

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Betalls	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 17x10b; D/A 3x5b, 3x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1778-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.2.1 READING PROGRAM MEMORY AS DATA

There are two methods of accessing constants in program memory. The first method is to use tables of RETLW instructions. The second method is to set an FSR to point to the program memory.

3.2.1.1 RETLW Instruction

The RETLW instruction can be used to provide access to tables of constants. The recommended way to create such a table is shown in Example 3-1.

EXAMPLE 3-1: RETLW INSTRUCTION

constants	
BRW	;Add Index in W to
	;program counter to
	;select data
RETLW DATA0	;Index0 data
RETLW DATA1	;Index1 data
RETLW DATA2	
RETLW DATA3	
my_function	
; LOTS OF CODE	
MOVLW DATA_IN	DEX
call constants	
; THE CONSTANT IS	IN W
L	

The BRW instruction makes this type of table very simple to implement. If your code must remain portable with previous generations of microcontrollers, then the BRW instruction is not available so the older table read method must be used.

3.2.1.2 Indirect Read with FSR

The program memory can be accessed as data by setting bit 7 of the FSRxH register and reading the matching INDFx register. The MOVIW instruction will place the lower eight bits of the addressed word in the W register. Writes to the program memory cannot be performed via the INDF registers. Instructions that access the program memory via the FSR require one extra instruction cycle to complete. Example 3-2 demonstrates accessing the program memory via an FSR.

The high directive will set bit<7> if a label points to a location in program memory.

EXAMPLE 3-2: ACCESSING PROGRAM MEMORY VIA FSR

constants			
DW DATAO		;First	constant
DW DATA1		;Second	l constant
DW DATA2			
DW DATA3			
my_function			
; LOTS OF C	ODE		
MOVLW DATA_	_INDEX		
ADDLW LOW C	constants		
MOVWF FSR11	_		
MOVLW HIGH	constants	s;MSb s	ets
		automa	atically
MOVWF FSR1H	ł		
BTFSC STATU	JS, C	;carry	from ADDLW?
INCF FSR1H	I, f	;yes	
MOVIW 0[FSF	R1]		
; THE PROGRAM M	EMORY IS	IN W	

TABLE 3-18: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank	Bank 13										
68Ch	— Unimplemented										—
68Dh	COG1PHR	—	_	COG Rising Edge	Phase Delay Cou	nt Register				00 0000	00 0000
68Eh	COG1PHF	—		COG Falling Edge	Phase Delay Cou	unt Register				00 0000	00 0000
68Fh	COG1BLKR	—		COG Rising Edge	Blanking Count R	egister				00 0000	00 0000
690h	COG1BLKF	—	_	COG Falling Edge	Blanking Count F	Register				00 0000	00 0000
691h	COG1DBR	—	_	COG Rising Edge	Dead-band Coun	t Register				00 0000	00 0000
692h	COG1DBF	—		COG Falling Edge	e Dead-band Coun	t Register				00 0000	00 0000
693h	COG1CON0	EN	LD	—	CS<	1:0>		MD<2:0>		00-0 0000	00-0 0000
694h	COG1CON1	RDBS	FDBS	—	—	POLD	POLC	POLB	POLA	00 0000	00 0000
695h	COG1RIS0	RIS7	RIS6	RIS5	RIS4	RIS3	RIS2	RIS1	RIS0	0000 0000	0000 0000
696h	COG1RIS1	RIS15	RIS14	RIS13	RIS12	RIS11	RIS10	RIS9	RIS8	0000 0000	0000 0000
697h	COG1RSIM0	RSIM7	RSIM6	RSIM5	RSIM4	RSIM3	RSIM2	RSIM1	RSIM0	0000 0000	0000 0000
698h	COG1RSIM1	RSIM15	RSIM14	RSIM13	RSIM12	RSIM11	RSIM10	RSIM9	RSIM8	0000 0000	0000 0000
699h	COG1FIS0	FIS7	FIS6	FIS5	FIS4	FIS3	FIS2	FIS1	FIS0	0000 0000	0000 0000
69Ah	COG1FIS1	FIS15	FIS14	FIS13	FIS12	FIS11	FIS10	FIS9	FIS8	0000 0000	0000 0000
69Bh	COG1FSIM0	FSIM7	FSIM6	FSIM5	FSIM4	FSIM3	FSIM2	FSIM1	FSIM0	0000 0000	0000 0000
69Ch	COG1FSIM1	FSIM15	FSIM14	FSIM13	FSIM12	FSIM11	FSIM10	FSIM9	FSIM8	0000 0000	0000 0000
69Dh	COG1ASD0	ASE	ARSEN	ASDBI	0<1:0>	ASDA	C<1:0>	_	_	0001 01	0001 01
69Eh	COG1ASD1	AS7E	AS6E	AS5E	AS4E	AS3E	AS2E	AS1E	AS0E	0000 0000	0000 0000
69Fh	COG1STR	SDATD	SDATC	SDATB	SDATA	STRD	STRC	STRB	STRA	0000 0000	0000 0000

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'. Legend:

Note 1: Unimplemented, read as '1'.

2:

Unimplemented on PIC16LF1777/8/9. 3: Unimplemented on PIC16(L)F1778.

					•	,					
Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	
Bank 14											
70Ch	OCh — Unimplemented										
70Dh	COG2PHR	—	_	COG Rising Edge	Phase Delay Cou	int Register				00 0000	
70Eh	COG2PHF	—		COG Falling Edge	e Phase Delay Cou	unt Register				00 0000	
70Fh	COG2BLKR	—		COG Rising Edge	Blanking Count R	legister				00 0000	
710h	COG2BLKF	—		COG Falling Edge	COG Falling Edge Blanking Count Register						
711h	COG2DBR	—		COG Rising Edge	COG Rising Edge Dead-band Count Register						
712h	COG2DBF	—		COG Falling Edge Dead-band Count Register -							
713h	COG2CON0	EN	LD	_	— CS<1:0> MD<2:0>						

_

RIS4

RIS12

RSIM4

RSIM12

FIS4

FIS12

FSIM4

FSIM12

AS4E

SDATA

POLD

RIS3

RIS11

RSIM3

RSIM11

FIS3

FIS11

FSIM3

FSIM11

AS3E

STRD

ASDAC<1:0>

POLC

RIS2

RIS10

RSIM2

RSIM10

FIS2

FIS10

FSIM2

FSIM10

AS2E

STRC

POLB

RIS1

RIS9

RSIM1

RSIM9

FIS1

FIS9

FSIM1

FSIM9

_

AS1E

STRB

POLA

RIS0

RIS8

RSIM0

RSIM8

FIS0

FIS8

FSIM0

FSIM8

_

AS0E

STRA

00-- 0000

0000 0000

0000 0000

0000 0000

0000 0000

0000 0000

0000 0000

0000 0000

0000 0000

0001 01--

0000 0000

0000 0000

TABLE 3-18: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

FDBS

RIS6

RIS14

RSIM6

RSIM14

FIS6

FIS14

FSIM6

FSIM14

ARSEN

AS6E

SDATC

_

RIS5

RIS13

RSIM5

RSIM13

FIS5

FIS13

FSIM5

FSIM13

AS5E

SDATB

ASDBD<1:0>

Legend: x = unknown, u = unchanged, q = value depends on condition, -= unimplemented, read as '0', r = reserved.Shaded locations are unimplemented, read as '0'.

Note 1: Unimplemented, read as '1'.

2: Unimplemented on PIC16LF1777/8/9.

RDBS

RIS7

RIS15

RSIM7

RSIM15

FIS7

FIS15

FSIM7

FSIM15

ASE

AS7E

SDATD

3: Unimplemented on PIC16(L)F1778.

714h

715h

716h

717h

718h

719h

71Ah

71Bh

71Ch

71Dh

71Eh

COG2CON1

COG2RIS0

COG2RIS1

COG2RSIM0

COG2RSIM1

COG2FIS0

COG2FIS1

COG2FSIM0

COG2FSIM1

COG2ASD0

COG2ASD1

71Fh COG2STR

Value on all other Resets

--00 0000 --00 0000 --00 0000 --00 0000 --00 0000 00-0 0000

00-- 0000

0000 0000

0000 0000

0000 0000

0000 0000

0000 0000

0000 0000

0000 0000

0000 0000

0001 01--

0000 0000

0000 0000

5.4.2 TWO-SPEED START-UP SEQUENCE

- 1. Wake-up from Power-on Reset or Sleep.
- 2. Instructions begin execution by the internal oscillator at the frequency set in the IRCF<3:0> bits of the OSCCON register.
- 3. OST enabled to count 1024 clock cycles.
- 4. OST timed out, wait for falling edge of the internal oscillator.
- 5. OSTS is set.
- 6. System clock held low until the next falling edge of new clock (LP, XT or HS mode).
- 7. System clock is switched to external clock source.

FIGURE 5-8: TWO-SPEED START-UP

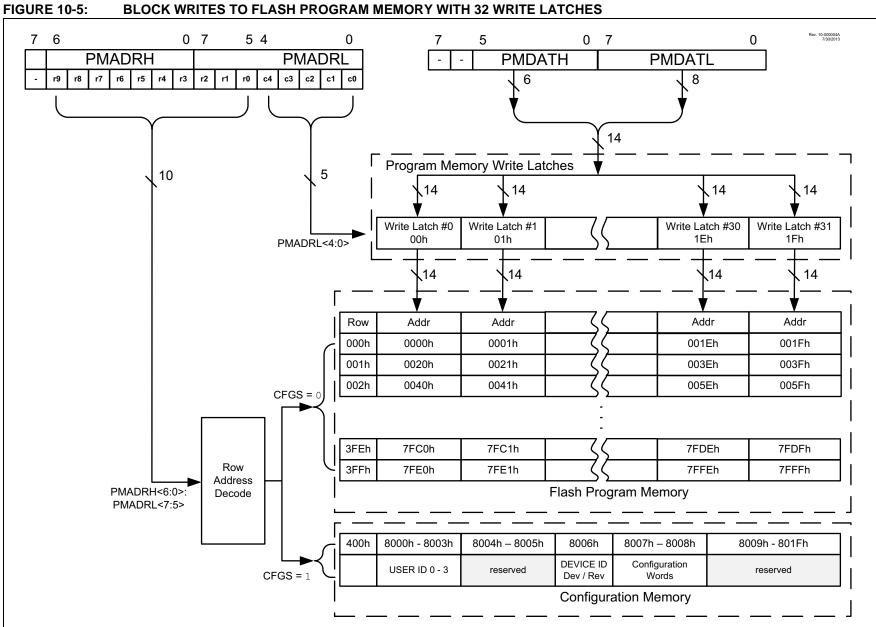
5.4.3 CHECKING TWO-SPEED CLOCK STATUS

Checking the state of the OSTS bit of the OSCSTAT register will confirm if the microcontroller is running from the external clock source, as defined by the FOSC<2:0> bits in the Configuration Words, or the internal oscillator.

10.2.4 WRITING TO FLASH PROGRAM MEMORY

Program memory is programmed using the following steps:

- 1. Load the address in PMADRH:PMADRL of the row to be programmed.
- 2. Load each write latch with data.
- 3. Initiate a programming operation.
- 4. Repeat steps 1 through 3 until all data is written.


Before writing to program memory, the word(s) to be written must be erased or previously unwritten. Program memory can only be erased one row at a time. No automatic erase occurs upon the initiation of the write.

Program memory can be written one or more words at a time. The maximum number of words written at one time is equal to the number of write latches. See Figure 10-5 (row writes to program memory with 32 write latches) for more details.

The write latches are aligned to the Flash row address boundary defined by the upper ten bits of PMADRH:PMADRL, (PMADRH<6:0>:PMADRL<7:5>) with the lower five bits of PMADRL, (PMADRL<7:5>) determining the write latch being loaded. Write operations do not cross these boundaries. At the completion of a program memory write operation, the data in the write latches is reset to contain 0x3FFF. The following steps should be completed to load the write latches and program a row of program memory. These steps are divided into two parts. First, each write latch is loaded with data from the PMDATH:PMDATL using the unlock sequence with LWLO = 1. When the last word to be loaded into the write latch is ready, the LWLO bit is cleared and the unlock sequence executed. This initiates the programming operation, writing all the latches into Flash program memory.

- Note: The special unlock sequence is required to load a write latch with data or initiate a Flash programming operation. If the unlock sequence is interrupted, writing to the latches or program memory will not be initiated.
- 1. Set the WREN bit of the PMCON1 register.
- 2. Clear the CFGS bit of the PMCON1 register.
- Set the LWLO bit of the PMCON1 register. When the LWLO bit of the PMCON1 register is '1', the write sequence will only load the write latches and will not initiate the write to Flash program memory.
- 4. Load the PMADRH:PMADRL register pair with the address of the location to be written.
- 5. Load the PMDATH:PMDATL register pair with the program memory data to be written.
- Execute the unlock sequence (Section 10.2.2 "Flash Memory Unlock Sequence"). The write latch is now loaded.
- 7. Increment the PMADRH:PMADRL register pair to point to the next location.
- 8. Repeat steps 5 through 7 until all but the last write latch has been loaded.
- Clear the LWLO bit of the PMCON1 register. When the LWLO bit of the PMCON1 register is '0', the write sequence will initiate the write to Flash program memory.
- 10. Load the PMDATH:PMDATL register pair with the program memory data to be written.
- 11. Execute the unlock sequence (Section 10.2.2 "Flash Memory Unlock Sequence"). The entire program memory latch content is now written to Flash program memory.
 - **Note:** The program memory write latches are reset to the blank state (0x3FFF) at the completion of every write or erase operation. As a result, it is not necessary to load all the program memory write latches. Unloaded latches will remain in the blank state.

An example of the complete write sequence is shown in Example 10-3. The initial address is loaded into the PMADRH:PMADRL register pair; the data is loaded using indirect addressing.

D DD0 5 0		PIC	C16(L)F1	778	PIC16(L)F1777/9				
RxyPPS<5:0>	Output Signal	Α	В	С	Α	В	С	D	Е
110001	MD4_out ⁽³⁾					•	_	•	
110000	MD3_out		•	٠	_	•	_	•	_
101111	MD2_out	•		•	•		_	•	_
101110	MD1_out	•		•	•		_	•	_
101101	sync_C8OUT ⁽³⁾				_	•	_	•	_
101100	sync_C7OUT ⁽³⁾				_	•	_	•	
101011	sync_C6OUT	•		•	•		_	_	•
101010	sync_C5OUT	•		•	•		_	•	_
101001	sync_C4OUT		•	•	_	•	_	•	_
101000	sync_C3OUT		•	•	_	•	_	•	
100111	sync_C2OUT	•		•	•		_		•
100110	sync_C1OUT	•		•	•		_	•	_
100101	DT		•	•	_	•	•	_	
100100	TX/CK		•	•	_	•	•	_	_
100011	SDO		•	•	_	•	•	_	_
100010	SDA		•	•	_	•	•	_	
100001	SCK/SCL ⁽¹⁾		•	•	_	•	•	_	_
100000	PWM12_out ⁽³⁾				_	•	_	•	_
011111	PWM11_out		•	•	_	•	_	•	
011110	PWM6_out	•		•	•		_	•	_
011101	PWM5_out	•		•	•			•	_
011100	PWM10_out ⁽³⁾				•		•	_	_
011011	PWM9_out	•		•	•	_	•		_
011010	PWM4_out	•		•	•			•	
011001	PWM3_out	•		•	•			_	•
011000	CCP8_out ⁽³⁾				_	•	_	•	_
010111	CCP7_out		•	•	_	•	_	•	_
010110	CCP2_out		•	•	_	•	•	_	
010101	CCP1_out		•	•	_	•	•	_	_
010100	COG4D ^(1,3)				•			•	_
010011	COG4C ^(1,3)				•			•	
010010	COG4B ^(1,3)				•			_	•
010001	COG4A ^(1,3)					•	•	_	
010000	COG3D ⁽¹⁾	•		•	•		_	•	
001111	COG3C ⁽¹⁾	•		•	•		_	•	
001110	COG3B ⁽¹⁾	•		•	•		_	_	•
001101	COG3A ⁽¹⁾	•	<u> </u>	•		•	•		
001100	COG2D ⁽¹⁾	-	•	•	_	•	_	•	
001011	COG2C ⁽¹⁾		•	•		•	_	•	_
001010	COG2B ⁽¹⁾		•	•		•		•	

TABLE 12-2: AVAILABLE PORTS FOR OUTPUT BY PERIPHERAL⁽²⁾

Note 1: TRIS control is overridden by the peripheral as required.

2: Unsupported peripherals will output a '0'.

3: PIC16(L)F1777/9 only.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page	
PPSLOCK	_	_	_		_	—	—	PPSLOCKED	206	
INTPPS	_	_		INTPPS<5:0>						
TOCKIPPS	_	_			TOCK	PPS<5:0>			205	
T1CKIPPS	_	_			T1CK	PPS<5:0>			205	
T1GPPS	_	—			T1GF	PPS<5:0>			205	
T3CKIPPS	—	_			T3CK	PPS<5:0>			205	
T3GPPS		_			T3GF	PS<5:0>			205	
T5CKIPPS	_	_			T5CK	PPS<5:0>			205	
T5GPPS	_	_			T5GF	PPS<5:0>			205	
T2INPPS	_	_			T2IN	PPS<5:0>			205	
T4INPPS	_	_			T4IN	PPS<5:0>			205	
T6INPPS	_	_			T6INI	PPS<5:0>			205	
T8INPPS	_	_			T8INI	PPS<5:0>			205	
CCP1PPS	_	—			CCP1	PPS<5:0>			205	
CCP2PPS	—	—			CCP2	PPS<5:0>			205	
CCP7PPS	_	—			CCP7	PPS<5:0>			205	
CCP8PPS ⁽¹⁾	_	_			CCP8	PPS<5:0>			205	
COGIN1PPS	_	_			COG1	PPS<5:0>			205	
COG2INPPS	_	_			COG2	PPS<5:0>			205	
COG3INPPS	_	_			COG3	PPS<5:0>			205	
COG4INPPS ⁽¹⁾	_	_		COG4PPS<5:0>						
MD1CLPPS	_	_			MD1CI	LPPS<5:0>			205	
MD1CHPPS	_	_			MD1CI	HPPS<5:0>			205	
MD1MODPPS	_	—			MD1MC	DPPS<5:0	>		205	
MD2CLPPS	—	—			MD2CI	LPPS<5:0>			205	
MD2CHPPS		—			MD2CI	HPPS<5:0>			205	
MD2MODPPS	—	—			MD2MC	DPPS<5:0	>		205	
MD3CLPPS	—	—			MD3CI	_PPS<5:0>			205	
MD3CHPPS	—	—			MD3CI	HPPS<5:0>	•		205	
MD3MODPPS	—	—			MD3MC	DPPS<5:0	>		205	
MD4CLPPS ⁽¹⁾	—	—			MD4CI	LPPS<5:0>			205	
MD4CHPPS ⁽¹⁾	_	—			MD4CI	HPPS<5:0>			205	
MD4MODPPS ⁽¹⁾	_	_			MD4MC	DPPS<5:0	>		205	
PRG1RPPS	_	_			PRG1F	RPPS<5:0>			205	
PRG1FPPS	_	_			PRG1	-PPS<5:0>			205	
PRG2RPPS		_			PRG2F	RPPS<5:0>			205	
PRG2FPPS					PRG2				205	
PRG3RPPS		_			PRG3F	RPPS<5:0>	· · · · · · · · · · · · · · · · · · ·		205	
PRG3FPPS		_			PRG3				205	
PRG4RPPS		—			PRG4F	RPPS<5:0>			205	
PRG4FPPS					PRG4				205	
CLC1IN0PPS		_			CLCIN	0PPS<5:0>	,		205	

TABLE 12-3: SUMMARY OF REGISTERS ASSOCIATED WITH THE PPS MODULE

© 2015-2016 Microchip Technology Inc.

		ON1: ADC CO					
R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
ADFM		ADCS<2:0>		—	ADNREF	ADPRE	EF<1:0>
bit 7		_					bit (
Legend:							
R = Readabl		W = Writable	bit	-	mented bit, read		
u = Bit is und	changed	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all	other Resets
'1' = Bit is se	t	'0' = Bit is clea	ared				
bit 7	1 = Right jus loaded. 0 = Left just loaded.	Result Format stified. Six Most ified. Six Least	Significant bi	ts of ADRESL a			
bit 6-4	111 = FRC (110 = Fosc/ 101 = Fosc/ 100 = Fosc/	/16 /4 (clock supplied /32 /8	from an intern	al RC oscillator			
bit 3	Unimplemer	nted: Read as '	0'				
bit 2	ADNREF: ADC Negative Voltage Reference Configuration bit 1 = VREF- is connected to external VREF- pin 0 = VREF- is connected to VSS						
bit 1-0	11 = VREF+	0>: ADC Positivities connected to is connected to	internal Fixed	Voltage Refere		dule ⁽¹⁾	

Note 1: When selecting the VREF+ pin as the source of the positive reference, be aware that a minimum volta specification exists. See Table 36-16: ADC Conversion Requirements for details.

Mada	MODE	E<4:0>	Output	Onenetien		Timer Control	
Mode	<4:3>	<2:0>	Operation	Operation	Start	Reset	Stop
		000		Software gate (Figure 23-4)	ON = 1	_	ON = 0
		001	Period Pulse	Hardware gate, active-high (Figure 23-5)	ON = 1 and TMRx_ers = 1	_	ON = 0 or TMRx_ers = 0
		010	r uise	Hardware gate, active-low	ON = 1 and TMRx_ers = 0	_	ON = 0 or TMRx_ers = 1
Free	0.0	011		Rising or falling edge Reset		TMRx_ers	
Running Period	00	100	Period	Rising edge Reset (Figure 23-6)		TMRx_ers ↑	ON = 0
		101	Pulse	Falling edge Reset	-	TMRx_ers ↓	
		110	with Hardware	Low level Reset	ON = 1	TMRx_ers = 0	ON = 0 or TMRx_ers = 0
		111	Reset	High level Reset (Figure 23-7)		TMRx_ers = 1	ON = 0 or TMRx_ers = 1
		000	One-shot	Software start (Figure 23-8)	ON = 1	_	
		001	Edge	Rising edge start (Figure 23-9)	ON = 1 and TMRx_ers ↑	_	
		010	triggered start	Falling edge start	ON = 1 and TMRx_ers ↓	_	
		011	(Note 1)	Any edge start	ON = 1 and TMRx_ers	_	ON = 0 or
One-shot	01	100	Edge	Rising edge start and Rising edge Reset (Figure 23-10)	ON = 1 and TMRx_ers ↑	TMRx_ers ↑	Next clock after TMRx = PRx
		101	triggered start and	Falling edge start and Falling edge Reset	ON = 1 and TMRx_ers ↓	TMRx_ers ↓	(Note 2)
		110	hardware Reset	Rising edge start and Low level Reset (Figure 23-11)	ON = 1 and TMRx_ers ↑	TMRx_ers = 0	
		111	(Note 1)	Falling edge start and High level Reset	ON = 1 and TMRx_ers ↓	TMRx_ers = 1	
		000		Rese	erved		
		001	Edge	Rising edge start (Figure 23-12)	ON = 1 and TMRx_ers ↑	—	ON = 0 or
Mono-stable		010	triggered start	Falling edge start	ON = 1 and TMRx_ers ↓	-	Next clock after
		011	(Note 1)	Any edge start	ON = 1 and TMRx_ers	_	TMRx = PRx (Note 3)
Reserved	10	100		Rese	erved		
Reserved		101		Rese	erved		
		110	Level triggered	High level start and Low level Reset (Figure 23-13)	ON = 1 and TMRx_ers = 1	TMRx_ers = 0	ON = 0 or
One-shot		111	start and hardware Reset	Low level start & High level Reset	ON = 1 and TMRx_ers = 0	TMRx_ers = 1	Held in Rese (Note 2)
Reserved	11	xxx		Rese	erved		

TABLE 23-1: TIMER2 OPERATING MODES

Note 1: If ON = 0 then an edge is required to restart the timer after ON = 1.

2: When TMRx = PRx then the next clock clears ON and stops TMRx at 00h.

3: When TMRx = PRx then the next clock stops TMRx at 00h but does not clear ON.

26.0 16-BIT PULSE-WIDTH MODULATION (PWM) MODULE

The Pulse-Width Modulation (PWM) module generates a pulse-width modulated signal determined by the phase, duty cycle, period, and offset event counts that are contained in the following registers:

- PWMxPH register
- PWMxDC register
- PWMxPR register
- PWMxOF register

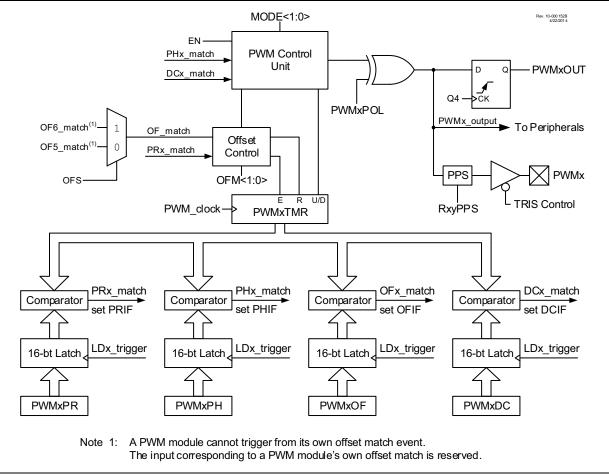
Figure 26-1 shows a simplified block diagram of the PWM operation. Each PWM module has four modes of operation:

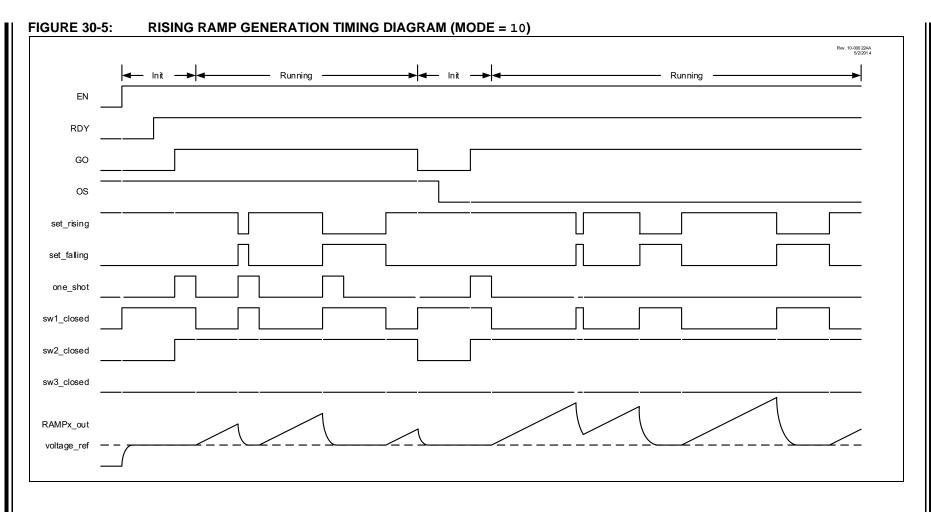
- Standard
- Set On Match
- Toggle On Match
- · Center Aligned

TABLE 26-1:AVAILABLE 16-BIT PWM
MODULES

Device	PWM5	PWM6	PWM11	PWM12
PIC16(L)F1778	•	•	•	
PIC16(L)F1777/9	•	•	٠	•

FIGURE 26-1: 16-BIT PWM BLOCK DIAGRAM


For a more detailed description of each PWM mode, refer to **Section 26.2** "**PWM Modes**".


Each PWM module has four offset modes:

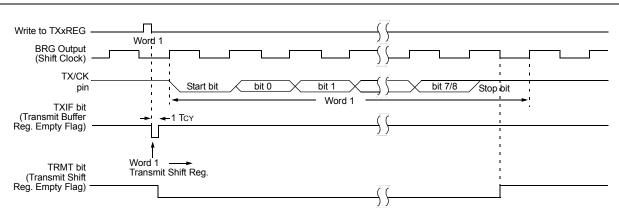
- · Independent Run
- Slave Run with Synchronous Start
- One-Shot Slave with Synchronous Start
- Continuous Run Slave with Synchronous Start and Timer Reset

Using the offset modes, each PWM module can offset its waveform relative to any other PWM module in the same device. For a more detailed description of the offset modes refer to **Section 26.3 "Offset Modes"**.

Every PWM module has a configurable reload operation to ensure all event count buffers change at the end of a period, thereby avoiding signal glitches. Figure 26-2 shows a simplified block diagram of the reload operation. For a more detailed description of the reload operation, refer to Section **Section 26.4 "Reload Operation**".

33.1.1.5 TSR Status

The TRMT bit of the TXxSTA register indicates the status of the TSR register. This is a read-only bit. The TRMT bit is set when the TSR register is empty and is cleared when a character is transferred to the TSR register from the TXxREG. The TRMT bit remains clear until all bits have been shifted out of the TSR register. No interrupt logic is tied to this bit, so the user has to poll this bit to determine the TSR status.


Note:	The TSR register is not mapped in data
	memory, so it is not available to the user.

33.1.1.6 Transmitting 9-Bit Characters

The EUSART supports 9-bit character transmissions. When the TX9 bit of the TXxSTA register is set, the EUSART will shift nine bits out for each character transmitted. The TX9D bit of the TXxSTA register is the ninth, and Most Significant data bit. When transmitting 9-bit data, the TX9D data bit must be written before writing the eight Least Significant bits into the TXxREG. All nine bits of data will be transferred to the TSR shift register immediately after the TXxREG is written.

A special 9-bit Address mode is available for use with multiple receivers. See **Section 33.1.2.7** "Address **Detection**" for more information on the Address mode.

- 33.1.1.7 Asynchronous Transmission Set-up:
- Initialize the SPxBRGH:SPxBRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 33.4 "EUSART Baud Rate Generator (BRG)").
- 2. Enable the asynchronous serial port by clearing the SYNC bit and setting the SPEN bit.
- 3. If 9-bit transmission is desired, set the TX9 control bit. A set ninth data bit will indicate that the eight Least Significant data bits are an address when the receiver is set for address detection.
- 4. Set the SCKP bit if inverted transmit is desired.
- 5. Enable the transmission by setting the TXEN control bit. This will cause the TXIF interrupt bit to be set.
- If interrupts are desired, set the TXIE interrupt enable bit of the PIE1 register. An interrupt will occur immediately provided that the GIE and PEIE bits of the INTCON register are also set.
- 7. If 9-bit transmission is selected, the ninth bit should be loaded into the TX9D data bit.
- 8. Load 8-bit data into the TXxREG register. This will start the transmission.

FIGURE 33-3: ASYNCHRONOUS TRANSMISSION

(Configuration Bi	ts		David Data Farmula	
SYNC	BRG16	BRGH	BRG/EUSART Mode	Baud Rate Formula	
0	0	0	8-bit/Asynchronous	Fosc/[64 (n+1)]	
0	0	1	8-bit/Asynchronous		
0	1	0	16-bit/Asynchronous	Fosc/[16 (n+1)]	
0	1	1	16-bit/Asynchronous		
1	0	x	8-bit/Synchronous	Fosc/[4 (n+1)]	
1	1	x	16-bit/Synchronous		

TABLE 33-3: BAUD RATE FORMULAS

Legend: x = Don't care, n = value of SPxBRGH:SPxBRGL register pair.

TABLE 33-4: SUMMARY OF REGISTERS ASSOCIATED WITH THE BAUD RATE GENERATOR

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUD1CON	ABDOVF	RCIDL	_	SCKP	BRG16	_	WUE	ABDEN	505
RC1STA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	504
SP1BRGL	SP1BRG<7:0>								506
SP1BRGH	SP1BRG<15:8>								506
TX1STA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	503

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for the Baud Rate Generator.

* Page provides register information.

PIC16LF1777/8/9		Operating Conditions: (unless otherwise stated) Low-Power Sleep Mode								
PIC16F17	77/8/9	Low-Power Sleep Mode, VREGPM = 1								
Param	Device Characteristics	Min.	Тур†	Max.	Max.	Units	Conditions			
No.	Device Characteristics	WIIII.	וקעי	+85°C	+125°C	Units	Vdd	Note		
D023	Base IPD		0.05	1.0	8.0	μA	1.8	WDT, BOR, FVR, and SOSC		
		—	0.08	2.0	9.0	μA	3.0	disabled, all Peripherals Inactive		
D023	Base IPD		0.3	2.4	10	μA	2.3	WDT, BOR, FVR, and SOSC		
			0.4	4	12	μA	3.0	disabled, all Peripherals Inactive, Low-Power Sleep mode		
		_	0.5	6	15	μA	5.0	Low-Power Sleep mode		
D023A	Base IPD	_	9.8	17	28	μA	2.3	WDT, BOR, FVR and SOSC		
		_	10.3	20	40	μA	3.0	disabled, all Peripherals inactive,		
		_	11.5	22	44	μA	5.0	Normal Power Sleep mode VREGPM = 0		
D024		_	0.5	6	14	μA	1.8	WDT Current		
		—	0.8	7	17	μA	3.0			
D024		—	0.8	6	15	μA	2.3	WDT Current		
		—	0.9	7	20	μA	3.0			
		_	1.0	8	22	μA	5.0]		
D025		_	15	28	30	μA	1.8	FVR Current (ADC)		
		_	24	35	38	μA	3.0			
D025		_	18	33	35	μA	2.3	FVR Current (ADC)		
			24	35	40	μA	3.0	1		
			26	37	44	μA	5.0	1		
D025A		_	25	50	55	μA	1.8	FVR Current (DAC)		
			30	65	70	μA	3.0	1		
D025A		_	30	55	66	μA	2.3	FVR Current (DAC)		
			32	68	82	μA	3.0	1		
			35	77	90	μA	5.0	1		
D026		_	7.5	25	28	μA	3.0	BOR Current		
D026		_	10	25	28	μA	3.0	BOR Current		
			12	28	31	μA	5.0	1		
D027		-	0.5	4	10	μA	3.0	LPBOR Current		
D027			0.8	6	15	μA	3.0	LPBOR Current		
			1	8	17	μA	5.0			
D028			0.5	5	9	μA	1.8	SOSC Current		
			0.8	8.5	12	μA	3.0			
D028		_	1.1	6	10	μA	2.3	SOSC Current		
		_	1.3	8.5	20	μA	3.0			
			1.4	10	25	μA	5.0			

TABLE 36-3: POWER-DOWN CURRENTS (IPD)^(1,2)

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral current is the sum of the base IPD and the additional current consumed when this peripheral is enabled. The peripheral △ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to Vss.

3: ADC clock source is FRC.

TABLE 36-4: I/O PORTS (CONTINUED) (CONTINUED)

Standard	l Operati	ng Conditions (unless otherwi	se stated)	

Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
		Capacitive Loading Specs on	Output Pins				
D101*	COSC2	OSC2 pin	_	—	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1
D101A*	Сю	All I/O pins			50	pF	

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In EXTRC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in EXTRC mode.

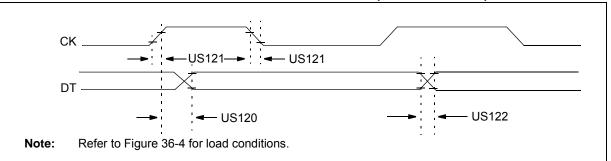
2: Negative current is defined <u>as current sourced by the pin.</u>

3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

4: Including OSC2 in CLKOUT mode.

TABLE 36-11: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER AND BROWN-OUT RESET PARAMETERS

Standa	Standard Operating Conditions (unless otherwise stated)									
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions			
30	TMCL	MCLR Pulse Width (low)	2	—	_	μS				
31	TWDTLP	Low-Power Watchdog Timer Time-out Period	10	16	27	ms	VDD = 3.3V-5V 1:512 Prescaler used			
32	Tost	Oscillator Start-up Timer Period ⁽¹⁾		1024	_	Tosc				
33*	TPWRT	Power-up Timer Period, $\overline{PWRTE} = 0$	40	65	140	ms				
34*	Tioz	I/O high-impedance from MCLR Low or Watchdog Timer Reset		—	2.0	μS				
35	VBOR	Brown-out Reset Voltage ⁽²⁾	2.55	2.70	2.85	V	BORV = 0			
			2.30 1.80	2.45 1.90	2.60 2.10	V V	BORV = 1 (PIC16F1777/8/9) BORV = 1 (PIC16LF1777/8/9)			
35A	Vlpbor	Low-Power Brown-out	1.8	2.1	2.5	V	LPBOR = 1			
36*	VHYST	Brown-out Reset Hysteresis	0	25	75	mV	$-40^\circ C \le T A \le +85^\circ C$			
37*	TBORDC	Brown-out Reset DC Response Time	1	3	35	μS	$VDD \leq VBOR$			


* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: By design, the Oscillator Start-up Timer (OST) counts the first 1024 cycles, independent of frequency.

2: To ensure these voltage tolerances, VDD and Vss must be capacitively decoupled as close to the device as possible. 0.1 μ F and 0.01 μ F values in parallel are recommended.

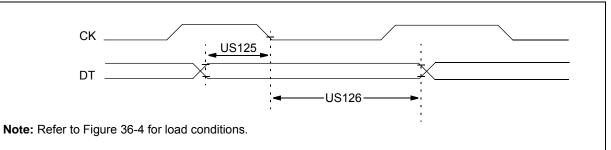

FIGURE 36-15: EUSART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

TABLE 36-23: EUSART SYNCHRONOUS TRANSMISSION REQUIREMENTS

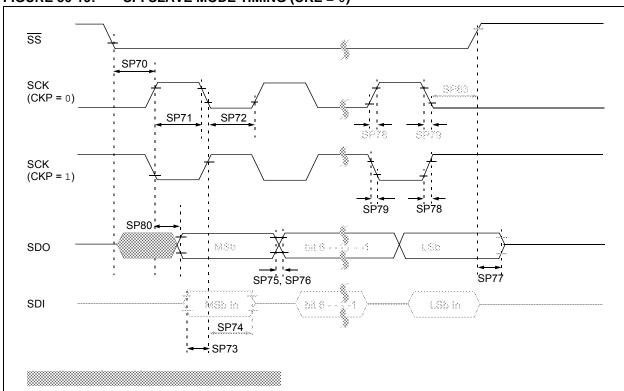
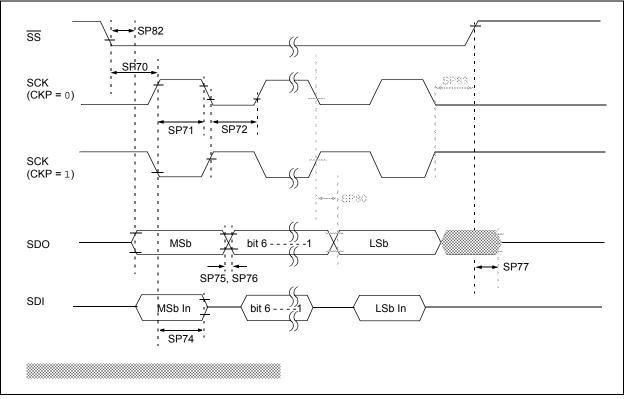

Standaro	d Operating C					
Param. No.	Symbol	Characteristic	Min.	Max.	Units	Conditions
US120 TCKH2DTV	/ SYNC XMIT (Master and Slave)	_	80	ns	$3.0V \le V\text{DD} \le 5.5V$	
		Clock high to data-out valid		100	ns	$1.8V \le V\text{DD} \le 5.5V$
US121 TCKRF	Clock out rise time and fall time	_	45	ns	$3.0V \le V\text{DD} \le 5.5V$	
		(Master mode)		50	ns	$1.8V \le V\text{DD} \le 5.5V$
US122	TDTRF	Data-out rise time and fall time		45	ns	$3.0V \le V\text{DD} \le 5.5V$
			_	50	ns	$1.8V \leq V\text{DD} \leq 5.5V$

FIGURE 36-16: EUSART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING


TABLE 36-24: EUSART SYNCHRONOUS RECEIVE REQUIREMENTS

Standar	Standard Operating Conditions (unless otherwise stated)								
Param. No.	Symbol	Characteristic	Min.	Max.	Units	Conditions			
US125	TDTV2CKL	SYNC RCV (Master and Slave) Data-setup before CK \downarrow (DT hold time)	10		ns				
US126	TCKL2DTL	Data-hold after CK \downarrow (DT hold time)	15	_	ns				

FIGURE 36-19: SPI SLAVE MODE TIMING (CKE = 0)

Note: Unless otherwise noted, VIN = 5V, Fosc = 300 kHz, CIN = 0.1 μ F, TA = 25°C.

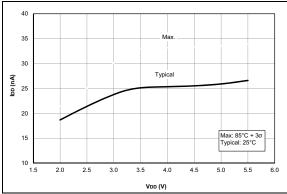


FIGURE 37-37: IPD, Fixed Voltage Reference (FVR), ADC, PIC16F1777/8/9 Only.

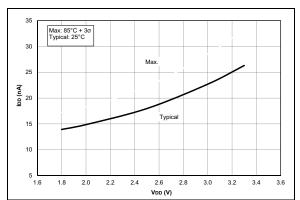


FIGURE 37-38: IPD, Fixed Voltage Reference (FVR), DAC/Comparator, PIC16LF1777/8/9 Only.

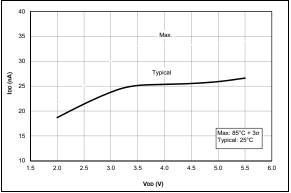


FIGURE 37-39: IPD, Fixed Voltage Reference (FVR), DAC/Comparator, PIC16F1777/8/9 Only.

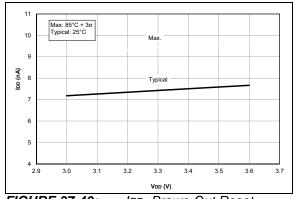
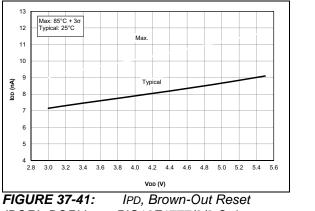
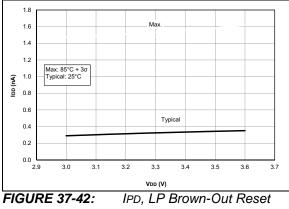




FIGURE 37-40: IPD, Brown-Out Reset (BOR), BORV = 1, PIC16LF1777/8/9 Only.

(BOR), BORV = 1, PIC16F1777/8/9 Only.

(LPBOR = 0), PIC16LF1777/8/9 Only.