

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	36
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 28x10b; D/A 4x5b, 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1777-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.6 Device ID and Revision ID

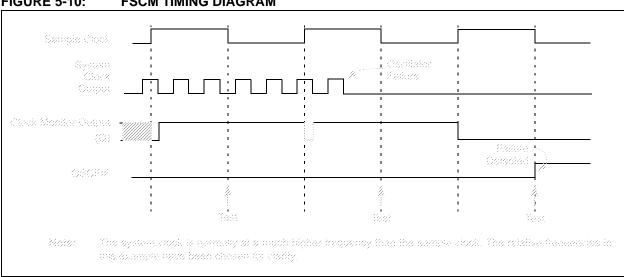
The 14-bit device ID word is located at 8006h and the 14-bit revision ID is located at 8005h. These locations are read-only and cannot be erased or modified. See **Section 10.4 "User ID, Device ID and Configuration Word Access"** for more information on accessing these memory locations.

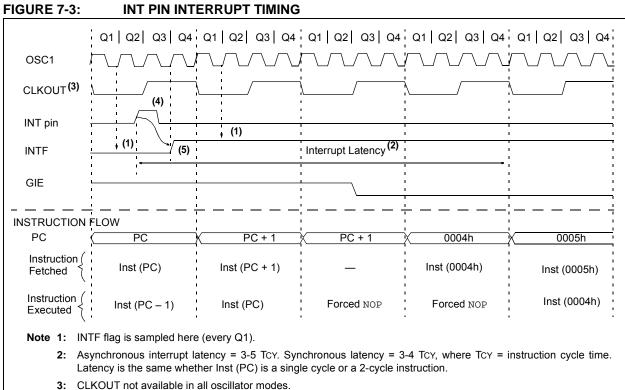
Development tools, such as device programmers and debuggers, may be used to read the Device ID and Revision ID.

4.7 Register Definitions: Device and Revision

REGISTER 4-3: DEVID: DEVICE ID REGISTER

	R	R	R	R	R	R					
			DEV<	:13:8>							
	bit 13					bit 8					
R	R	R	R	R	R	R					
DEV<7:0>											
						bit 0					
	R		bit 13 R R R	DEV bit 13	R R R R R R	DEV<13:8> bit 13					


Legend:


R = Readable bit

'1' = Bit is set '0' = Bit is cleared

bit 13-0 **DEV<13:0>:** Device ID bits

Device	DEVID<13:0> Values								
PIC16F1777	11 0000 1000 1110 (308E)								
PIC16F1778	11 0000 1000 1111 (308F)								
PIC16F1779	11 0000 1001 0000 (3090)								
PIC16LF1777	11 0000 1001 0001 (3091)								
PIC16LF1778	11 0000 1001 0010 (3092)								
PIC16LF1779	11 0000 1001 0011 (3093)								

3: CLKOUT not available in all oscillator modes.

4: For minimum width of INT pulse, refer to AC specifications in Section 36.0 "Electrical Specifications"".

5: INTF is enabled to be set any time during the Q4-Q1 cycles.

EXAMPLE 10-3: WRITING TO FLASH PROGRAM MEMORY

; This write routine assumes the following: ; 1. 64 bytes of data are loaded, starting at the address in DATA_ADDR ; 2. Each word of data to be written is made up of two adjacent bytes in DATA_ADDR, ; stored in little endian format ; 3. A valid starting address (the least significant bits = 00000) is loaded in ADDRH: ADDRL ; 4. ADDRH and ADDRL are located in shared data memory 0x70 - 0x7F (common RAM) ; BCF INTCON,GIE ; Disable ints so required sequences will execute properly ; Bank 3 BANKSEL PMADRH MOVF ADDRH,W ; Load initial address MOVWF PMADRH MOVF ADDRL,W MOVWF PMADRL LOW DATA_ADDR ; Load initial data address MOVLW MOVWF FSROL ; MOVLW HIGH DATA_ADDR ; Load initial data address MOVWF FSR0H ; PMCON1,CFGS ; Not configuration space BCF BSF PMCON1,WREN ; Enable writes PMCON1,LWLO ; Only Load Write Latches BSF LOOP MOVIW FSR0++ ; Load first data byte into lower MOVWF PMDATT. ; ; Load second data byte into upper MOVIW FSR0++ MOVWF PMDATH MOVF ; Check if lower bits of address are '00000' PMADRL,W ; Check if we're on the last of 32 addresses XORLW 0x1F ANDLW 0x1F BTFSC STATUS,Z ; Exit if last of 32 words, GOTO START_WRITE ; MOVLW 55h ; Start of required write sequence: MOVWF PMCON2 ; Write 55h Required Sequence MOVLW 0AAh MOVWF PMCON2 ; Write AAh BSF ; Set WR bit to begin write PMCON1,WR NOP ; NOP instructions are forced as processor ; loads program memory write latches NOP INCF PMADRL, F ; Still loading latches Increment address GOTO LOOP ; Write next latches START_WRITE BCF PMCON1,LWLO ; No more loading latches - Actually start Flash program ; memory write MOVLW 55h ; Start of required write sequence: MOVWF PMCON2 ; Write 55h Required Sequence MOVLW 0AAh ; MOVWF PMCON2 ; Write AAh BSF PMCON1,WR ; Set WR bit to begin write NOP ; NOP instructions are forced as processor writes ; all the program memory write latches simultaneously NOP ; to program memory. ; After NOPs, the processor ; stalls until the self-write process in complete ; after write processor continues with 3rd instruction PMCON1,WREN BCF ; Disable writes BSF INTCON,GIE ; Enable interrupts

REGISTER 11-22: WPUC: WEAK PULL-UP PORTC REGISTER

Legend:							
bit 7							bit 0
WPUC7	WPUC6	WPUC5	WPUC4	WPUC3	WPUC2	WPUC1	WPUC0
R/W-1/1							

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 WPUC<7:0>: Weak Pull-up Register bits^(1, 2) 1 = Pull-up enabled 0 = Pull-up disabled

Note 1: Global WPUEN bit of the OPTION_REG register must be cleared for individual pull-ups to be enabled.

2: The weak pull-up device is automatically disabled if the pin is configured as an output.

REGISTER 11-23: ODCONC: PORTC OPEN-DRAIN CONTROL REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| ODC7 | ODC6 | ODC5 | ODC4 | ODC3 | ODC2 | ODC1 | ODC0 |
| bit 7 | | • | | | | | bit 0 |
| | | | | | | | |
| Legend: | | | | | | | |

Legenu.		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **ODC<7:0>:** PORTC Open-Drain Enable bits

For RC<7:0> pins

- 1 = Port pin operates as open-drain drive (sink current only)
- 0 = Port pin operates as standard push-pull drive (source and sink current)

U-0	U-0	U-0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0
	—	DAC6LD ⁽¹⁾	DAC5LD	—	—	DAC2LD	DAC1LD
bit 7							bit 0
Legend:							
R = Readable		W = Writable			mented bit, read		
u = Bit is uncha	anged	x = Bit is unkn			at POR and BO		ther Resets
'1' = Bit is set		'0' = Bit is clea	ared	q = value dep	pends on config	uration bits	
bit 7-6	•	ted: Read as '					
bit 5		C6 Double Buf					
	1 = DAC6RE by hardw		L values are	transfered to t	he double buffe	r. Bit is cleared	automatically
	,	FHL:DAC6REF	L double buf	fers remain un	changed.		
bit 4		C5 Double Buf			U U		
	1 = DAC5RE by hardw		L values are	transfered to t	he double buffe	r. Bit is cleared	automatically
	,	FHL:DAC5REF	L double buf	fers remain un	changed.		
bit 3-2	Unimplemen	ted: Read as ')'				
bit 1	DAC2LD: DA	C2 Double Buf	fer Load bit				
	1 = DAC2RE by hardw		L values are	transfered to t	he double buffe	r. Bit is cleared	automatically
	0 = DAC2RE	FHL:DAC2REF	L double buf	fers remain un	changed.		
bit 0	DAC1LD: DA	C1 Double Buf	fer Load bit				
	1 = DAC1RE by hardw		L values are	transfered to t	he double buffe	r. Bit is cleared	automatically
		FHL:DAC1REF	L double buf	fers remain un	changed.		
Note 1: PIC	16LF1777/9 on	nly.					

REGISTER 18-4: DACLD: DAC BUFFER LOAD REGISTER

TABLE 18-3: SUMMARY OF	REGISTERS ASSOCIATED WITH THE DACX MODULE
------------------------	---

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
DAC1CON0	EN	FM	OE1	OE2	PSS	<1:0>	NSS	<1:0>	249
DAC2CON0	EN	FM	OE1	OE2	PSS	<1:0>	NSS	<1:0>	249
DAC5CON0	EN	FM	OE1	OE2	PSS	<1:0>	NSS	<1:0>	249
DAC6CON0 ⁽¹⁾	EN	FM	OE1	OE2	PSS	<1:0>	NSS	<1:0>	249
DAC1REFH			RE	F<9:x> (x D	epends on F	M bit)			250
DAC2REFH			RE	EF<9:x> (x D	epends on F	M bit)			250
DAC5REFH			RE	EF<9:x> (x D	epends on F	M bit)			250
DAC6REFH ⁽¹⁾			RE	EF<9:x> (x D	epends on F	M bit)			250
DAC1REFL			REF	= <x-1:0> (x [</x-1:0>	Depends on I	FM bit)			250
DAC2REFL			REF	= <x-1:0> (x [</x-1:0>	Depends on I	=M bit)			250
DAC5REFL			REF	= <x-1:0> (x [</x-1:0>	Depends on I	-M bit)			250
DAC6REFL ⁽¹⁾			REF	= <x-1:0> (x [</x-1:0>	Depends on I	=M bit)			250
DACLD		_	_	DAC5LD	_		DAC2LD	DAC1LD	251

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used with the DACx module.

Note 1: PIC16LF1777/9 only.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	_	_	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	177
ANSELB	_	_	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	182
ANSELC	ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2	_	_	187
CM1CON0	ON	OUT	_	POL	ZLF	Reserved	HYS	SYNC	258
CM2CON0	ON	OUT	_	POL	ZLF	Reserved	HYS	SYNC	258
CM3CON0	ON	OUT	_	POL	ZLF	Reserved	HYS	SYNC	258
CM4CON0	ON	OUT	_	POL	ZLF	Reserved	HYS	SYNC	258
CM5CON0	ON	OUT	_	POL	ZLF	Reserved	HYS	SYNC	258
CM6CON0	ON	OUT	_	POL	ZLF	Reserved	HYS	SYNC	258
CM1CON1	_	_	_	_	_	_	INTP	INTN	259
CM2CON1	_	_	_	_	_	_	INTP	INTN	259
CM3CON1			_	_	_	_	INTP	INTN	259
CM4CON1	_	_		_	_	_	INTP	INTN	259
CM5CON1			_	_	_	_	INTP	INTN	259
CM6CON1	_	_		_	_	_	INTP	INTN	259
CM7CON1 ⁽¹⁾	_	_		_	_	_	INTP	INTN	259
CM8CON1 ⁽¹⁾	_	_		_	_	_	INTP	INTN	259
CM1NSEL	_	_	_	_		NCH	<3:0>		260
CM2NSEL	_	_	_	_		NCH	<3:0>		260
CM3NSEL	_	_	_	_		NCH	<3:0>		260
CM4NSEL	_	_	_	_			<3:0>		260
CM5NSEL	_	_	_	_	NCH<3:0>				260
CM6NSEL	_	_	_	_	NCH<3:0>				260
CM7NSEL ⁽¹⁾	_	_	_	_	NCH<3:0>				260
CM8NSEL ⁽¹⁾	_	_	_	_			<3:0>		260
CM1PSEL	_	_		_			<3:0>		261
CM2PSEL	_	_		_			<3:0>		261
CM3PSEL	_	_	_	_		PCH	<3:0>		261
CM4PSEL	_	_	_	_		PCH	<3:0>		261
CM5PSEL	_	_	_	_		PCH	<3:0>		261
CM6PSEL	_	_	_	_		PCH	<3:0>		261
CM7PSEL ⁽¹⁾	_	_	_	_		PCH	<3:0>		261
CM8PSEL ⁽¹⁾	_	_		_		PCH	<3:0>		261
CMOUT	MC8OUT ⁽¹⁾	MC7OUT ⁽¹⁾	MC6OUT	MC5OUT	MC4OUT	MC3OUT	MC2OUT	MC1OUT	262
FVRCON	FVREN	FVRRDY	TSEN	TSRNG		/R<1:0>		R<1:0>	223
DAC1CON0	EN	FM	OE1	OE2	PSS	<1:0>	NSS	<1:0>	249
DAC2CON0	EN	FM	OE1	OE2	PSS	<1:0>	NSS	<1:0>	249
DAC5CON0	EN	FM	OE1	OE2	PSS	<1:0>	NSS	<1:0>	249
DAC6CON0 ⁽¹⁾	EN	FM	OE1	OE2	PSS	<1:0>	NSS	<1:0>	249
DAC3CON0	EN	_	OE1	OE2	PSS	<1:0>	NSS	<1:0>	244
DAC4CON0	EN	_	OE1	OE2	PSS	<1:0>	NSS	<1:0>	244
DAC7CON0	EN		OE1	OE2	PSS	<1:0>	NSS	<1:0>	244
DAC8CON0 ⁽¹⁾	EN		OE1	OE2		<1:0>	NSS	<1:0>	244
DAC3REF					L	REF<4:0>	L		245
DAC4REF						REF<4:0>			245
DAC7REF						REF<4:0>			245
DAC8REF ⁽¹⁾						REF<4:0>			245
				I REF<9:x> (x De					-

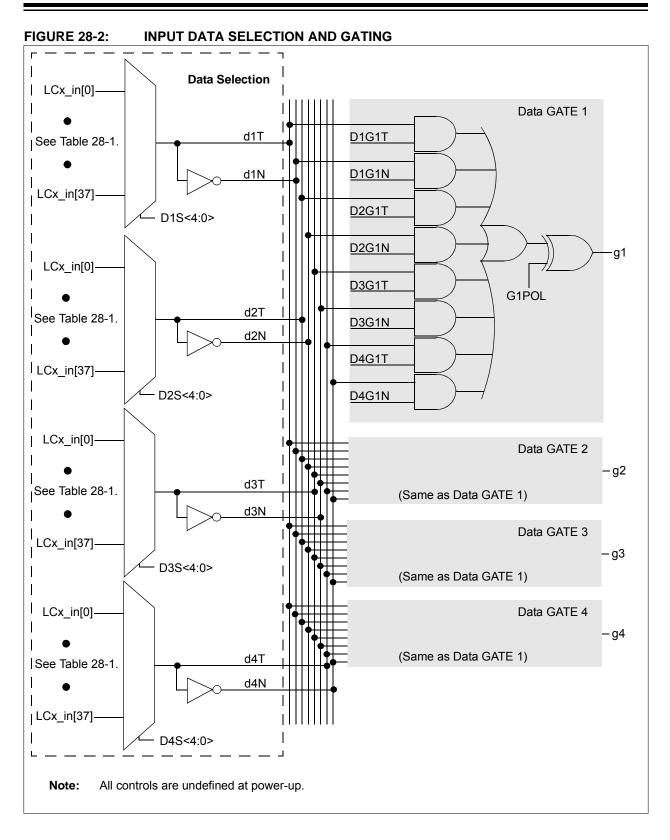
TABLE 19-6: SUMMARY OF REGISTERS ASSOCIATED WITH COMPARATOR MODULE

 Legend:
 - = unimplemented location, read as '0'. Shaded cells are unused by the comparator module.

 Note
 1:
 PIC16LF1777/9 only.

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
_	_	_	_	OFIE	PHIE	DCIE	PRIE
bit 7	·	•	•	·			bit 0
Legend:							
R = Readabl	le bit	W = Writable b	bit	U = Unimplem	ented bit, read a	as '0'	
u = Bit is und	changed	x = Bit is unkno	own	-n/n = Value at	POR and BOR	/Value at all oth	er Resets
'1' = Bit is se	et	'0' = Bit is clea	red				
bit 7-4	Unimplement	ed: Read as '0'					
bit 3	OFIE: Offset I	nterrupt Enable	bit				
		CPU on Offset Match					
		errupt CPU on (
bit 2		Interrupt Enable CPU on Phase N					
		terrupt CPU on I					
bit 1	DCIE: Duty C	vcle Interrupt Er	nable bit				
	1 = Interrupt (CPU on Duty Cycle Match					
	0 = Do not int	errupt CPU on I	Duty Cycle Mate	h			
bit 0		Interrupt Enable					
		CPU on Period I errupt CPU on I					

REGISTER 26-2: PWMxINTE: PWM INTERRUPT ENABLE REGISTER


REGISTER 26-3: PWMxINTF: PWM INTERRUPT REQUEST REGISTER

U-0	U-0	U-0	U-0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0
_	_	—	—	OFIF	PHIF	DCIF	PRIF
bit 7							bit 0

Legend:		
HC = Bit is cleared by har	dware	HS = Bit is set by hardware
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

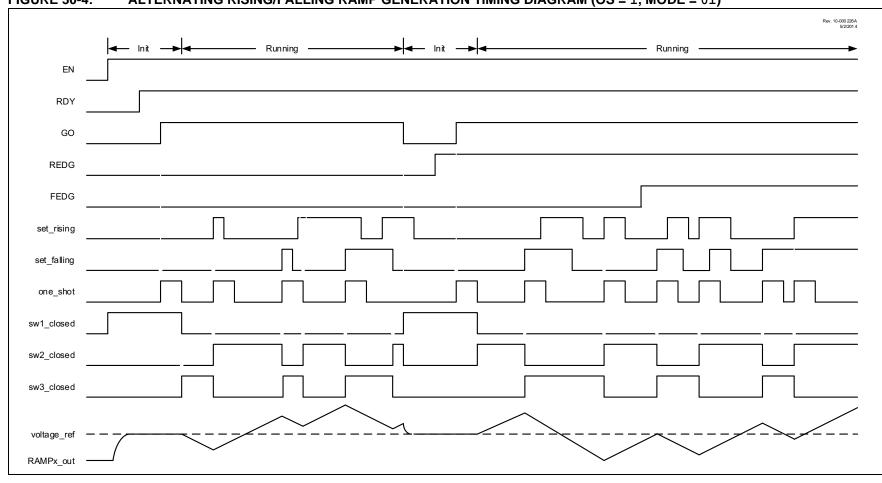
bit 7-4	Unimplemented: Read as '0'
bit 3	OFIF : Offset Interrupt Flag bit ⁽¹⁾
	1 = Offset Match Event occurred
	0 = Offset Match Event did not occur
bit 2	PHIF: Phase Interrupt Flag bit ⁽¹⁾
	1 = Phase Match Event occurred
	0 = Phase Match Event did not occur
bit 1	DCIF: Duty Cycle Interrupt Flag bit ⁽¹⁾
	1 = Duty Cycle Match Event occurred
	0 = Duty Cycle Match Event did not occur
bit 0	PRIF: Period Interrupt Flag bit ⁽¹⁾
	1 = Period Match Event occurred
	0 = Period Match Event did not occur

Note 1: Bit is forced clear by hardware while module is disabled (EN = 0).

REGISTER 29-4: OPAxPCHS: OP AMP POSITIVE CHANNEL SOURCE SELECT REGISTER

bit 7							
bit 7							
bit 7							
							bit 0
—	_	—	—		PCH	<3:0>	
U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition


bit 7-4 Unimplemented: Read as '0'

bit 3-0 PCH<3:0>: Op Amp Non-Inverting Input Channel Selection bits See Table 29-5: Non-Inverting Input Sources

TABLE 29-5: NON-INVERTING INPUT SOURCES

NCH<3:0>	OPA1	OPA2	OPA3	OPA4 ⁽¹⁾
1111	Reserved. Do not use	Reserved. Do not use	Reserved. Do not use	Reserved. Do not use
1110	Reserved. Do not use	Reserved. Do not use	Reserved. Do not use	Reserved. Do not use
1101	Reserved. Do not use	Reserved. Do not use	Reserved. Do not use	Reserved. Do not use
1100	Reserved. Do not use	Reserved. Do not use	Reserved. Do not use	Reserved. Do not use
1011	Reserved. Do not use	Reserved. Do not use	Reserved. Do not use	Reserved. Do not use
1010	Reserved. Do not use	Reserved. Do not use	Reserved. Do not use	Reserved. Do not use
1001	Reserved. Do not use	Reserved. Do not use	Reserved. Do not use	Reserved. Do not use
1000	PRG2_out	PRG2_out	PRG4_out ⁽¹⁾	PRG4_out
0111	PRG1_out	PRG1_out	PRG3_out	PRG3_out
0110	FVR_Buffer1	FVR_Buffer1	FVR_Buffer2	FVR_Buffer2
0101	DAC4_out	DAC4_out	DAC8_out ⁽¹⁾	DAC8_out
0100	DAC3_out	DAC3_out	DAC7_out	DAC7_out
0011	DAC2_out	DAC2_out	DAC6_out ⁽¹⁾	DAC6_out
0010	DAC1_out	DAC1_out	DAC5_out	DAC5_out
0001	OPA1IN1+	OPA2IN1+	OPA3IN1+ ⁽¹⁾	OPA4IN1+
0000	OPA1IN0+	OPA2IN0+	OPA3IN0+	OPA4IN0+

Note 1: PIC16(L)F1777/9 only.

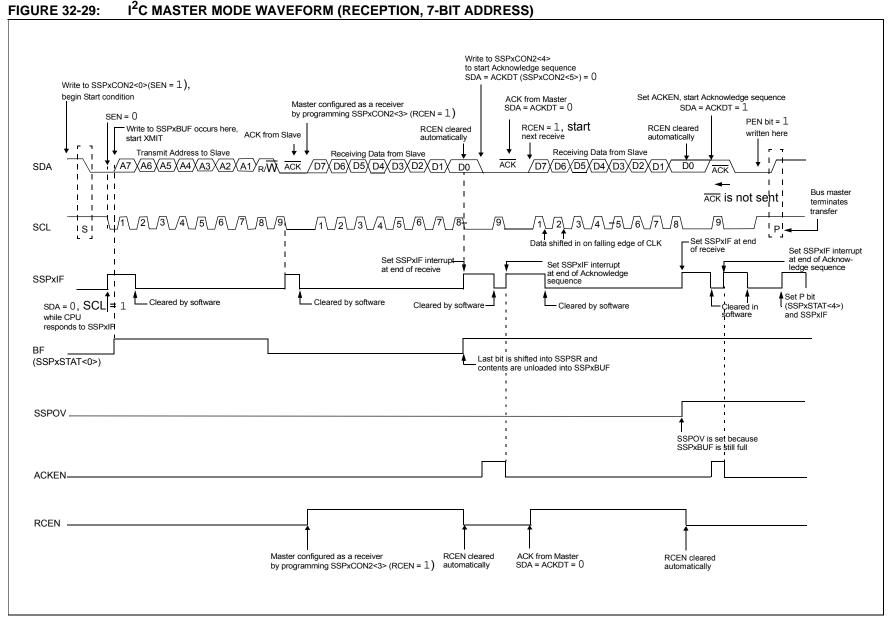
FIGURE 30-4: ALTERNATING RISING/FALLING RAMP GENERATION TIMING DIAGRAM (OS = 1, MODE = 01)

PIC16(L)F1777/8/9

U-0	U-0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0
_	_	CHPOL	CHSYNC	_	—	CLPOL	CLSYNC
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is un	ichanged	x = Bit is unki	nown	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is s	et	'0' = Bit is cle	ared				
bit 7-6	Unimplemen	ted: Read as '	0'				
bit 5	CHPOL: Mod	lulation High C	arrier Polarity	Select bit			
	1 = Selected	high carrier so	ource is inverte	ed			
	0 = Selected	high carrier so	ource is not inv	verted			
bit 4	CHSYNC: Mo	odulation High	Carrier Synch	ronization Ena	ble bit		
					efore allowing a	switch to the le	ow carrier
		-	-	to the high car	rier		
bit 3-2	Unimplemen	ted: Read as '	0'				
bit 1	CLPOL: Mod	ulation Low Ca	rrier Polarity	Select bit			
	1 = Selected low carrier source is inverted						
	0 = Selected	low carrier sou	urce is not inv	erted			
bit 0	CLSYNC: Mo	odulation Low 0	Carrier Synchr	onization Enab	ole bit		
					fore allowing a	switch to the hi	gh carrier
	0 = Modulato	or output is not	synchronized	to the low carr	ier ⁽¹⁾		

REGISTER 31-2: MDxCON1: MODULATION CONTROL REGISTER 1

Note 1: Narrowed carrier pulse widths or spurs may occur in the signal stream if the carrier is not synchronized.


REGISTER 31-3: MDxSRC: MODULATION SOURCE CONTROL REGISTER

U-0	U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
—	—				MS<4:0>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **MS<4:0>** Modulation Source Selection bits See Table 31-4 or Table 31-5.

33.1 EUSART Asynchronous Mode

The EUSART transmits and receives data using the standard non-return-to-zero (NRZ) format. NRZ is implemented with two levels: a VOH Mark state which represents a '1' data bit, and a VoL Space state which represents a '0' data bit. NRZ refers to the fact that consecutively transmitted data bits of the same value stay at the output level of that bit without returning to a neutral level between each bit transmission. An NRZ transmission port idles in the Mark state. Each character transmission consists of one Start bit followed by eight or nine data bits and is always terminated by one or more Stop bits. The Start bit is always a space and the Stop bits are always marks. The most common data format is eight bits. Each transmitted bit persists for a period of 1/(baud rate). An on-chip dedicated 8-bit/16-bit Baud Rate Generator is used to derive standard baud rate frequencies from the system oscillator. See Table 33-5 for examples of baud rate configurations.

The EUSART transmits and receives the LSb first. The EUSART's transmitter and receiver are functionally independent, but share the same data format and baud rate. Parity is not supported by the hardware, but can be implemented in software and stored as the ninth data bit.

33.1.1 EUSART ASYNCHRONOUS TRANSMITTER

The EUSART transmitter block diagram is shown in Figure 33-1. The heart of the transmitter is the serial Transmit Shift Register (TSR), which is not directly accessible by software. The TSR obtains its data from the transmit buffer, which is the TXxREG register.

33.1.1.1 Enabling the Transmitter

The EUSART transmitter is enabled for asynchronous operations by configuring the following three control bits:

- TXEN = 1
- SYNC = 0
- SPEN = 1

All other EUSART control bits are assumed to be in their default state.

Setting the TXEN bit of the TXxSTA register enables the transmitter circuitry of the EUSART. Clearing the SYNC bit of the TXxSTA register configures the EUSART for asynchronous operation. Setting the SPEN bit of the RCxSTA register enables the EUSART and automatically configures the TX/CK I/O pin as an output. If the TX/CK pin is shared with an analog peripheral, the analog I/O function must be disabled by clearing the corresponding ANSEL bit.

Note: The TXIF Transmitter Interrupt flag is set when the TXEN enable bit is set.

33.1.1.2 Transmitting Data

A transmission is initiated by writing a character to the TXxREG register. If this is the first character, or the previous character has been completely flushed from the TSR, the data in the TXxREG is immediately transferred to the TSR register. If the TSR still contains all or part of a previous character, the new character data is held in the TXxREG until the Stop bit of the previous character has been transmitted. The pending character in the TXxREG is then transferred to the TSR in one TcY immediately following the Stop bit sequence commences immediately following the transfer of the data to the TSR from the TXxREG.

33.1.1.3 Transmit Data Polarity

The polarity of the transmit data can be controlled with the SCKP bit of the BAUDxCON register. The default state of this bit is '0', which selects high true transmit idle and data bits. Setting the SCKP bit to '1' will invert the transmit data resulting in low true idle and data bits. The SCKP bit controls transmit data polarity in Asynchronous mode only. In Synchronous mode, the SCKP bit has a different function. See **Section 33.5.1.2 "Clock Polarity"**.

33.1.1.4 Transmit Interrupt Flag

The TXIF interrupt flag bit of the PIR1 register is set whenever the EUSART transmitter is enabled and no character is being held for transmission in the TXxREG. In other words, the TXIF bit is only clear when the TSR is busy with a character and a new character has been queued for transmission in the TXxREG. The TXIF flag bit is not cleared immediately upon writing TXxREG. TXIF becomes valid in the second instruction cycle following the write execution. Polling TXIF immediately following the TXxREG write will return invalid results. The TXIF bit is read-only, it cannot be set or cleared by software.

The TXIF interrupt can be enabled by setting the TXIE interrupt enable bit of the PIE1 register. However, the TXIF flag bit will be set whenever the TXxREG is empty, regardless of the state of the TXIE enable bit.

To use interrupts when transmitting data, set the TXIE bit only when there is more data to send. Clear the TXIE interrupt enable bit upon writing the last character of the transmission to the TXxREG.

33.6 EUSART Operation During Sleep

The EUSART will remain active during Sleep only in the Synchronous Slave mode. All other modes require the system clock and therefore cannot generate the necessary signals to run the Transmit or Receive Shift registers during Sleep.

Synchronous Slave mode uses an externally generated clock to run the Transmit and Receive Shift registers.

33.6.1 SYNCHRONOUS RECEIVE DURING SLEEP

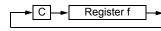
To receive during Sleep, all the following conditions must be met before entering Sleep mode:

- RCxSTA and TXxSTA Control registers must be configured for Synchronous Slave Reception (see Section 33.5.2.4 "Synchronous Slave Reception Set-up:").
- If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- The RCIF interrupt flag must be cleared by reading RCxREG to unload any pending characters in the receive buffer.

Upon entering Sleep mode, the device will be ready to accept data and clocks on the RX/DT and TX/CK pins, respectively. When the data word has been completely clocked in by the external device, the RCIF interrupt flag bit of the PIR1 register will be set. Thereby, waking the processor from Sleep.

Upon waking from Sleep, the instruction following the SLEEP instruction will be executed. If the Global Interrupt Enable (GIE) bit of the INTCON register is also set, then the Interrupt Service Routine at address 004h will be called.

33.6.2 SYNCHRONOUS TRANSMIT DURING SLEEP


To transmit during Sleep, all the following conditions must be met before entering Sleep mode:

- The RCxSTA and TXxSTA Control registers must be configured for synchronous slave transmission (see Section 33.5.2.2 "Synchronous Slave Transmission Set-up:").
- The TXIF interrupt flag must be cleared by writing the output data to the TXxREG, thereby filling the TSR and transmit buffer.
- If interrupts are desired, set the TXIE bit of the PIE1 register and the PEIE bit of the INTCON register.
- Interrupt enable bits TXIE of the PIE1 register and PEIE of the INTCON register must set.

Upon entering Sleep mode, the device will be ready to accept clocks on TX/CK pin and transmit data on the RX/DT pin. When the data word in the TSR has been completely clocked out by the external device, the pending byte in the TXxREG will transfer to the TSR and the TXIF flag will be set. Thereby, waking the processor from Sleep. At this point, the TXxREG is available to accept another character for transmission, which will clear the TXIF flag.

Upon waking from Sleep, the instruction following the SLEEP instruction will be executed. If the Global Interrupt Enable (GIE) bit is also set then the Interrupt Service Routine at address 0004h will be called.

RRF	Rotate Right f through Carry
Syntax:	[<i>label</i>] RRF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	See description below
Status Affected:	С
Description:	The contents of register 'f' are rotated one bit to the right through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.

SUBLW	Subtract V	V from literal			
Syntax:	[label] S	UBLW k			
Operands:	$0 \le k \le 255$	$0 \le k \le 255$			
Operation:	$k - (W) \to (V$	V)			
Status Affected:	C, DC, Z	C, DC, Z			
Description:	The W register is subtracted (2's complement method) from the 8-bit literal 'k'. The result is placed in the W register.				
	C = 0	W > k			
	C = 1	$W \le k$			
	DC = 0	W<3:0> > k<3:0>			

DC = 1

 $W<3:0> \le k<3:0>$

SLEEP	Enter Sleep mode
Syntax:	[label] SLEEP
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow WDT, \\ 0 \rightarrow \underline{WDT} \text{ prescaler}, \\ 1 \rightarrow \underline{TO}, \\ 0 \rightarrow \overline{PD} \end{array}$
Status Affected:	TO, PD
Description:	The power-down Status bit, $\overline{\text{PD}}$ is cleared. Time-out Status bit, $\overline{\text{TO}}$ is set. Watchdog Timer and its prescaler are cleared. The processor is put into Sleep mode with the oscillator stopped.

SUBWF	Subtract W from f						
Syntax:	[label] SL	IBWF f,d					
Operands:	$0 \le f \le 127$ $d \in [0,1]$						
Operation:	(f) - (W) \rightarrow (d	estination)					
Status Affected:	C, DC, Z						
Description:	Subtract (2's complement method) W register from register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f. $C = 0 \qquad W > f$						
	$W \leq f$						
	DC = 0	W<3:0> > f<3:0>					
DC = 1 W<3:0> ≤ f<3:0>							

SUBWFB	Subtract W from f with Borrow
Syntax:	SUBWFB f {,d}
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	$(f) - (W) - (\overline{B}) \rightarrow dest$
Status Affected:	C, DC, Z
Description:	Subtract W and the BORROW flag (CARRY) from register 'f' (2's complement method). If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.

PIC16LI	F1777/8/9	Standa	rd Operat	ing Conc	litions (un	less oth	erwise stated)
PIC16F	1777/8/9						
Param	Device	Min.	Typt	Max.	Units		Conditions
No.	Characteristics	wiiri.	турт			Vdd	Note
D009	LDO Regulator	—	75	_	μA	_	High-Power mode, normal operation
		—	15	_	μA	_	Sleep, VREGCON<1> = 0
		_	0.3		μA		Sleep, VREGCON<1> = 1
D010		_	8	25	μA	1.8	Fosc = 32 kHz,
		_	12	30	μA	3.0	LP Oscillator mode (Note 4), -40°C \leq TA \leq +85°C
D010		—	21	30	μA	2.3	Fosc = 32 kHz,
		—	25	34	μA	3.0	LP Oscillator mode (Note 4,5)
		—	26	35	μA	5.0	$-40^{\circ}C \le TA \le +85^{\circ}C$
D012		_	210	440	μA	1.8	Fosc = 4 MHz,
		—	390	620	μA	3.0	XT Oscillator mode
D012		—	320	530	μA	2.3	Fosc = 4 MHz,
			430	680	μA	3.0	XT Oscillator mode (Note 5)
		—	530	790	μA	5.0	
D014		_	170	380	μA	1.8	Fosc = 4 MHz,
		—	320	550	μA	3.0	External Clock (ECM), Medium Power mode
D014		—	250	513	μA	2.3	Fosc = 4 MHz,
		—	360	645	μA	3.0	External Clock (ECM), Medium Power mode
		—	430	735	μA	5.0	
D015		_	2.5	3.8	mA	3.0	Fosc = 32 MHz,
		—	3.1	4.0	mA	3.6	External Clock (ECH), High-Power mode (Note 5)
D015		—	2.5	4.3	mA	3.0	Fosc = 32 MHz,
		—	2.7	4.6	mA	5.0	External Clock (ECH), High-Power mode (Note 5)

TABLE 36-2: SUPPLY CURRENT (IDD)^(1,2)

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: For EXTRC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in kΩ.

4: FVR and BOR are disabled.

5: 8 MHz crystal/oscillator with 4x PLL enabled.

TABLE 36-2: SUPPLY CURRENT (IDD)^(1,2) (CONTINUED)

PIC16LF	1777/8/9	Standard Operating Conditions (unless otherwise stated)						
PIC16F1	777/8/9							
Param	Device	Min.	Turnet	Max.	Units		Conditions	
No.	Characteristics	win.	Тур†	wax.	Units	VDD	Note	
D017		—	115	190	μA	1.8	Fosc = 500 kHz,	
		_	145	320	μA	3.0	MFINTOSC mode	
D017		_	160	215	μA	2.3	Fosc = 500 kHz,	
			180	340	μA	3.0	MFINTOSC mode	
			230	420	μA	5.0		
D019		_	0.9	1.5	mA	1.8	Fosc = 16 MHz,	
		_	1.5	2.3	mA	3.0	HFINTOSC mode	
D019			1.2	2.0	mA	2.3	Fosc = 16 MHz,	
			1.5	2.5	mA	3.0	HFINTOSC mode	
			1.7	2.6	mA	5.0		
D020		_	2.9	4.2	mA	3.0	Fosc = 32 MHz,	
			3.5	4.3	mA	3.6	HFINTOSC mode (Note 5)	
D020			2.9	4.2	mA	3.0	Fosc = 32 MHz,	
		—	3.0	5.0	mA	5.0	HFINTOSC mode (Note 5)	
D022			2.8	4	mA	3.0	Fosc = 32 MHz,	
		—	3.4	4.7	mA	3.6	HS Oscillator mode (Note 5)	
D022			2.9	4	mA	3.0	Fosc = 32 MHz	
		—	3.1	4.5	mA	5.0	HS Oscillator mode (Note 5)	

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: For EXTRC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in kΩ.

4: FVR and BOR are disabled.

5: 8 MHz crystal/oscillator with 4x PLL enabled.

TABLE 36-4: I/O PORTS (CONTINUED) (CONTINUED)

Standard	l Operati	ng Conditions (unless otherwi	se stated)	

Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions	
		Capacitive Loading Specs on Output Pins						
D101*	COSC2	OSC2 pin	_	—	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1	
D101A*	Сю	All I/O pins			50	pF		

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In EXTRC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in EXTRC mode.

2: Negative current is defined <u>as current sourced by the pin.</u>

3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

4: Including OSC2 in CLKOUT mode.

Note: Unless otherwise noted, VIN = 5V, Fosc = 300 kHz, CIN = 0.1 μ F, TA = 25°C.

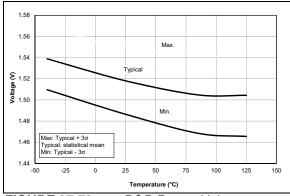


FIGURE 37-73: POR Rearm Voltage, NP Mode (VREGPM1 = 0), PIC16F1773/6 Only.

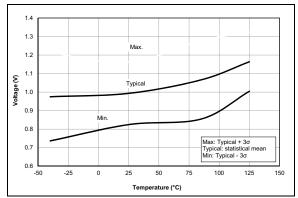


FIGURE 37-74: POR Rearm Voltage, NP Mode, PIC16LF1777/8/9 Only.

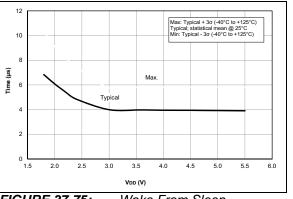


FIGURE 37-75: Wake From Sleep, VREGPM = 0.

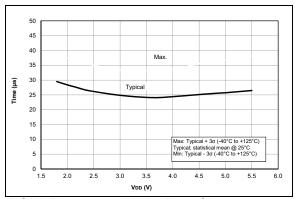


FIGURE 37-76: Wake From Sleep, VREGPM = 1.

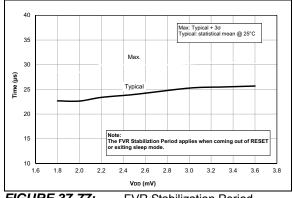
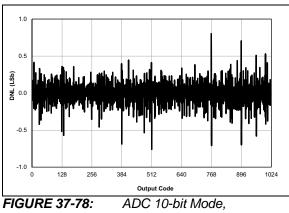
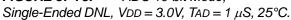




FIGURE 37-77: FVR Stabilization Period, PIC16LF1777/8/9 Only.

