

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2 0 0 0 0 0	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	128 × 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 17x10b; D/A 3x5b, 3x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UQFN Exposed Pad
Supplier Device Package	28-UQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1778-i-mx

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3: 28-PIN ALLOCATION TABLE (PIC16(L)F1778) (CONTINUED)

	-						• • •	• •	-/ (-	,									
NO	28-Pin SPDIP/SOIC/SSOP	28-Pin UQFN	ADC	VREF	DAC	Op Amp	Comparator	ZCD	PRG	Timers	MMd	CCP	000	CLC	Modulator	EUSART	dssm	Interrupt	Pull-ups	High Current	Basic
OUT ⁽²⁾	_	—	_	-	_	_	C1OUT C2OUT C3OUT C4OUT C5OUT C6OUT		_	_	PWM3 PWM4 PWM5 PWM6 PWM9 PWM11	CCP1 CCP2 CCP7	COG1A COG1B COG1C COG1D COG2A COG2B COG2C COG2D COG3A COG3B COG3C COG3D	CLC1OUT CLC2OUT CLC3OUT CLC4OUT	MD10UT MD20UT MD30UT	DT ⁽³⁾ ТХ СК	SDO SDA ⁽³⁾ SCK SCL ⁽³⁾	_	_	_	_

Note 1:

Default peripheral input. Input can be moved to any other pin with the PPS input selection register. All pin outputs default to PORT latch data. Any pin can be selected as a digital peripheral output with the PPS output selection registers. These peripheral functions are bidirectional. The output pin selections must be the same as the input pin selections. 2: 3:

TABLE 1-3:	PIC16(L)F1777/9 PINOUT DESCRIPTION (CONTINUED)
------------	--

Name	Function	Input Type	Output Type	Description
OUT ⁽²⁾ (Cont.)	COG2B		CMOS	Complementary output generator 2 output B.
	COG2C		CMOS	Complementary output generator 2 output C.
	COG2D		CMOS	Complementary output generator 2 output D.
	COG3A		CMOS	Complementary output generator 3 output A.
	COG3B		CMOS	Complementary output generator 3 output B.
	COG3C		CMOS	Complementary output generator 3 output C.
	COG3D		CMOS	Complementary output generator 3 output D.
	COG4A		CMOS	Complementary output generator 4 output A.
	COG4B		CMOS	Complementary output generator 4 output B.
	COG4C		CMOS	Complementary output generator 4 output C.
	COG4D		CMOS	Complementary output generator 4 output D.
	SDA ⁽³⁾		OD	I ² C data output.
	SCK		CMOS	SPI clock output.
	SCL ⁽³⁾		OD	I ² C clock output.
	SDO		CMOS	SPI data output.
	TX		CMOS	EUSART asynchronous TX data out.
	СК		CMOS	EUSART synchronous clock out.
	DT ⁽³⁾		CMOS	EUSART synchronous data output.
	CLC1OUT		CMOS	Configurable logic cell 1 output.
	CLC2OUT		CMOS	Configurable logic cell 2 output.
	CLC3OUT		CMOS	Configurable logic cell 3 output.
	CLC4OUT		CMOS	Configurable logic cell 4 output.

 Legend:
 AN = Analog input or output
 CMOS = CMOS compatible input or output
 OD = Open-Drain

 TTL = TTL compatible input
 ST = Schmitt Trigger input with CMOS levels
 I²C = Schmitt Trigger input with I²C

 HP = High Power
 XTAL = Crystal levels

Note 1: Default peripheral input. Alternate pins can be selected as the peripheral input with the PPS input selection registers.

2: All pin digital outputs default to PORT latch data. Alternate outputs can be selected as the peripheral digital output with the PPS output selection registers.

3: These peripheral functions are bidirectional. The output pin selections must be the same as the input pin selections.

1.2 Peripheral Connection Matrix

Input selection multiplexers on many of the peripherals enable selecting the output of another peripheral such that the signal path is contained entirely within the device. Although the peripheral output can also be routed to a pin, with the PPS selection feature, it is not necessary to do so. Table 1-4 shows all the possible inter-peripheral signal connections. Please refer to corresponding peripheral section to obtain the multiplexer selection codes for the desired connection.

	LE 5-10. 51	LOIALION									
Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank	c 16										
80Ch	—	Unimplemented								—	—
80Dh	COG3PHR	—		COG Rising Edge	e Phase Delay Coι	int Register				00 0000	00 0000
80Eh	COG3PHF	_	_	COG Falling Edge	COG Falling Edge Phase Delay Count Register						00 0000
80Fh	COG3BLKR	_	_	COG Rising Edge	Blanking Count R		00 0000	00 0000			
810h	COG3BLKF	_		COG Falling Edge	e Blanking Count F		00 0000	00 0000			
811h	COG3DBR	_		COG Rising Edge	e Dead-band Coun		00 0000	00 0000			
812h	COG3DBF	_		COG Falling Edge	e Dead-band Cour		00 0000	00 0000			
813h	COG3CON0	EN	LD	_	CS<	<1:0> MD<2:0>				00-0 0000	00-0 0000
814h	COG3CON1	RDBS	FDBS	—		POLD	POLC	POLB	POLA	00 0000	00 0000
815h	COG3RIS0	RIS7	RIS6	RIS5	RIS4	RIS3	RIS2	RIS1	RIS0	0000 0000	0000 0000
816h	COG3RIS1	RIS15	RIS14	RIS13	RIS12	RIS11	RIS10	RIS9	RIS8	0000 0000	0000 0000
817h	COG3RSIM0	RSIM7	RSIM6	RSIM5	RSIM4	RSIM3	RSIM2	RSIM1	RSIM0	0000 0000	0000 0000
818h	COG3RSIM1	RSIM15	RSIM14	RSIM13	RSIM12	RSIM11	RSIM10	RSIM9	RSIM8	0000 0000	0000 0000
819h	COG3FIS0	FIS7	FIS6	FIS5	FIS4	FIS3	FIS2	FIS1	FIS0	0000 0000	0000 0000
81Ah	COG3FIS1	FIS15	FIS14	FIS13	FIS12	FIS11	FIS10	FIS9	FIS8	0000 0000	0000 0000
81Bh	COG3FSIM0	FSIM7	FSIM6	FSIM5	FSIM4	FSIM3	FSIM2	FSIM1	FSIM0	0000 0000	0000 0000
81Ch	COG3FSIM1	FSIM15	FSIM14	FSIM13	FSIM12	FSIM11	FSIM10	FSIM9	FSIM8	0000 0000	0000 0000
81Dh	COG3ASD0	ASE	ARSEN	ASDBI	D<1:0>	<1:0> ASDAC<1:0>			—	0001 01	0001 01
81Eh	COG3ASD1	AS7E	AS6E	AS5E	AS4E	AS3E	AS2E	AS1E	AS0E	0000 0000	0000 0000
81Fh	COG3STR	SDATD	SDATC	SDATB	SDATA	STRD	STRC	STRB	STRA	0000 0000	0000 0000

TABLE 3-18: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: Unimplemented, read as '1'.

2: Unimplemented on PIC16LF1777/8/9.

3: Unimplemented on PIC16(L)F1778.

8.0 POWER-DOWN MODE (SLEEP)

The Power-Down mode is entered by executing a SLEEP instruction.

Upon entering Sleep mode, the following conditions exist:

- 1. WDT will be cleared but keeps running, if enabled for operation during Sleep.
- 2. PD bit of the STATUS register is cleared.
- 3. TO bit of the STATUS register is set.
- 4. CPU clock is disabled.
- 5. 31 kHz LFINTOSC is unaffected and peripherals that operate from it may continue operation in Sleep.
- 6. Timer1 and peripherals that operate from Timer1 continue operation in Sleep when the Timer1 clock source selected is:
 - LFINTOSC
 - T1CKI
 - Secondary oscillator
- 7. ADC is unaffected, if the dedicated FRC oscillator is selected.
- I/O ports maintain the status they had before SLEEP was executed (driving high, low or high-impedance).
- 9. Resets other than WDT are not affected by Sleep mode.

Refer to individual chapters for more details on peripheral operation during Sleep.

To minimize current consumption, the following conditions should be considered:

- I/O pins should not be floating
- External circuitry sinking current from I/O pins
- · Internal circuitry sourcing current from I/O pins
- Current draw from pins with internal weak pull-ups
- Modules using 31 kHz LFINTOSC
- Modules using secondary oscillator

I/O pins that are high-impedance inputs should be pulled to VDD or Vss externally to avoid switching currents caused by floating inputs.

Examples of internal circuitry that might be sourcing current include modules such as the DAC and FVR modules. See Section 17.0 "5-Bit Digital-to-Analog Converter (DAC) Module" and Section 14.0 "Fixed Voltage Reference (FVR)" for more information on these modules.

8.1 Wake-up from Sleep

The device can wake-up from Sleep through one of the following events:

- 1. External Reset input on MCLR pin, if enabled
- 2. BOR Reset, if enabled
- 3. POR Reset
- 4. Watchdog Timer, if enabled
- 5. Any external interrupt
- 6. Interrupts by peripherals capable of running during Sleep (see individual peripheral for more information)

The first three events will cause a device Reset. The last three events are considered a continuation of program execution. To determine whether a device Reset or wake-up event occurred, refer to **Section 6.12 "Determining the Cause of a Reset"**.

When the SLEEP instruction is being executed, the next instruction (PC + 1) is prefetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be enabled. Wake-up will occur regardless of the state of the GIE bit. If the GIE bit is disabled, the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is enabled, the device executes the instruction after the SLEEP instruction, the device will then call the Interrupt Service Routine. In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

The WDT is cleared when the device wakes up from Sleep, regardless of the source of wake-up.

REGISTER 17-2: DACxREF: DACx REFERENCE VOLTAGE OUTPUT SELECT REGISTER

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	—			REF<4:0>		
bit 7							bit 0
-							

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **REF<4:0>:** DACx Reference Voltage Output Select bits (See Equation 17-1)

TABLE 17-3: SUMMARY OF REGISTERS ASSOCIATED WITH THE DACX MODULE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
DAC3CON0	EN	_	OE1	OE2	PSS<1:0>		NSS<1:0>		244
DAC4CON0	EN		OE1	OE2	PSS<1:0>		NSS<1:0>		244
DAC7CON0	EN		OE1	OE2	PSS	<1:0>	NSS<1:0>		244
DAC8CON0 ⁽¹⁾	EN		OE1	OE2	PSS	<1:0>	NSS<1:0>		244
DAC3REF						REF<4:0>			245
DAC4REF						REF<4:0>			245
DAC7REF					REF<4:0>		245		
DAC8REF ⁽¹⁾						REF<4:0>			245

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used with the DACx module.

Note 1: PIC16LF1777/9 only.

19.3 Comparator Hysteresis

A selectable amount of separation voltage can be added to the input pins of each comparator to provide a hysteresis function to the overall operation. Hysteresis is enabled by setting the HYS bit of the CMxCON0 register.

See Comparator Specifications in Table 36-19: Comparator Specifications for more information.

19.4 Timer1 Gate Operation

The output resulting from a comparator operation can be used as a source for gate control of Timer1. See **Section 22.6 "Timer1 Gate"** for more information. This feature is useful for timing the duration or interval of an analog event.

It is recommended that the comparator output be synchronized to Timer1. This ensures that Timer1 does not increment while a change in the comparator is occurring.

19.4.1 COMPARATOR OUTPUT SYNCHRONIZATION

The output from a comparator can be synchronized with Timer1 by setting the SYNC bit of the CMxCON0 register.

Once enabled, the comparator output is latched on the falling edge of the Timer1 source clock. If a prescaler is used with Timer1, the comparator output is latched after the prescaling function. To prevent a race condition, the comparator output is latched on the falling edge of the Timer1 clock source and Timer1 increments on the rising edge of its clock source. See the Comparator Block Diagram (Figure 19-2) and the Timer1 Block Diagram (Figure 22-1) for more information.

19.5 Comparator Interrupt

An interrupt can be generated upon a change in the output value of the comparator for each comparator, a rising edge detector and a falling edge detector are present.

When either edge detector is triggered and its associated enable bit is set (INTP and/or INTN bits of the CMxCON1 register), the Corresponding Interrupt Flag bit (CxIF bit of the PIR2 register) will be set.

To enable the interrupt, you must set the following bits:

- ON and POL bits of the CMxCON0 register
- CxIE bit of the PIE2 register
- INTP bit of the CMxCON1 register (for a rising edge detection)
- INTN bit of the CMxCON1 register (for a falling edge detection)
- PEIE and GIE bits of the INTCON register

The associated interrupt flag bit, CxIF bit of the PIR2 register, must be cleared in software. If another edge is detected while this flag is being cleared, the flag will still be set at the end of the sequence.

Note: Although a comparator is disabled, an interrupt can be generated by changing the output polarity with the POL bit of the CMxCON0 register, or by switching the comparator on or off with the ON bit of the CMxCON0 register.

19.6 Comparator Positive Input Selection

Configuring the PCH<3:0> bits of the CMxPSEL register directs an internal voltage reference or an analog pin to the non-inverting input of the comparator:

- · CxIN+ analog pin
- Programmable ramp generator output
- DAC output
- FVR (Fixed Voltage Reference)
- Vss (Ground)

See **Section 14.0** "Fixed Voltage Reference (FVR)" for more information on the Fixed Voltage Reference module.

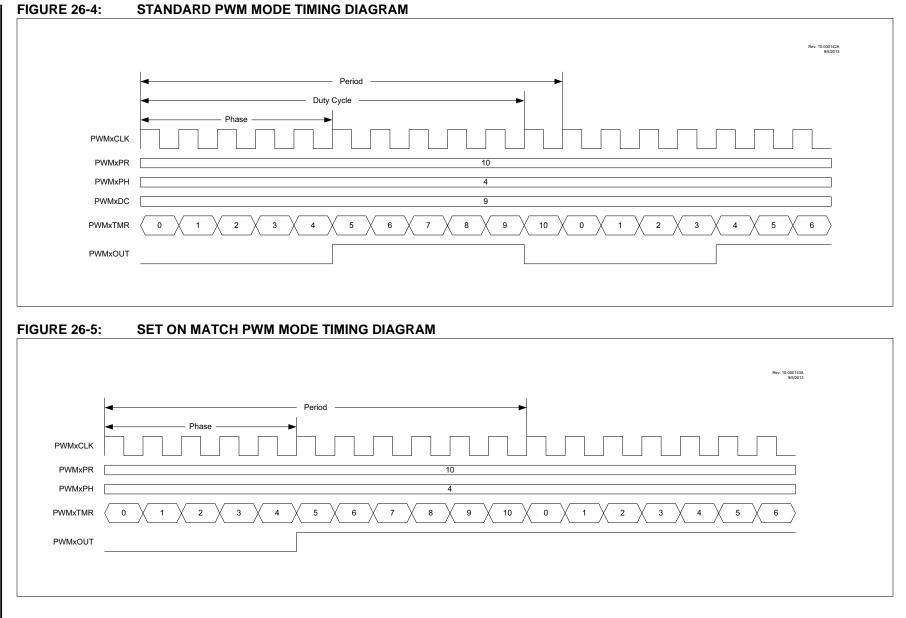
See Section 17.0 "5-Bit Digital-to-Analog Converter (DAC) Module" for more information on the DAC input signal.

Any time the comparator is disabled (CxON = 0), all comparator inputs are disabled.

19.7 Comparator Negative Input Selection

The NCH<3:0> bits of the CMxNSEL register direct an analog input pin and internal reference voltage or analog ground to the inverting input of the comparator:

- CxIN- pin
- FVR (Fixed Voltage Reference)
- Analog Ground


Some inverting input selections share a pin with the operational amplifier output function. Enabling both functions at the same time will direct the operational amplifier output to the comparator inverting input.

Note: To use CxINy+ and CxINy- pins as analog input, the appropriate bits must be set in the ANSEL register and the corresponding TRIS bits must also be set to disable the output drivers.

R/W/HC-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0					
ON ⁽¹⁾		CKPS<2:0>			OUTP	S<3:0>						
bit 7							bit C					
Legend:												
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'						
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BC	R/Value at all	other Resets					
'1' = Bit is set		'0' = Bit is clea	ared	HC = Bit is cle	eared by hardv	vare						
bit 7	ON: Timerx	On bit										
	 1 = Timerx is on 0 = Timerx is off: all counters and state machines are reset 											
	0 = Timerx	is off: all counte	rs and state n	nachines are res	set							
bit 6-4	CKPS<2:0>	: Timer2-type Cl	ock Prescale	Select bits								
	111 = 1:128 Prescaler											
	110 = 1:64 Prescaler											
	101 = 1:32 Prescaler											
	100 = 1:16 Prescaler 011 = 1:8 Prescaler											
	011 = 1:8 Prescaler 010 = 1:4 Prescaler											
	010 = 1.4 Prescaler 001 = 1.2 Prescaler											
bit 3-0	000 = 1:1 Prescaler OUTPS<3:0>: Timerx Output Postscaler Select bits											
DIL J-U	1111 = 1:16											
	1110 = 1:15 Postscaler 1101 = 1:14 Postscaler											
	1100 = 1:13	Postscaler										
	1011 = 1:12	Postscaler										
	1010 = 1:11	Postscaler										
	1001 = 1:10	Postscaler										
	1000 = 1:9 Postscaler											
	0111 = 1:8 Postscaler											
	0110 = 1.7 Postscaler											
	0101 = 1:6 Postscaler 0100 = 1:5 Postscaler											
	0100 - 1.5 F											
	0011 = 1.4 T											
	0001 = 1:2 F											
	0000 = 1:1 F											

REGISTER 23-2: TxCON: TIMERx CONTROL REGISTER

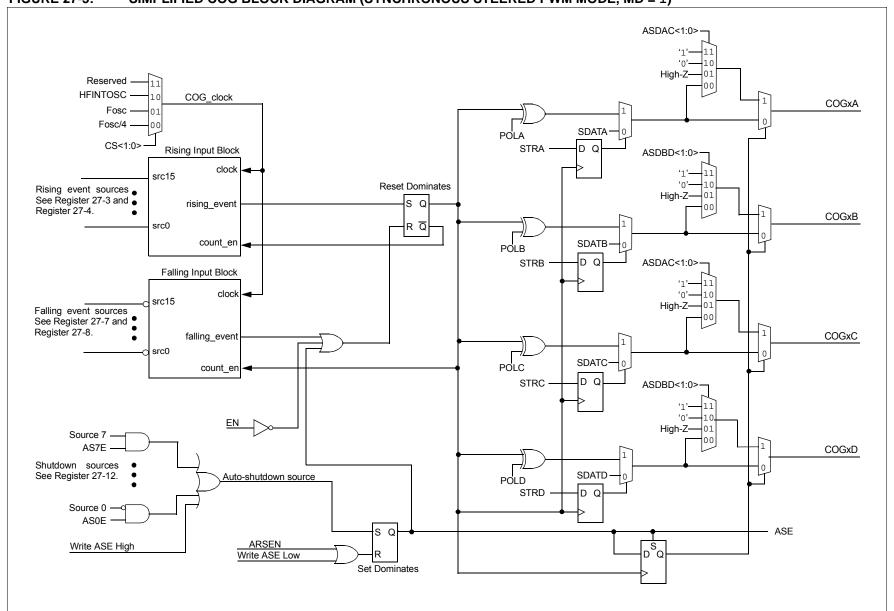
Note 1: In certain modes, the ON bit will be auto-cleared by hardware. See Section 23.6 "Operation Examples".

27.3.3 HALF-BRIDGE MODE

In Half-Bridge mode, the COG generates a two output complementary PWM waveform from rising and falling event sources. In the simplest configuration, the rising and falling event sources are the same signal, which is a PWM signal with the desired period and duty cycle. The COG converts this single PWM input into a dual complementary PWM output. The frequency and duty cycle of the dual PWM output match those of the single input PWM signal. The off-to-on transition of each output can be delayed from the on-to-off transition of the other output, thereby, creating a time immediately after the PWM transition where neither output is driven. This is referred to as dead-band time and is covered in **Section 27.7 "Dead-Band Control"**.

The half-bridge configuration is shown in Figure 27-5. A typical operating waveform, with dead band, generated from a single CCP1 input is shown in Figure 27-9.

The primary output is available on either, or both, COGxA and COGxC. The complementary output is available on either, or both, COGxB and COGxD.


Half-Bridge mode is selected by setting the MD<2:0> bits of the COGxCON0 register to '100'.

27.3.4 PUSH-PULL MODE

In Push-Pull mode, the COG generates a single PWM output that alternates between the two pairs of the COG outputs at every PWM period. COGxA has the same signal as COGxC. COGxB has the same signal as COGxD. The output drive activates with the rising input event and terminates with the falling event input. Each rising event starts a new period and causes the output to switch to the COG pair not used in the previous period.

The Push-Pull configuration is shown in Figure 27-6. A typical Push-Pull waveform generated from a single CCP1 input is shown in Figure 27-11.

Push-Pull mode is selected by setting the MD<2:0> bits of the COGxCON0 register to '101'.

FIGURE 27-3: SIMPLIFIED COG BLOCK DIAGRAM (SYNCHRONOUS STEERED PWM MODE, MD = 1)

R/W-0/0	R/W-0/0	R/W-0/0	R/W-1/1	R/W-0/0	R/W-1/1	U-0	U-0				
ASE	ARSEN	ASDBI	D<1:0>	ASDA	C<1:0>	—	_				
bit 7	·	·		÷			bit 0				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimplem	ented bit, read a	as '0'					
u = Bit is unc	changed	x = Bit is unkr	nown	-n/n = Value at	POR and BOR	/Value at all oth	ner Resets				
'1' = Bit is se	t	'0' = Bit is clea	ared	q = Value depe	ends on conditio	n					
bit 7	ASE: Auto-S	hutdown Event	Status bit								
		n the shutdown									
	0 = COG is e	either not in the	shutdown sta	ate or will exit the	e shutdown state	e on the next ris	sing event				
bit 6	ARSEN: Auto	o-Restart Enabl	e bit								
		tart is enabled									
	0 = Auto-res	tart is disabled									
bit 5-4	ASDBD<1:0>: COGxB and COGxD Auto-shutdown Override Level Select bits										
	11 = A logic '1' is placed on COGxB and COGxD when shutdown is active										
	10 = A logic '0' is placed on COGxB and COGxD when shutdown is active										
	 01 = COGxB and COGxD are tri-stated when shutdown is active 00 = The inactive state of the pin, including polarity, is placed on COGxB and COGxD when shutdowr 										
	is activ		ie pin, includi	ng polanty, is pla			nen shuluowi				
bit 3-2	ASDAC<1:0:	-: COGxA and	COGxC Auto	-shutdown Overi	ide Level Select	t bits					
	11 = A logic	'1' is placed on	COGxA and	COGxC when s	hutdown is activ	'e					
				COGxC when s							
				vhen shutdown i							
	00 = The ina is active		ie pin, includir	ng polarity, is pla	ced on COGxA	and COGxC wl	hen shutdowr				
bit 1-0	Unimplemer	ted: Read as '	0'								

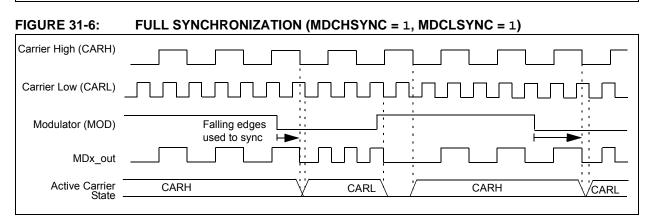
REGISTER 27-11: COGxASD0: COG AUTO-SHUTDOWN CONTROL REGISTER 0

28.6 Register Definitions: CLC Control

Long bit name prefixes for the CLC peripherals are shown in Table 28-3. Refer to **Section 1.1** "**Register and Bit naming conventions**" for more information **TABLE 28-3:**

Peripheral	Bit Name Prefix
CLC1	LC1
CLC2	LC2
CLC3	LC3
CLC4	LC4

REGISTER 28-1: CLCxCON: CONFIGURABLE LOGIC CELL CONTROL REGISTER


R/W-0/0	U-0	R-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
EN	—	OUT	INTP	INTN		MODE<2:0>	
bit 7							bit 0

Legend:							
R = Readable bit		W = Writable bit	U = Unimplemented bit, read as '0'				
u = Bit is unchanged		x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is cleared					
bit 7		rable Logic Cell Enable bi					
	0	rable logic cell is enabled	5 1 5				
0 = Configurable logic cell is disabled and has logic zero output							
bit 6	-	nted: Read as '0'					
bit 5	OUT: Config						
	Read-only: I	ogic cell output data, after	POL; sampled from lcx_out wire.				
bit 4	INTP: Configurable Logic Cell Positive Edge Going Interrupt Enable bit						
	 1 = CLCxIF will be set when a rising edge occurs on lcx_out 0 = CLCxIF will not be set 						
bit 3	INTN: Config	INTN: Configurable Logic Cell Negative Edge Going Interrupt Enable bit					
	 1 = CLCxIF will be set when a falling edge occurs on lcx_out 0 = CLCxIF will not be set 						
bit 2-0	it 2-0 MODE<2:0>: Configurable Logic Cell Functional Mode bits						
	111 = Cell is 1-input transparent latch with S and R						
	110 = Cell is J-K flip-flop with R						
	101 = Cell is 2-input D flip-flop with R						
	100 = Cell is 1-input D flip-flop with S and R 011 = Cell is S-R latch						
		s S-R latch s 4-input AND					
	010 = Cell i	•					
		000 = Cell is AND-OR					

Name	Bit7	Bit6	Bit5	Bit4	Blt3	Bit2	Bit1	Bit0	Register on Page
ANSELA	_	_	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	177
ANSELB	_	_	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	182
ANSELC	ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2	—	—	187
CLCxCON	EN	_	OUT	OUT INTP INTN MODE<2:0>					397
CLCDATA	_	_	_	-	MLC4OUT	MLC3OUT	MLC2OUT	MLC1OUT	404
CLCxGLS0	G1D4T	G1D4N	G1D3T	G1D3N	G1D2T	G1D2N	G1D1T	G1D1N	400
CLCxGLS1	G2D4T	G2D4N	G2D3T	G2D3N	G2D2T	G2D2N	G2D1T	G2D1N	401
CLCxGLS2	G3D4T	G3D4N	G3D3T	G3D3N	G3D2T	G3D2N	G3D1T	G3D1N	402
CLCxGLS3	G4D4T	G4D4N	G4D3T	G4D3N	G4D2T	G4D2N	G4D1T	G4D1N	403
CLCxPOL	POL	_	_	_	G4POL	G3POL	G2POL	G1POL	398
CLCxSEL0	_	—		D1S<5:0>					399
CLCxSEL1	—	—		D2S<5:0>					399
CLCxSEL2				D3S<5:0>					399
CLCxSEL3	_	—		D4S<5:0>					400
CLCINxPPS	-	—	CLCINxPPS<5:0>					205, 207	
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	132
PIE3	_	—	COG2IE	ZCDIE	CLC4IE	CLC3IE	CLC2IE	CLC1IE	135
PIR3	—	—	COG2IF	ZCDIF	CLC4IF	CLC3IF	CLC2IF	CLC1IF	141
RxyPPS	_	—	RxyPPS<5:0>					205	
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	176
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	181
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	186

Legend: — = unimplemented read as '0'. Shaded cells are not used for CLC module.

FIGURE 31-5:	CARRIER LOW SYNCHRONIZATION (MDCHSYNC = 0, MDCLSYNC = 1)
Carrier High (CARH)	
Carrier Low (CARL)	
Modulator (MOD)	
MDx_out	
Active Carrier State -	

31.5 Input and Output Through Pins

The modulation and carrier sources may be selected to come from any device pin with the PPS control logic. Selecting a pin requires two settings: The source selection determines that the PPS will be used and the PPS control selects the desired pin. Source and PPS registers are identified in Table 31-2. PPS register pin selections are shown in Register 12-1 and Register 12-2.

TABLE 31-2:

Source	Source Register	PPS Register	
Modulation	MDxSRC	MDxMODPPS	
Carrier High	MDxCARH	MDxCHPPS	
Carrier Low	MDxCARL	MDxCLPPS	

Any device pin can be selected as the modulation output with the individual pin PPS controls. See Register 12-2 for the pin output selections.

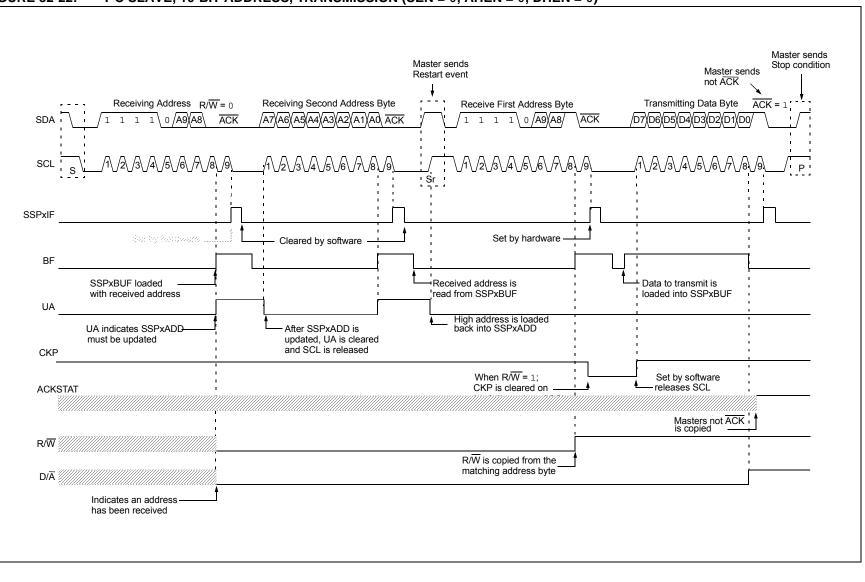
31.6 Carrier Source Polarity Select

The signal provided from any selected input source for the carrier high and carrier low signals can be inverted. Inverting the signal for the carrier high source is enabled by setting the CHPOL bit of the MDxCON1 register. Inverting the signal for the carrier low source is enabled by setting the CLPOL bit of the MDxCON1 register.

31.7 Programmable Modulator Data

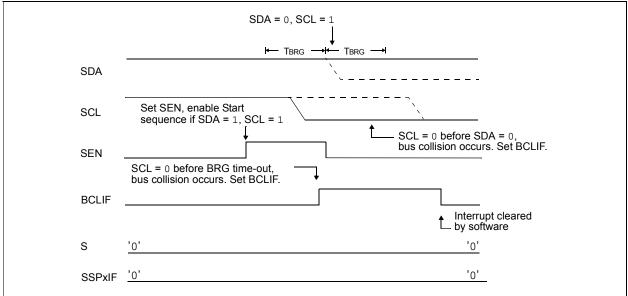
The BIT bit of the MDxCON0 register can be selected as the source for the modulator signal. When the BIT source is selected then software generates the modulation signal by setting and clearing the BIT bit at the respective desired modulation high and low times.

31.8 Modulated Output Polarity


The modulated output signal provided on the MDxOUT pin can also be inverted. Inverting the modulated output signal is enabled by setting the OPOL bit of the MDxCON0 register.

31.9 Operation in Sleep Mode

The DSM module is not affected by Sleep mode. The DSM will operate during Sleep provided that the Carrier and Modulator input sources are also active during Sleep.


31.10 Effects of a Reset

Upon any device Reset, the data signal modulator module is disabled. The user's firmware is responsible for initializing the module before enabling the output. The registers are reset to their default values.

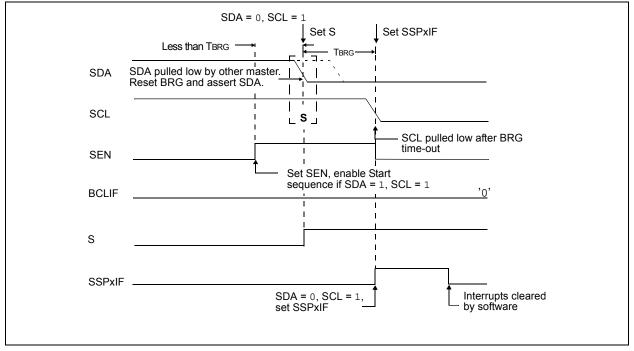
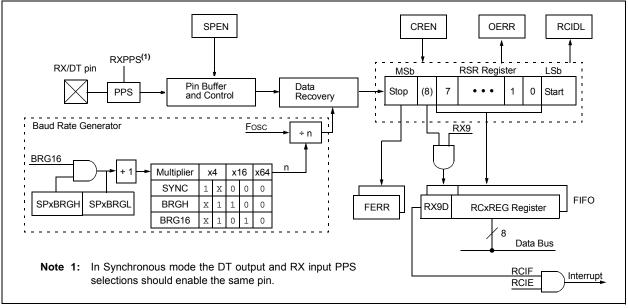


FIGURE 32-22: $I^{2}C$ SLAVE, 10-BIT ADDRESS, TRANSMISSION (SEN = 0, AHEN = 0, DHEN = 0)



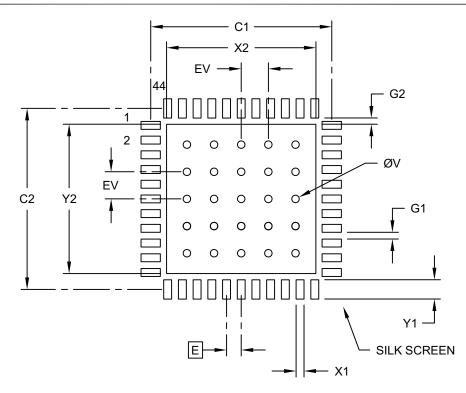
The operation of the EUSART module is controlled through three registers:

- Transmit Status and Control (TXxSTA)
- Receive Status and Control (RCxSTA)
- Baud Rate Control (BAUDxCON)

These registers are detailed in Register 33-1, Register 33-2 and Register 33-3, respectively.

The RX and CK input pins are selected with the RXPPS and CKPPS registers, respectively. TX, CK, and DT output pins are selected with each pin's RxyPPS register. Since the RX input is coupled with the DT output in Synchronous mode, it is the user's responsibility to select the same pin for both of these functions when operating in Synchronous mode. The EUSART control logic will control the data direction drivers automatically.

SWAPF	Swap Nibbles in f			
Syntax:	[label] SWAPF f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$			
Operation:	$(f<3:0>) \rightarrow (destination<7:4>),$ $(f<7:4>) \rightarrow (destination<3:0>)$			
Status Affected:	None			
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed in register 'f'.			


XORLW	Exclusive OR literal with W				
Syntax:	[<i>label</i>] XORLW k				
Operands:	$0 \leq k \leq 255$				
Operation:	(W) .XOR. $k \rightarrow (W)$				
Status Affected:	Z				
Description:	The contents of the W register are XOR'ed with the 8-bit literal 'k'. The result is placed in the W register.				

TRIS	Load TRIS Register with W			
Syntax:	[label] TRIS f			
Operands:	$5 \leq f \leq 7$			
Operation:	(W) \rightarrow TRIS register 'f'			
Status Affected:	None			
Description:	Move data from W register to TRIS register. When 'f' = 5, TRISA is loaded. When 'f' = 6, TRISB is loaded. When 'f' = 7, TRISC is loaded.			

XORWF	Exclusive OR W with f				
Syntax:	[label] XORWF f,d				
Operands:	$0 \le f \le 127$ $d \in [0,1]$				
Operation:	(W) .XOR. (f) \rightarrow (destination)				
Status Affected:	Z				
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.				

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN or VQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Contact Pitch	Contact Pitch E		0.65 BSC		
Optional Center Pad Width	X2			6.60	
Optional Center Pad Length	Y2			6.60	
Contact Pad Spacing	C1		8.00		
Contact Pad Spacing	C2		8.00		
Contact Pad Width (X44)	X1			0.35	
Contact Pad Length (X44)	Y1			0.85	
Contact Pad to Contact Pad (X40)	G1	0.30			
Contact Pad to Center Pad (X44)	G2	0.28			
Thermal Via Diameter	V		0.33		
Thermal Via Pitch	EV		1.20		

Notes:

- 1. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
- 2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing No. C04-2103C