 ADC Operation

16.2.1 STARTING A CONVERSION

To enable the ADC module, the ADON bit of the ADCON0 register must be set to a '1'. Setting the GO/DONE bit of the ADCON0 register to a '1' will start the Analog-to-Digital conversion.

Note:	The GO/DONE bit should not be set in the
	same instruction that turns on the ADC.
	Refer to Section 16.2.6 "ADC Conver-
	sion Procedure".

16.2.2 COMPLETION OF A CONVERSION

When the conversion is complete, the ADC module will:

- Clear the GO/DONE bit
- · Set the ADIF Interrupt Flag bit
- Update the ADRESH and ADRESL registers with new conversion result

16.2.3 TERMINATING A CONVERSION

If a conversion must be terminated before completion, the GO/DONE bit can be cleared in software. The ADRESH and ADRESL registers will be updated with the partially complete Analog-to-Digital conversion sample. Incomplete bits will match the last bit converted.

Note:	A device Reset forces all registers to their
	Reset state. Thus, the ADC module is
	turned off and any pending conversion is
	terminated.

16.2.4 ADC OPERATION DURING SLEEP

The ADC module can operate during Sleep. This requires the ADC clock source to be set to the FRC option. When the FRC oscillator source is selected, the ADC waits one additional instruction before starting the conversion. This allows the SLEEP instruction to be executed, which can reduce system noise during the conversion. If the ADC interrupt is enabled, the device will wake-up from Sleep when the conversion completes. If the ADC interrupt is disabled, the ADC module is turned off after the conversion completes, although the ADON bit remains set.

When the ADC clock source is something other than FRC, a SLEEP instruction causes the present conversion to be aborted and the ADC module is turned off, although the ADON bit remains set.

16.2.5 AUTO-CONVERSION TRIGGER

The Auto-conversion Trigger allows periodic ADC measurements without software intervention. When a rising edge of the selected source occurs, the GO/DONE bit is set by hardware.

The Auto-conversion Trigger source is selected with the TRIGSEL<5:0> bits of the ADCON2 register.

Using the Auto-conversion Trigger does not assure proper ADC timing. It is the user's responsibility to ensure that the ADC timing requirements are met.

See	Table	16-2	for	auto	-co	nve	ersi	ion	so	urc	ces	
						_						

TABLE 16-2: AUTO-CONVERSION SOURCES

Source Peripheral	Signal Name				
CCP1	CCP1_trigger				
CCP2	CCP2_trigger				
CCP7	CCP7_trigger				
CCP8 ⁽¹⁾	CCP8_trigger				
Timer0	T0_overflow				
Timer1	T1_overflow				
Timer3	T3_overflow				
Timer5	T5_overflow				
Timer2	T2_postscaled				
Timer4	T4_postscaled				
Timer6	T6_postscaled				
Timer8	T8_postscaled				
Comparator C1	sync_C1OUT				
Comparator C2	sync_C2OUT				
Comparator C3	sync_C3OUT				
Comparator C4	sync_C4OUT				
Comparator C5	sync_C5OUT				
Comparator C6	sync_C6OUT				
Comparator C7 ⁽¹⁾	sync_C7OUT				
Comparator C8 ⁽¹⁾	sync_C8OUT				
CLC1	LC1_out				
CLC2	LC2_out				
CLC3	LC3_out				
CLC4	LC4_out				
PWM3	PWM3OUT				
PWM4	PWM4OUT				
PWM9	PWM9OUT				
PWM9	PR/PH/OF/DC9_match				
PWM5	PR/PH/OF/DC5_match				
PWM6	PR/PH/OF/DC6_match				
PWM10 ⁽¹⁾	PR/PH/OF/DC10_match				
PWM11	PR/PH/OF/DC11_match				
PWM12 ⁽¹⁾	PR/PH/OF/DC12_match				
ADCACT	ADCACTPPS Pin				

Note 1: PIC16(L)F1777/9 only.

19.10 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 19-4. Since the analog input pins share their connection with a digital input, they have reverse biased ESD protection diodes to VDD and Vss. The analog input, therefore, must be between Vss and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up may occur.

A maximum source impedance of $10 \text{ k}\Omega$ is recommended for the analog sources. Also, any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current to minimize inaccuracies introduced.

Note 1:	When reading a PORT register, all pins
	configured as analog inputs will read as a
	'0'. Pins configured as digital inputs will
	convert as an analog input, according to
	the input specification.

2: Analog levels on any pin defined as a digital input, may cause the input buffer to consume more current than is specified.

24.3 **PWM Overview**

Pulse-Width Modulation (PWM) is a scheme that provides power to a load by switching quickly between fully on and fully off states. The PWM signal resembles a square wave where the high portion of the signal is considered the on state and the low portion of the signal is considered the off state. The high portion, also known as the pulse width, can vary in time and is defined in steps. A larger number of steps applied, which lengthens the pulse width, also supplies more power to the load. Lowering the number of steps applied, which shortens the pulse width, supplies less power. The PWM period is defined as the duration of one complete cycle or the total amount of on and off time combined. PWM resolution defines the maximum number of steps that can be present in a single PWM period. A higher resolution allows for more precise control of the pulse width time and in turn the power that is applied to the load.

The term duty cycle describes the proportion of the on time to the off time and is expressed in percentages, where 0% is fully off and 100% is fully on. A lower duty cycle corresponds to less power applied and a higher duty cycle corresponds to more power applied.

Figure 24-3 shows a typical waveform of the PWM signal.

FIGURE 24-3: SIMPLIFIED PWM BLOCK DIAGRAM

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			DC<	15:8>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkn	nown	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

REGISTER 26-9: PWMxDCH: PWMx DUTY CYCLE COUNT HIGH REGISTER

bit 7-0 DC<15:8>: PWM Duty Cycle High bits Upper eight bits of PWM duty cycle count

REGISTER 26-10: PWMxDCL: PWMx DUTY CYCLE COUNT LOW REGISTER

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | DC< | 7:0> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 DC<7:0>: PWM Duty Cycle Low bits Lower eight bits of PWM duty cycle count

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
SDATD	SDATC	SDATB	SDATA	STRD	STRC	STRB	STRA
bit 7							bit 0
Legend:							
R = Reada	able bit	W = Writable	bit	U = Unimplem	ented bit, read	as '0'	
u = Bit is ι	unchanged	x = Bit is unk	nown	-n/n = Value at	POR and BOI	R/Value at all ot	her Resets
'1' = Bit is	set	'0' = Bit is cle	ared	q = Value depe	ends on conditi	on	
bit 7	SDATD: CO	GxD Static Out	put Data bit				
	1 = COGxD	static data is h	igh				
	0 = COGxD	static data is lo	w				
bit 6	SDATC: CO	GxC Static Out	put Data bit				
	1 = COGXC 0 = COGXC	static data is n	ign				
bit 5	SDATB: CO	GxB Static Out	out Data bit				
Sit 0	1 = COG x B	static data is h	iah				
	0 = COGxB	static data is lo	w				
bit 4	SDATA: CO	GxA Static Out	out Data bit				
	1 = COGxA	static data is h	igh				
	0 = COGxA	static data is lo	W				
bit 3	STRD: COG	xD Steering Co	ontrol bit	.			
	1 = COGXD	output has the	COGXD wave	form with polarity	/ control from F	POLD bit	
hit 2	STRC: COG	xC Steering Co	atrol bit	determined by t	IC ODAID DI		
Sit 2	1 = COGxC	output has the	COGxC wave	form with polarity	control from F	POLC bit	
	0 = COGxC	output is the st	atic data level	determined by th	ne SDATC bit	010 0	
bit 1	STRB: COG	xB Steering Co	ntrol bit				
	1 = COGxB	output has the	COGxB wave	form with polarity	control from F	OLB bit	
	0 = COGxB	output is the st	atic data level	determined by th	ne SDATB bit		
bit 0	STRA: COG	XA Steering Co	ntrol bit				
	1 = COGXA	output has the	COGxA wavel	form with polarity	Control from F	OLA bit	
•• · ·						(a – -	
Note 1:	Steering is activ	e only when the	e MD<1:0> bits	s of the COGxCC)N0 register = (00x. (See Regi	ster 27-1).

REGISTER 27-13: COGxSTR: COG STEERING CONTROL REGISTER 1⁽¹⁾

30.10 Register Definitions: Slope Compensation Control

Long bit name prefixes for the PRG peripherals are shown in Table 30-2. Refer to **Section 1.1** "**Register and Bit naming conventions**" for more information **TABLE 30-2**:

Peripheral	Bit Name Prefix
PRG1	RG1
PRG2	RG2
PRG3	RG3
PRG4 ⁽¹⁾	RG4

Note 1: PIC16(L)F1777/9 only.

REGISTER 30-1: PRGxCON0: PROGRAMMABLE RAMP GENERATOR CONTROL 0 REGISTER

R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
EN	—	FEDG	REDG	MOD	E<1:0>	OS	GO
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = value depends on configuration bits

bit 7	 EN: Programmable Ramp Generator Enable bit 1 = PRG module is enabled 0 = PRG module is disabled
bit 6	Unimplemented: Read as '0'
bit 5	FEDG: Set_falling Input Mode Select bit
	1 = Set_falling timing input is edge sensitive0 = Set_falling timing input is level sensitive
bit 4	REDG: Set_rising Input Mode Select bit
	1 = Set_rising timing input is edge sensitive0 = Set_rising timing input is level sensitive
bit 3-2	 MODE<1:0>: Programmable Ramp Generator Mode Selection bits 11 = Reserved 10 = Rising Ramp Generator 01 = Alternating Rising/Falling Ramp Generator 00 = Slope Compensation
bit 1	OS: One-Shot Enable bit
	 1 = One-shot is enabled. Minimum capacitor discharge is internally timed by one-shot. 0 = One-shot is disabled. Capacitor is discharged when timing input is true.
bit O	 GO: Ramp Generation Control Start bit if EN = 1: 1 = Slope or Ramp function is operating 0 = Slope or Ramp function is not operating. All current source current source switches are open and capacitor discharge switch is closed. If EN = 0: This bit is forced to 0

32.6.4 I²C MASTER MODE START CONDITION TIMING

To initiate a Start condition (Figure 32-26), the user sets the Start Enable bit, SEN bit of the SSPxCON2 register. If the SDA and SCL pins are sampled high, the Baud Rate Generator is reloaded with the contents of SSPxADD<7:0> and starts its count. If SCL and SDA are both sampled high when the Baud Rate Generator times out (TBRG), the SDA pin is driven low. The action of the SDA being driven low while SCL is high is the Start condition and causes the S bit of the SSPxSTAT1 register to be set. Following this, the Baud Rate Generator is reloaded with the contents of SSPxADD<7:0> and resumes its count. When the Baud Rate Generator times out (TBRG), the SEN bit of the SSPxCON2 register will be automatically cleared

by hardware; the Baud Rate Generator is suspended, leaving the SDA line held low and the Start condition is complete.

- Note 1: If at the beginning of the Start condition, the SDA and SCL pins are already sampled low, or if during the Start condition, the SCL line is sampled low before the SDA line is driven low, a bus collision occurs, the Bus Collision Interrupt Flag, BCLIF, is set, the Start condition is aborted and the I²C module is reset into its Idle state.
 - 2: The Philips I²C specification states that a bus collision cannot occur on a Start.

FIGURE 32-26: FIRST START BIT TIMING

33.1 EUSART Asynchronous Mode

The EUSART transmits and receives data using the standard non-return-to-zero (NRZ) format. NRZ is implemented with two levels: a VOH Mark state which represents a '1' data bit, and a VoL Space state which represents a '0' data bit. NRZ refers to the fact that consecutively transmitted data bits of the same value stay at the output level of that bit without returning to a neutral level between each bit transmission. An NRZ transmission port idles in the Mark state. Each character transmission consists of one Start bit followed by eight or nine data bits and is always terminated by one or more Stop bits. The Start bit is always a space and the Stop bits are always marks. The most common data format is eight bits. Each transmitted bit persists for a period of 1/(baud rate). An on-chip dedicated 8-bit/16-bit Baud Rate Generator is used to derive standard baud rate frequencies from the system oscillator. See Table 33-5 for examples of baud rate configurations.

The EUSART transmits and receives the LSb first. The EUSART's transmitter and receiver are functionally independent, but share the same data format and baud rate. Parity is not supported by the hardware, but can be implemented in software and stored as the ninth data bit.

33.1.1 EUSART ASYNCHRONOUS TRANSMITTER

The EUSART transmitter block diagram is shown in Figure 33-1. The heart of the transmitter is the serial Transmit Shift Register (TSR), which is not directly accessible by software. The TSR obtains its data from the transmit buffer, which is the TXxREG register.

33.1.1.1 Enabling the Transmitter

The EUSART transmitter is enabled for asynchronous operations by configuring the following three control bits:

- TXEN = 1
- SYNC = 0
- SPEN = 1

All other EUSART control bits are assumed to be in their default state.

Setting the TXEN bit of the TXxSTA register enables the transmitter circuitry of the EUSART. Clearing the SYNC bit of the TXxSTA register configures the EUSART for asynchronous operation. Setting the SPEN bit of the RCxSTA register enables the EUSART and automatically configures the TX/CK I/O pin as an output. If the TX/CK pin is shared with an analog peripheral, the analog I/O function must be disabled by clearing the corresponding ANSEL bit.

Note: The TXIF Transmitter Interrupt flag is set when the TXEN enable bit is set.

33.1.1.2 Transmitting Data

A transmission is initiated by writing a character to the TXxREG register. If this is the first character, or the previous character has been completely flushed from the TSR, the data in the TXxREG is immediately transferred to the TSR register. If the TSR still contains all or part of a previous character, the new character data is held in the TXxREG until the Stop bit of the previous character has been transmitted. The pending character in the TXxREG is then transferred to the TSR in one TcY immediately following the Stop bit sequence commences immediately following the transfer of the data to the TSR from the TXxREG.

33.1.1.3 Transmit Data Polarity

The polarity of the transmit data can be controlled with the SCKP bit of the BAUDxCON register. The default state of this bit is '0', which selects high true transmit idle and data bits. Setting the SCKP bit to '1' will invert the transmit data resulting in low true idle and data bits. The SCKP bit controls transmit data polarity in Asynchronous mode only. In Synchronous mode, the SCKP bit has a different function. See **Section 33.5.1.2 "Clock Polarity"**.

33.1.1.4 Transmit Interrupt Flag

The TXIF interrupt flag bit of the PIR1 register is set whenever the EUSART transmitter is enabled and no character is being held for transmission in the TXxREG. In other words, the TXIF bit is only clear when the TSR is busy with a character and a new character has been queued for transmission in the TXxREG. The TXIF flag bit is not cleared immediately upon writing TXxREG. TXIF becomes valid in the second instruction cycle following the write execution. Polling TXIF immediately following the TXxREG write will return invalid results. The TXIF bit is read-only, it cannot be set or cleared by software.

The TXIF interrupt can be enabled by setting the TXIE interrupt enable bit of the PIE1 register. However, the TXIF flag bit will be set whenever the TXxREG is empty, regardless of the state of the TXIE enable bit.

To use interrupts when transmitting data, set the TXIE bit only when there is more data to send. Clear the TXIE interrupt enable bit upon writing the last character of the transmission to the TXxREG.

33.5 EUSART Synchronous Mode

Synchronous serial communications are typically used in systems with a single master and one or more slaves. The master device contains the necessary circuitry for baud rate generation and supplies the clock for all devices in the system. Slave devices can take advantage of the master clock by eliminating the internal clock generation circuitry.

There are two signal lines in Synchronous mode: a bidirectional data line and a clock line. Slaves use the external clock supplied by the master to shift the serial data into and out of their respective receive and transmit shift registers. Since the data line is bidirectional, synchronous operation is half-duplex only. Half-duplex refers to the fact that master and slave devices can receive and transmit data but not both simultaneously. The EUSART can operate as either a master or slave device.

Start and Stop bits are not used in synchronous transmissions.

33.5.1 SYNCHRONOUS MASTER MODE

The following bits are used to configure the EUSART for synchronous master operation:

- SYNC = 1
- CSRC = 1
- SREN = 0 (for transmit); SREN = 1 (for receive)
- CREN = 0 (for transmit); CREN = 1 (for receive)
- SPEN = 1

Setting the SYNC bit of the TXxSTA register configures the device for synchronous operation. Setting the CSRC bit of the TXxSTA register configures the device as a master. Clearing the SREN and CREN bits of the RCxSTA register ensures that the device is in the Transmit mode, otherwise the device will be configured to receive. Setting the SPEN bit of the RCxSTA register enables the EUSART.

33.5.1.1 Master Clock

Synchronous data transfers use a separate clock line, which is synchronous with the data. A device configured as a master transmits the clock on the TX/CK line. The TX/CK pin output driver is automatically enabled when the EUSART is configured for synchronous transmit or receive operation. Serial data bits change on the leading edge to ensure they are valid at the trailing edge of each clock. One clock cycle is generated for each data bit. Only as many clock cycles are generated as there are data bits.

33.5.1.2 Clock Polarity

A clock polarity option is provided for Microwire compatibility. Clock polarity is selected with the SCKP bit of the BAUDxCON register. Setting the SCKP bit sets the clock Idle state as high. When the SCKP bit is set, the data changes on the falling edge of each clock. Clearing the SCKP bit sets the Idle state as low. When the SCKP bit is cleared, the data changes on the rising edge of each clock.

33.5.1.3 Synchronous Master Transmission

Data is transferred out of the device on the RX/DT pin. The RX/DT and TX/CK pin output drivers are automatically enabled when the EUSART is configured for synchronous master transmit operation.

A transmission is initiated by writing a character to the TXxREG register. If the TSR still contains all or part of a previous character the new character data is held in the TXxREG until the last bit of the previous character has been transmitted. If this is the first character, or the previous character has been completely flushed from the TSR, the data in the TXxREG is immediately transferred to the TSR. The transmission of the character commences immediately following the transfer of the data to the TSR from the TXxREG.

Each data bit changes on the leading edge of the master clock and remains valid until the subsequent leading clock edge.

Note: The TSR register is not mapped in data memory, so it is not available to the user.

- 33.5.1.4 Synchronous Master Transmission Set-up:
- Initialize the SPxBRGH:SPxBRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 33.4 "EUSART Baud Rate Generator (BRG)").
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.
- 3. Disable Receive mode by clearing bits SREN and CREN.
- 4. Enable Transmit mode by setting the TXEN bit.
- 5. If 9-bit transmission is desired, set the TX9 bit.
- 6. If interrupts are desired, set the TXIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 7. If 9-bit transmission is selected, the ninth bit should be loaded in the TX9D bit.
- 8. Start transmission by loading data to the TXxREG register.

33.6 EUSART Operation During Sleep

The EUSART will remain active during Sleep only in the Synchronous Slave mode. All other modes require the system clock and therefore cannot generate the necessary signals to run the Transmit or Receive Shift registers during Sleep.

Synchronous Slave mode uses an externally generated clock to run the Transmit and Receive Shift registers.

33.6.1 SYNCHRONOUS RECEIVE DURING SLEEP

To receive during Sleep, all the following conditions must be met before entering Sleep mode:

- RCxSTA and TXxSTA Control registers must be configured for Synchronous Slave Reception (see Section 33.5.2.4 "Synchronous Slave Reception Set-up:").
- If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- The RCIF interrupt flag must be cleared by reading RCxREG to unload any pending characters in the receive buffer.

Upon entering Sleep mode, the device will be ready to accept data and clocks on the RX/DT and TX/CK pins, respectively. When the data word has been completely clocked in by the external device, the RCIF interrupt flag bit of the PIR1 register will be set. Thereby, waking the processor from Sleep.

Upon waking from Sleep, the instruction following the SLEEP instruction will be executed. If the Global Interrupt Enable (GIE) bit of the INTCON register is also set, then the Interrupt Service Routine at address 004h will be called.

33.6.2 SYNCHRONOUS TRANSMIT DURING SLEEP

To transmit during Sleep, all the following conditions must be met before entering Sleep mode:

- The RCxSTA and TXxSTA Control registers must be configured for synchronous slave transmission (see Section 33.5.2.2 "Synchronous Slave Transmission Set-up:").
- The TXIF interrupt flag must be cleared by writing the output data to the TXxREG, thereby filling the TSR and transmit buffer.
- If interrupts are desired, set the TXIE bit of the PIE1 register and the PEIE bit of the INTCON register.
- Interrupt enable bits TXIE of the PIE1 register and PEIE of the INTCON register must set.

Upon entering Sleep mode, the device will be ready to accept clocks on TX/CK pin and transmit data on the RX/DT pin. When the data word in the TSR has been completely clocked out by the external device, the pending byte in the TXxREG will transfer to the TSR and the TXIF flag will be set. Thereby, waking the processor from Sleep. At this point, the TXxREG is available to accept another character for transmission, which will clear the TXIF flag.

Upon waking from Sleep, the instruction following the SLEEP instruction will be executed. If the Global Interrupt Enable (GIE) bit is also set then the Interrupt Service Routine at address 0004h will be called.

PIC16(L)F1777/8/9

CALL	Call Subroutine
Syntax:	[<i>label</i>] CALL k
Operands:	$0 \leq k \leq 2047$
Operation:	(PC)+ 1→ TOS, k → PC<10:0>, (PCLATH<6:3>) → PC<14:11>
Status Affected:	None
Description:	Call Subroutine. First, return address (PC + 1) is pushed onto the stack. The 11-bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a 2-cycle instruction.

CLRWDT	Clear Watchdog Timer					
Syntax:	[label] CLRWDT					
Operands:	None					
Operation:	$\begin{array}{l} \text{O0h} \rightarrow \text{WDT} \\ \text{0} \rightarrow \underline{\text{WDT}} \text{ prescaler,} \\ 1 \rightarrow \overline{\text{TO}} \\ 1 \rightarrow \overline{\text{PD}} \end{array}$					
Status Affected:	TO, PD					
Description:	$\tt CLRWDT$ instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. Status bits \overline{TO} and \overline{PD} are set.					

CALLW	Subroutine Call With W				
Syntax:	[label] CALLW				
Operands:	None				
Operation:	(PC) +1 \rightarrow TOS, (W) \rightarrow PC<7:0>, (PCLATH<6:0>) \rightarrow PC<14:8>				
Status Affected:	None				
Description:	Subroutine call with W. First, the return address (PC + 1) is pushed onto the return stack. Then, the contents of W is loaded into PC<7:0>, and the contents of PCLATH into PC<14:8>. CALLW is a 2-cycle instruction.				

COMF	Complement f				
Syntax:	[<i>label</i>] COMF f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$				
Operation:	$(\overline{f}) \rightarrow (destination)$				
Status Affected:	Z				
Description:	The contents of register 'f' are complemented. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.				

CLRF	Clear f		
Syntax:	[label] CLRF f		
Operands:	$0 \leq f \leq 127$		
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$		
Status Affected:	Z		
Description:	The contents of register 'f' are cleared and the Z bit is set.		

DECF	Decrement f
Syntax:	[label] DECF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination)
Status Affected:	Z
Description:	Decrement register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

CLRW	Clear W
Syntax:	[label] CLRW
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow (W) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	W register is cleared. Zero bit (Z) is set.

Standard Operating Conditions (unless otherwise stated)								
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions	
		Program Memory Programming Specifications						
D110	VIHH	Voltage on MCLR/VPP pin	8.0	_	9.0	V	(Note 2, Note 3)	
D111	IDDP	Supply Current during Programming	—	-	10	mA		
D112	VBE	VDD for Bulk Erase	2.7	—	VDDMAX	V		
D113	VPEW	VDD for Write or Row Erase	VDDMIN	_	VDDMAX	V		
D114	IPPPGM	Current on MCLR/VPP during Erase/Write	_	1.0	—	mA		
D115	IDDPGM	Current on VDD during Erase/Write	_	5.0	—	mA		
		Program Flash Memory						
D121	Eр	Cell Endurance	10K	—	_	E/W	-40°C ≤ TA ≤ +85°C (Note 1)	
D122	Vprw	VDD for Read/Write	VDDMIN	—	VDDMAX	V		
D123	Tiw	Self-timed Write Cycle Time	_	2	2.5	ms		
D124	TRETD	Characteristic Retention	—	40	_	Year	Provided no other specifications are violated	
D125	EHEFC	High-Endurance Flash Cell	100K	_	_	E/W	$-0^{\circ}C \le TA \le +60^{\circ}C$, Lower byte last 128 addresses	

TABLE 36-5: MEMORY PROGRAMMING SPECIFICATIONS

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Self-write and Block Erase.

2: Required only if single-supply programming is disabled.

3: The MPLAB ICD 2 does not support variable VPP output. Circuitry to limit the ICD 2 VPP voltage must be placed between the ICD 2 and target system when programming or debugging with the ICD 2.

TABLE 36-17: OPERATIONAL AMPLIFIER (OPA)

Operating Conditions (unless otherwise stated) VDD = 3.0V, TA = 25°C, OPAxSP = 1 (High GBWP mode)								
Param No.	Symbol	Parameters	Min.	Тур.	Max.	Units	Conditions	
OPA01*	GBWP	Gain Bandwidth Product	—	3.5	—	MHz		
OPA02*	Ton	Turn-on Time	—	10	_	μS		
OPA03*	Рм	Phase Margin	—	40	_	degrees		
OPA04*	SR	Slew Rate	—	3	_	V/μs		
OPA05	Off	Offset	—	±3	±9	mV		
OPA06	CMRR	Common-Mode Rejection Ratio	52	70	_	dB		
OPA07*	Aol	Open Loop Gain	—	90	_	dB		
OPA08	VICM	Input Common-Mode Voltage	0	_	Vdd	V	VDD > 2.5V	
OPA09*	PSRR	Power Supply Rejection Ratio	—	80	_	dB		
OPA10*	HZ	High-Impedance On/Off Time	—	50	—	ns		

* These parameters are characterized but not tested.

TABLE 36-18: PROGRAMMABLE RAMP GENERATOR (PRG) SPECIFICATIONS

Operating Conditions (unless otherwise stated) VDD = 3.0V, TA = 25°C (unless otherwise stated)							
Param No.	Sym.	Characteristics	Min.	Тур.	Max.	Units	Comments
PRG01	RRR	Rising Ramp Rate ⁽¹⁾	—	1		V/µs	PRGxCON2 = 10h
PRG02	FRR	Falling Ramp Rate ⁽¹⁾	_	1	_	V/μs	PRGxCON2 = 10h

* These parameters are characterized but not tested.

Note 1: Response time measured with one comparator input at VDD/2, while the other input transitions from Vss to VDD.

TABLE 36-19: COMPARATOR SPECIFICATIONS

Operating Conditions (unless otherwise stated) VDD = 3.0V, TA = 25°C See Section 31.0 "DC and AC Characteristics Graphs and Charts" for operating characterization.								
Param No.	Sym.	Characteristics	Min.	Тур.	Max.	Units	Comments	
CM01	VIOFF	Input Offset Voltage	_	±2.5	±5	mV	VICM = VDD/2	
CM02	VICM	Input Common-Mode Voltage	0	—	Vdd	V		
CM03	CMRR	Common-Mode Rejection Ratio	40	50	—	dB		
CM04A		Response Time Rising Edge	_	60	125	ns	CxSP = 1	
CM04B	Troop(1)	Response Time Falling Edge	_	60	110	ns	CxSP = 1	
CM04C	nesp.	Response Time Rising Edge	_	85	—	ns	CxSP = 0	
CM04D		Response Time Falling Edge	_	85	—	ns	CxSP = 0	
CM05	Тмс2оv	Comparator Mode Change to Output Valid*			10	μS		
CM06	CHYSTER	Comparator Hysteresis	20	45	75	mV	CxHYS = 1	

* These parameters are characterized but not tested.

Note 1: Response time measured with one comparator input at VDD/2, while the other input transitions from Vss to VDD.

PIC16(L)F1777/8/9

FIGURE 36-21: I²C BUS START/STOP BITS TIMING

TABLE 36-26: I²C BUS START/STOP BITS REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)								
Param No.	Symbol	Characteristic		Min.	Тур.	Max.	Units	Conditions
SP90*	TSU:STA	Start condition	100 kHz mode	4700			ns	Only relevant for Repeated Start condition
		Setup time	400 kHz mode	600	_	—		
SP91*	THD:STA	Start condition	100 kHz mode	4000	_	—	ns	After this period, the first clock pulse is generated
		Hold time	400 kHz mode	600	_	—		
SP92*	Tsu:sto	Stop condition	100 kHz mode	4700	_	—	ns	
		Setup time	400 kHz mode	600	—	—		
SP93	THD:STO	Stop condition	100 kHz mode	4000	_	—	ns	
		Hold time	400 kHz mode	600	_	_		

* These parameters are characterized but not tested.

FIGURE 36-22: I²C BUS DATA TIMING

PIC16(L)F1777/8/9

NOTES:

28-Lead Plastic Quad Flat, No Lead Package (MX) - 6x6x0.5mm Body [UQFN] Ultra-Thin with 0.40 x 0.60 mm Terminal Width/Length and Corner Anchors

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-0209 Rev C Sheet 1 of 2