

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	36
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 28x10b; D/A 4x5b, 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1777-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3-18: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank	k 13										
68Ch	—	Unimplemented								—	—
68Dh	COG1PHR	—	_	COG Rising Edge	Phase Delay Cou	nt Register				00 0000	00 0000
68Eh	COG1PHF	—		COG Falling Edge	Phase Delay Cou	unt Register				00 0000	00 0000
68Fh	COG1BLKR	—		COG Rising Edge	DG Rising Edge Blanking Count Register						00 0000
690h	COG1BLKF	—	_	COG Falling Edge	DG Falling Edge Blanking Count Register						00 0000
691h	COG1DBR	—	_	COG Rising Edge	G Rising Edge Dead-band Count Register						00 0000
692h	COG1DBF	—		COG Falling Edge	OG Falling Edge Dead-band Count Register					00 0000	00 0000
693h	COG1CON0	EN	LD	— CS<1:0> MD<2:0>						00-0 0000	00-0 0000
694h	COG1CON1	RDBS	FDBS	—	—	POLD	POLC	POLB	POLA	00 0000	00 0000
695h	COG1RIS0	RIS7	RIS6	RIS5	RIS4	RIS3	RIS2	RIS1	RIS0	0000 0000	0000 0000
696h	COG1RIS1	RIS15	RIS14	RIS13	RIS12	RIS11	RIS10	RIS9	RIS8	0000 0000	0000 0000
697h	COG1RSIM0	RSIM7	RSIM6	RSIM5	RSIM4	RSIM3	RSIM2	RSIM1	RSIM0	0000 0000	0000 0000
698h	COG1RSIM1	RSIM15	RSIM14	RSIM13	RSIM12	RSIM11	RSIM10	RSIM9	RSIM8	0000 0000	0000 0000
699h	COG1FIS0	FIS7	FIS6	FIS5	FIS4	FIS3	FIS2	FIS1	FIS0	0000 0000	0000 0000
69Ah	COG1FIS1	FIS15	FIS14	FIS13	FIS12	FIS11	FIS10	FIS9	FIS8	0000 0000	0000 0000
69Bh	COG1FSIM0	FSIM7	FSIM6	FSIM5	FSIM4	FSIM3	FSIM2	FSIM1	FSIM0	0000 0000	0000 0000
69Ch	COG1FSIM1	FSIM15	FSIM14	FSIM13	FSIM12	FSIM11	FSIM10	FSIM9	FSIM8	0000 0000	0000 0000
69Dh	COG1ASD0	ASE	ARSEN	ASDBI	ASDBD<1:0> ASDAC<1:0>				0001 01	0001 01	
69Eh	COG1ASD1	AS7E	AS6E	AS5E	AS4E	AS3E	AS2E	AS1E	AS0E	0000 0000	0000 0000
69Fh	COG1STR	SDATD	SDATC	SDATB	SDATA	STRD	STRC	STRB	STRA	0000 0000	0000 0000

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'. Legend:

Note 1: Unimplemented, read as '1'.

2:

Unimplemented on PIC16LF1777/8/9. 3: Unimplemented on PIC16(L)F1778.

PIC16(L)F1777/8/9

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BORCON	SBOREN	BORFS	_	_	_			BORRDY	121
PCON	STKOVF	STKUNF		RWDT	RMCLR	RI	POR	BOR	125
STATUS			_	TO	DC	С	40		
WDTCON	—	—		WDTPS<4:0>					154

TABLE 6-5: SUMMARY OF REGISTERS ASSOCIATED WITH RESETS

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Resets.

R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
OSFIE	C2IE	C1IE	COG1IE	BCL1IE	C4IE	C3IE	CCP2IE			
bit 7							bit			
Logondi										
Legend: R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'				
u = Bit is uncl		x = Bit is unk		•	at POR and BO		ther Resets			
'1' = Bit is set	0	'0' = Bit is cle								
bit 7	OSFIE: Osci	llator Fail Interr	upt Enable bit							
		the Oscillator F the Oscillator								
bit 6	C2IE: Comp	arator C2 Interr	upt Enable bit							
		the Comparate								
		0 = Disables the Comparator C2 interrupt								
bit 5 C1IE: Comparator C1 Interrupt Enable bit										
		the Comparato the Comparato								
bit 4		DG1 Auto-Shuto	•							
	1 = COG1 ir	nterrupt enableo nterrupt disable	t							
bit 3		BCL1IE: MSSP Bus Collision Interrupt Enable bit								
		the MSSP Bus								
	0 = Disables	s the MSSP Bus	s Collision inte	errupt						
bit 2	C4IE: TMR6	to T6PR Match	Interrupt Ena	ıble bit						
		the Comparate								
bit 1		the Comparate	•							
DILI	1 C3IE: TMR4 to T4PR Match Interrupt Enable bit 1 = Enables the Comparator C3 interrupt									
		the Comparate								
bit 0	CCP2IE: CC	P2 Interrupt En	able bit							
	1 = Enables	the CCP2 inter	rupt							
	0 = Disables	s the CCP2 inte	rrupt							
Note: Bit		ITCON register	must be							
		peripheral inter								

REGISTER 7-3: PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
_	—	—	_	PWM12IF ⁽¹⁾	PWM11IF	PWM6IF	PWM5IF			
bit 7							bit 0			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
u = Bit is unc	hanged	x = Bit is unkr	iown	-n/n = Value a	t POR and BOI	R/Value at all c	other Resets			
'1' = Bit is set		'0' = Bit is clea	ared							
bit 7-4	bit 7-4 Unimplemented: Read as '0'									
bit 3	PWM12IF: P	WM12 Interrupt	Flag bit ⁽¹⁾							
	1 = Interrupt i	is pending	-							
	0 = Interrupt i	is not pending								
bit 2	PWM11IF: P\	WM11 Interrupt	Flag bit							
	1 = Interrupt i									
		is not pending								
bit 1		/M6 Interrupt F	ag bit							
	1 = Interrupt i									
 0 = Interrupt is not pending bit 0 PWM5IF: PWM5 Interrupt Flag bit 										
DIEU	1 = Interrupt i	•	ag bit							
		is not pending								
Note 1. Di	•									
Note 1: Pl	C16(L)F1777/9	orny.								

REGISTER 7-13: PIR6: PERIPHERAL INTERRUPT REQUEST REGISTER 6

PIC16(L)F1777/8/9

9.6 Register Definitions: Watchdog Control

REGISTER 9-1: WDTCON: WATCHDOG TIMER CONTROL REGISTER

U-0	U-0	R/W-0/0	R/W-1/1	R/W-0/0	R/W-1/1	R/W-1/1	R/W-0/0		
_	—			WDTPS<4:0>	(1)		SWDTEN		
bit 7		·					bit 0		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'			
u = Bit is unc	hanged	x = Bit is unki	nown	-m/n = Value	at POR and BC	R/Value at all	other Resets		
'1' = Bit is se	t	'0' = Bit is cle	ared						
bit 7-6	Unimplom	ented: Read as '	0'						
bit 5-1	-	WDTPS<4:0>: Watchdog Timer Period Select bits ⁽¹⁾							
		Prescale Rate							
			e in minimum	intonyal (1.32)					
	•	Reserved. Result	S III IIIIIIIIIIIIIIIIIIIIIIII						
	•								
	•								
	10011 = R	Reserved. Result	s in minimum	interval (1:32)					
	10010 = 1	:8388608 (2 ²³) (Interval 256s	nominal)					
	$10001 = 1:4194304 (2^{22})$ (Interval 128s nominal)								
	10000 = 1	:2097152 (2 ²¹) (Interval 64s n	ominal)					
	01111 = 1	:1048576 (2 ²⁰) (Interval 32s n	ominal)					
	01110 = 1	:524288 (2 ¹⁹) (Ir	nterval 16s no	minal)					
	01101 = 1	:262144 (2 ¹⁸) (Ir :131072 (2 ¹⁷) (Ir	nterval 8s non	ninal)					
		:65536 (Interval							
		:32768 (Interval							
		:16384 (Interval		nal)					
		:8192 (Interval 2		,					
		:4096 (Interval 1							
	00110 = 1	:2048 (Interval 6	4 ms nominal)					
		:1024 (Interval 3)					
		:512 (Interval 16	,						
		:256 (Interval 8)							
		:128 (Interval 4 i :64 (Interval 2 m							
		:32 (Interval 1 m	,						
bit 0		Software Enable	-	/atchdog Timer	bit				
	If WDTE<1:			atonaog milei	Sit				
	This bit is ig								
	If WDTE<1:								
	1 = WDT is								
	0 = WDT is								
	<u>If WDTE<1:</u>								
	This bit is ig	nored.							

					-		-	-	-
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	—	—	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	177
INLVLA	INLVLA7	INLVLA6	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0	178
LATA	LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	176
ODCONA	ODA7	ODA6	ODA5	ODA4	ODA3	ODA2	ODA1	ODA0	178
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		PS<2:0>		274
PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	176
SLRCONA	SLRA7	SLRA6	SLRA5	SLRA4	SLRA3	SLRA2	SLRA1	SLRA0	178
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	176
WPUA	WPUA7	WPUA6	WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0	177

TABLE 11-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Legend: x = unknown, u = unchanged, – = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
CONFIG1	13:8			FCMEN	IESO	CLKOUTEN	BOREN<1:0>			95
CONFIGI	7:0	CP	MCLRE	PWRTE	WD	TE<1:0>	FOSC<2:0>		>	95

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by PORTA.

11.6 Register Definitions: PORTC

REGISTER 11-18: PORTC: PORTC REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u		
RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
u = Bit is unchanged x = Bit is unknown				-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is clea	ared						

bit 7-0 RC<7:0>: PORTC General Purpose I/O Pin bits⁽¹⁾ 1 = Port pin is ≥ VIH 0 = Port pin is ≤ VIL

Note 1: Writes to PORTC are actually written to corresponding LATC register. Reads from PORTC register is return of actual I/O pin values.

REGISTER 11-19: TRISC: PORTC TRI-STATE REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TRISC7 | TRISC6 | TRISC5 | TRISC4 | TRISC3 | TRISC2 | TRISC1 | TRISC0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **TRISC<7:0>:** PORTC Tri-State Control bits 1 = PORTC pin configured as an input (tri-stated) 0 = PORTC pin configured as an output

16.2.6 ADC CONVERSION PROCEDURE

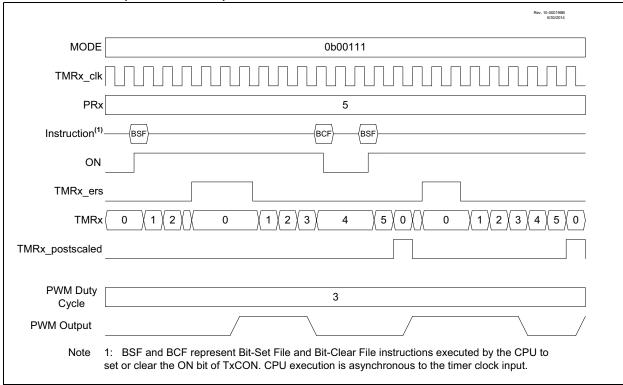
This is an example procedure for using the ADC to perform an Analog-to-Digital conversion:

- 1. Configure Port:
 - Disable pin output driver (refer to the TRIS register)
 - Configure pin as analog (refer to the ANSEL register)
 - Disable weak pull-ups either globally (refer to the OPTION_REG register) or individually (refer to the appropriate WPUx register)
- 2. Configure the ADC module:
 - Select ADC conversion clock
 - · Configure voltage reference
 - · Select ADC input channel
 - Turn on ADC module
- 3. Configure ADC interrupt (optional):
 - · Clear ADC interrupt flag
 - Enable ADC interrupt
 - · Enable peripheral interrupt
 - Enable global interrupt⁽¹⁾
- 4. Wait the required acquisition time⁽²⁾.
- 5. Start conversion by setting the GO/DONE bit.
- 6. Wait for ADC conversion to complete by one of the following:
 - Polling the GO/DONE bit
 - Waiting for the ADC interrupt (interrupts enabled)
- 7. Read ADC Result.
- 8. Clear the ADC interrupt flag (required if interrupt is enabled).

Note 1: The global interrupt can be disabled if the user is attempting to wake-up from Sleep and resume in-line code execution.

2: Refer to Section 16.4 "ADC Acquisition Requirements".

EXAMPLE 16-1: ADC CONVERSION


;This code block configures the ADC ; for polling, Vdd and Vss references, FRC ;oscillator and ANO input. ;Conversion start & polling for completion ; are included. ADCON1 BANKSEL : B'11110000' ;Right justify, FRC MOVLW ;oscillator MOVWF ADCON1 ;Vdd and Vss Vref BANKSEL TRISA ; BSF TRISA,0 ;Set RA0 to input BANKSEL ANSEL ; BSF ANSEL,0 ;Set RA0 to analog BANKSEL WPUA BCF WPUA,0 ;Disable weak ;pull-up on RA0 BANKSEL ADCON0 B'00000001' ;Select channel AN0 MOVLW MOVWF ADCON0 ;Turn ADC On CALL SampleTime ;Acquisiton delay BSF ADCON0, ADGO ;Start conversion ADCON0, ADGO ; Is conversion done? BTFSC GOTO \$-1 ;No, test again BANKSEL ADRESH ; ;Read upper 2 bits ADRESH,W MOVF RESULTHI MOVWE ;store in GPR space BANKSEL ADRESL ; MOVF ADRESL,W ;Read lower 8 bits MOVWF RESULTLO ;Store in GPR space

23.6.4 LEVEL-TRIGGERED HARDWARE LIMIT MODE

In the Level-Triggered Hardware Limit Timer modes the counter is reset by high or low levels of the external signal TMRx_ers, as shown in Figure 23-7. Selecting MODE<4:0> = 00110 will cause the timer to reset on a low level external signal. Selecting MODE<4:0> = 00111 will cause the timer to reset on a high level external signal. In the example, the counter is reset while TMRx_ers = 1. ON is controlled by BSF and BCF instructions. When ON = 0 the external signal is ignored.

When the CCP uses the timer as the PWM time base then the PWM output will be set high when the timer starts counting and then set low only when the timer count matches the CCPRx value. The timer is reset when either the timer count matches the PRx value or two clock periods after the external Reset signal goes true and stays true. The timer starts counting, and the PWM output is set high, on either the clock following the PRx match or two clocks after the external Reset signal relinquishes the Reset. The PWM output will remain high until the timer counts up to match the CCPRx pulse width value. If the external Reset signal goes true while the PWM output is high then the PWM output will remain high until the Reset signal is released allowing the timer to count up to match the CCPRx value.

FIGURE 23-7: LEVEL-TRIGGERED HARDWARE LIMIT MODE TIMING DIAGRAM (MODE = 00111)

26.2 PWM Modes

PWM modes are selected with MODE<1:0> bits of the PWMxCON register (Register 26-1).

In all PWM modes an offset match event can also be used to synchronize the PWMxTMR in three offset modes. See **Section 26.3 "Offset Modes"** for more information.

26.2.1 STANDARD MODE

The Standard mode (MODE = 00) selects a single phase PWM output. The PWM output in this mode is determined by when the period, duty cycle, and phase counts match the PWMxTMR value. The start of the duty cycle occurs on the phase match and the end of the duty cycle occurs on the duty cycle match. The period match resets the timer. The offset match can also be used to synchronize the PWMxTMR in the offset modes. See **Section 26.3 "Offset Modes"** for more information.

Equation 26-1 is used to calculate the PWM period in Standard mode.

Equation 26-2 is used to calculate the PWM duty cycle ratio in Standard mode.

EQUATION 26-1: PWM PERIOD IN STANDARD MODE

$$Period = \frac{(PWMxPR + 1) \cdot Prescale}{PWM_clock}$$

EQUATION 26-2: PWM DUTY CYCLE IN STANDARD MODE

$$Duty Cycle = \frac{(PWMxDC - PWMxPH)}{PWMxPR + 1}$$

A detailed timing diagram for Standard mode is shown in Figure 26-4.

26.2.2 SET ON MATCH MODE

The Set On Match mode (MODE = 01) generates an active output when the phase count matches the PWMxTMR value. The output stays active until the OUT bit of the PWMxCON register is cleared or the PWM module is disabled. The duty cycle count has no effect in this mode. The period count only determines the maximum PWMxTMR value above which no phase matches can occur.

The PWMxOUT bit can be used to set or clear the output of the PWM in this mode. Writes to this bit will take place on the next rising edge of the PWM_clock after the bit is written.

A detailed timing diagram for Set On Match is shown in Figure 26-5.

26.2.3 TOGGLE ON MATCH MODE

The Toggle On Match mode (MODE = 10) generates a 50% duty cycle PWM with a period twice as long as that computed for the standard PWM mode. Duty cycle count has no effect in this mode. The phase count determines how many PWMxTMR periods after a period event the output will toggle.

Writes to the OUT bit of the PWMxCON register will have no effect in this mode.

A detailed timing diagram for Toggle On Match is shown in Figure 26-6.

26.2.4 CENTER ALIGNED MODE

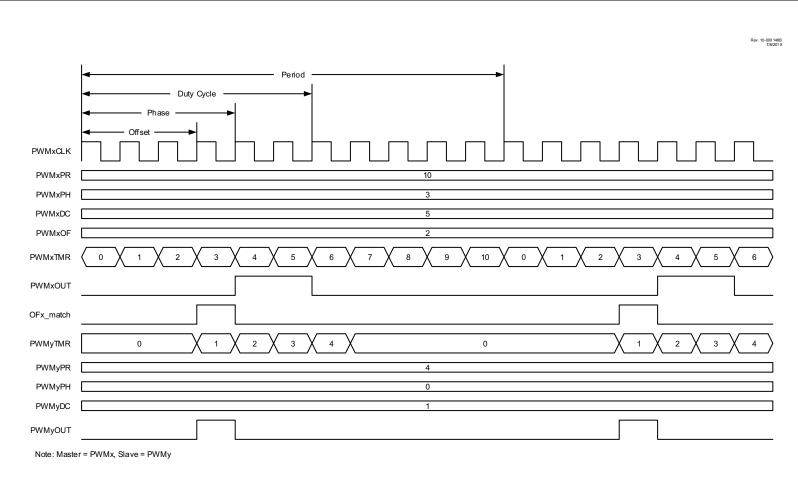
The Center Aligned mode (MODE = 11) generates a PWM waveform that is centered in the period. In this mode the period is two times the PWMxPR count. The PWMxTMR counts up to the period value then counts back down to 0. The duty cycle count determines both the start and end of the active PWM output. The start of the duty cycle occurs at the match event when PWMxTMR is incrementing and the duty cycle ends at the match event when PWMxTMR is decrementing. The incrementing match value is the period count minus the duty cycle count. The decrementing match value is the incrementing match value plus 1.

Equation 26-3 is used to calculate the PWM period in Center Aligned mode.

EQUATION 26-3: PWM PERIOD IN CENTER ALIGNED MODE

$$Period = \frac{(PWMxPR + 1) \cdot 2 \cdot Prescale}{PWM_clock}$$

Equation 26-4 is used to calculate the PWM duty cycle ratio in Center Aligned mode


EQUATION 26-4: PWM DUTY CYCLE IN CENTER ALIGNED MODE

$$Duty Cycle = \frac{PWMxDC \cdot 2}{(PWMxPR + 1) \cdot 2}$$

Writes to PWMxOUT will have no effect in this mode.

A detailed timing diagram for Center Aligned mode is shown in Figure 26-7.

FIGURE 26-10: ONE-SHOT SLAVE RUN MODE WITH SYNC START TIMING DIAGRAM

PIC16(L)F1777/8/9

U-0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0		
— PS<2:0>			_	_	CS<1:0>				
bit 7					•		bit 0		
Legend:									
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'					
u = Bit is unchanged		x = Bit is unkno	wn	-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is clear	ed						
bit 7	Unimplemented: Read as '0'								
bit 6-4	PS<2:0>: Clock Source Prescaler Select bits 111 = Divide clock source by 128 110 = Divide clock source by 64 101 = Divide clock source by 32 100 = Divide clock source by 16 011 = Divide clock source by 8 010 = Divide clock source by 4 001 = Divide clock source by 2 000 = No Prescaler								
bit 3-2	Unimplemen	Unimplemented: Read as '0'							
bit 1-0	CS<1:0>: Clock Source Select bits 11 = Reserved 10 = LFINTOSC (continues to operate during Sleep) 01 = HFINTOSC (continues to operate during Sleep) 00 = FOSC								

REGISTER 26-4: PWMxCLKCON: PWM CLOCK CONTROL REGISTER

27.3 Modes of Operation

27.3.1 STEERED PWM MODES

In Steered PWM mode, the PWM signal derived from the input event sources is output as a single phase PWM which can be steered to any combination of the four COG outputs. Output steering takes effect on the instruction cycle following the write to the COGxSTR register.

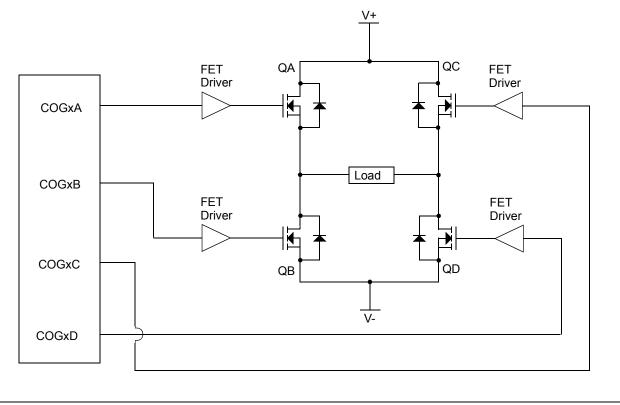
Synchronous Steered PWM mode is identical to the Steered PWM mode except that changes to the output steering take effect on the first rising event after the COGxSTR register write. Static output data is not synchronized.

Steering mode configurations are shown in Figure 27-2 and Figure 27-3.

Steered PWM and Synchronous Steered PWM modes are selected by setting the MD<2:0> bits of the COGxCON0 register (Register 27-1) to '000' and '001', respectively.

27.3.2 FULL-BRIDGE MODES

In both Forward and Reverse Full-Bridge modes, two of the four COG outputs are active and the other two are inactive. Of the two active outputs, one is modulated by the PWM input signal and the other is on at 100% duty cycle. When the direction is changed, the dead-band time is inserted to delay the modulated output. This gives the unmodulated driver time to shut down, thereby, preventing shoot-through current in the series connected power devices.


In Forward Full-Bridge mode, the PWM input modulates the COGxD output and drives the COGA output at 100%.

In Reverse Full-Bridge mode, the PWM input modulates the COGxB output and drives the COGxC output at 100%.

The full-bridge configuration is shown in Figure 27-4. Typical full-bridge waveforms are shown in Figure 27-12 and Figure 27-13.

Full-Bridge Forward and Full-Bridge Reverse modes are selected by setting the MD<2:0> bits of the COGxCON0 register to '010' and '011', respectively.

27.10.3 AUTO-SHUTDOWN RESTART

After an auto-shutdown event has occurred, there are two ways to resume operation:

- Software controlled
- Auto-restart

The restart method is selected with the ARSEN bit of the COGxASD0 register. Waveforms of a software controlled automatic restart are shown in Figure 27-15.

27.10.3.1 Software Controlled Restart

When the ARSEN bit of the COGxASD0 register is cleared, software must clear the ASE bit to restart COG operation after an auto-shutdown event.

The COG will resume operation on the first rising event after the ASE bit is cleared. Clearing the shutdown state requires all selected shutdown inputs to be false, otherwise, the ASE bit will remain set.

27.10.3.2 Auto-Restart

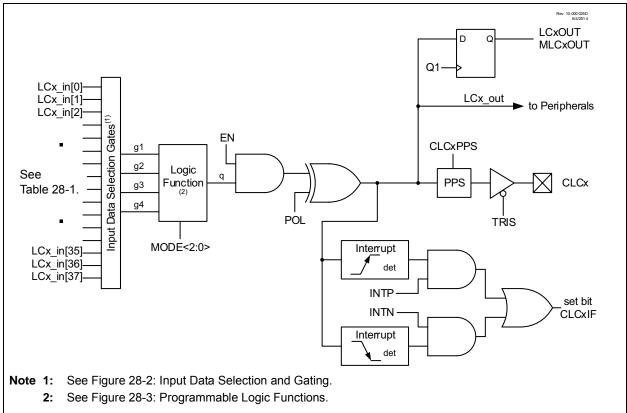
When the ARSEN bit of the COGxASD0 register is set, the COG will restart from the auto-shutdown state automatically.

The ASE bit will clear automatically and the COG will resume operation on the first rising event after all selected shutdown inputs go false.

28.0 CONFIGURABLE LOGIC CELL (CLC)

The Configurable Logic Cell (CLCx) provides programmable logic that operates outside the speed limitations of software execution. The logic cell takes up to 32 input signals and, through the use of configurable gates, reduces the 32 inputs to four logic lines that drive one of eight selectable single-output logic functions.

Input sources are a combination of the following:


- · I/O pins
- Internal clocks
- · Peripherals
- · Register bits

The output can be directed internally to peripherals and to an output pin.

Refer to Figure 28-1 for a simplified diagram showing signal flow through the CLCx.

Possible configurations include:

- Combinatorial Logic
 - AND
 - NAND
 - AND-OR
 - AND-OR-INVERT
 - OR-XOR
 - OR-XNOR
- Latches
 - S-R
 - Clocked D with Set and Reset
 - Transparent D with Set and Reset
 - Clocked J-K with Reset

FIGURE 28-1: CLCx SIMPLIFIED BLOCK DIAGRAM

sensitive timing inputs that occur during, and extend beyond, the one-shot period will be suspended until the end of the one-shot time.

30.1.2.2 Rising Ramp

The Rising Ramp mode is identical to the Slope Compensation mode except that the ramps have a rising slope instead of a falling slope. One side of the internal capacitor is connected to the voltage input source and the other side is connected to the internal current source. The internal current source charges this capacitor at a programmable rate. As the capacitor charges, the capacitor voltage is added to the voltage source, producing a linear voltage rise at the required rate (see Figure 30-5). The ramp terminates and the capacitor is discharged when the set_falling timing input goes true. The next ramp starts when the set_rising timing input goes true.

Enabling the optional one-shot by setting the OS bit of the PRGxCON0 register ensures that the capacitor is fully discharged by overriding the set_rising timing input and holding the shorting switch closed for at least the one-shot period, typically 50 ns. Edge sensitive timing inputs that occur during the one-shot period will be ignored. Level sensitive timing inputs that occur during, and extend beyond, the one-shot period will be suspended until the end of the one-shot time.

30.2 Enable, Ready, Go

The EN bit of the PRGxCON0 register enables the analog circuitry including the current sources. This permits preparing the PRG module for use and allowing it to become stable before putting it into operation. When the EN bit is set then the timing inputs are enabled so that initial ramp action can be determined before the GO bit is set. The capacitor shorting switch is closed when the EN bit is set and remains closed while the GO bit is zero.

The RDY bit of the PRGxCON1 register indicates that the analog circuits and current sources are stable.

The GO bit of the PRGxCON0 register enables the switch control circuits, thereby putting the PRG into operation. The GO transition from cleared to set triggers the one-shot, thereby extending the capacitor shorting switch closure for the one-shot period.

To ensure predictable operation, set the EN bit first then wait for the RDY bit to go high before setting the GO bit.

30.3 Independent Set_rising and Set_falling Timing Inputs

The timing inputs determine when the ramp starts and stops. In the Alternating Rising/Falling mode the ramp rises when the set_rising input goes true and falls when the set_falling input goes true. In the Slope Compensation and Rising Ramp modes the capacitor is discharged when the set_falling timing input goes true and the ramp starts when the set_rising timing input goes true. The set_falling input dominates the set_rising input.

30.4 Level and Edge Timing Sensitivity

The set_rising and set_falling timing inputs can be independently configured as either level or edge sensitive.

Level sensitive operation is useful when it is necessary to detect a timing input true state after an overriding condition ceases. For example, level sensitivity is useful for capacitor generated timing inputs that may be suppressed by the overriding action of the one-shot. With level sensitivity a capacitor output that changes during the one-shot period will be detected at the end of the one-shot time. With edge sensitivity the change would be ignored.

Edge sensitive operation is useful for periodic timing inputs such as those generated by PWMs and clocks. The duty cycle of a level sensitive periodic signal may interfere with the other timing input. Consider an Alternating Ramp mode with a level sensitive 50% PWM as the set_rising timing source and a level sensitive comparator as the set_falling timing source. If the comparator output reverses the ramp while the PWM signal is still high then the ramp will improperly reverse again when the comparator signal goes low. That same scenario with the set_rising timing input set for edge sensitivity would properly change the ramp output to rising only on the rising edge of the PWM signal.

Set_rising and set_falling timing input edge sensitivity is selected with the respective REDG and FEDG bits of the PRGxCON1 register.

30.5 One-Shot Minimum Timing

The one-shot timer ensures a minimum capacitor discharge time in the Slope Compensation and Rising Ramp modes, and a minimum rising or falling ramp duration in the Alternating Ramp mode. Setting the OS bit of the PRGxCON0 register enables the one-shot timer.

30.6 DAC Voltage Sources

When using any of the DACs as the voltage source expect a voltage offset equal to the current setting times the DAC equivalent resistance. This will be a constant offset in the Slope Compensation and Ramp modes and a positive/negative step offset in the Alternating mode. To avoid this limitation, feed the DAC output to the PRG input through one of the op amps set for unity gain.

30.7 Operation During Sleep

The RG module is unaffected by Sleep.

30.8 Effects of a Reset

The RG module resets to a disabled condition.

The MSSP consists of a transmit/receive shift register (SSPSR) and a buffer register (SSPxBUF). The SSPSR shifts the data in and out of the device, MSb first. The SSPxBUF holds the data that was written to the SSPSR until the received data is ready. Once the eight bits of data have been received, that byte is moved to the SSPxBUF register. Then, the Buffer Full Detect bit, BF of the SSPxSTAT register, and the interrupt flag bit, SSPxIF, are set. This double-buffering of the received data (SSPxBUF) allows the next byte to start reception before reading the data that was just received. Any write to the SSPxBUF register during transmission/reception of data will be ignored and the Write Collision Detect bit WCOL of the SSPxCON1 register, will be set. User software must clear the WCOL bit to allow the following write(s) to the SSPxBUF register to complete successfully.

When the application software is expecting to receive valid data, the SSPxBUF should be read before the next byte of data to transfer is written to the SSPxBUF. The Buffer Full bit, BF of the SSPxSTAT register, indicates when SSPxBUF has been loaded with the received data (transmission is complete). When the SSPxBUF is read, the BF bit is cleared. This data may be irrelevant if the SPI is only a transmitter. Generally, the MSSP interrupt is used to determine when the transmission/reception has completed. If the interrupt method is not going to be used, then software polling can be done to ensure that a write collision does not occur.

The SSPSR is not directly readable or writable and can only be accessed by addressing the SSPxBUF register. Additionally, the SSPxSTAT register indicates the various Status conditions.

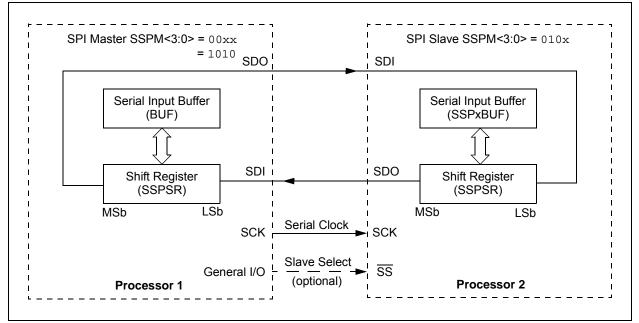
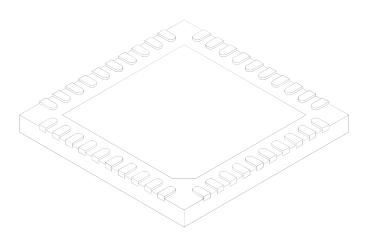



FIGURE 32-5: SPI MASTER/SLAVE CONNECTION

40-Lead Ultra Thin Plastic Quad Flat, No Lead Package (MV) – 5x5x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

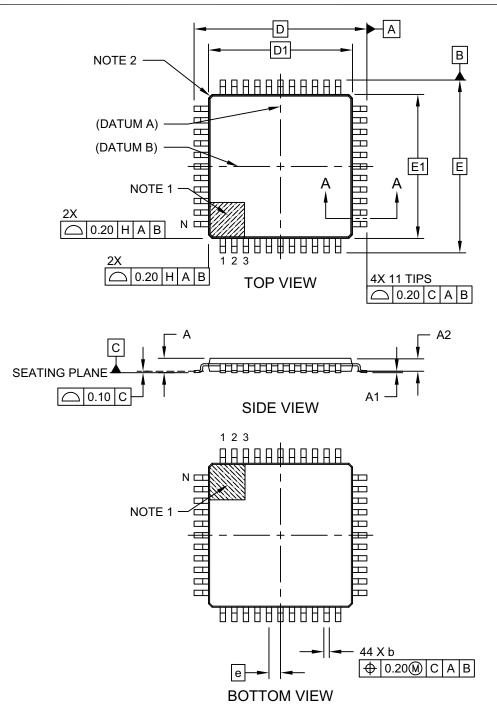
	MILLIMETERS				
Dimensio	on Limits	MIN	NOM	MAX	
Number of Pins	N	40			
Pitch	е	0.40 BSC			
Overall Height	A	0.45	0.50	0.55	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3	0.127 REF			
Overall Width	E	5.00 BSC			
Exposed Pad Width	E2	3.60	3.70	3.80	
Overall Length	D	5.00 BSC			
Exposed Pad Length	D2	3.60	3.70	3.80	
Contact Width	b	0.15	0.20	0.25	
Contact Length	L	0.30	0.40	0.50	
Contact-to-Exposed Pad	K	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-156A Sheet 2 of 2

44-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1.0 mm Body [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-076C Sheet 1 of 2

APPENDIX A: DATA SHEET REVISION HISTORY

Revision A (11/2015)

Initial release of this document.

Revision B (10/2016)

Updated Figures 14-1, 23-3, 23-8, 23-9, and 23-10; Registers 7-5, 7-11, 18-1, 19-1, 24-6, 27-11, 31-3, 31-4, 31-5, 31-6, 31-7, and 32-4; Section 32.6; Tables 3, 4, 3-4, 3-6, 3-7, 3-14, 3-15, 3-18, 12-1, 12-2, 12-3, 24-4, 25-5, 27-5, 27-6, 28-1, 32-4, 36-1, 36-2, 36-7 and 36-8.

Updated the Cover page.

Section 20.5 rewritten. Added Characterization Data.