

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	36
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 28x10b; D/A 4x5b, 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1779-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Neme	Function	Input	Output	Description	
Name	Function	Туре	Туре	Description	
RB2/AN8/OPA2IN0-/	RB2	TTL/ST	CMOS	General purpose I/O.	
DAC3OUT1/PRG4F/COG3IN/	AN8	AN	—	ADC Channel 8 input.	
MD4MOD	OPA2IN0-	AN	—	Operational amplifier 2 inverting input.	
	DAC3OUT1	—	AN	DAC3 voltage output.	
	PRG4F ⁽¹⁾	TTL/ST	—	Ramp generator set_falling input.	
	COG3IN ⁽¹⁾	TTL/ST	—	Complementary output generator 3 input.	
	MD4MOD ⁽¹⁾	TTL/ST	—	Data signal modulator modulation input.	
RB3/AN9/C1IN2-/C2IN2-/	RB3	TTL/ST	CMOS	General purpose I/O.	
C3IN2-/OPA2IN0+/MD3CL	AN9	AN	—	ADC Channel 9 input.	
	C1IN2-	AN	—	Comparator 1 negative input.	
	C2IN2-	AN	—	Comparator 2 negative input.	
	C3IN2-	AN	_	Comparator 3 negative input.	
	OPA2IN0+	AN		Operational amplifier 2 non-inverting input.	
	MD3CL ⁽¹⁾	TTL/ST	—	Data signal modulator 3 low carrier input.	
RB4/AN11/C3IN1+/MD3CH	RB4	TTL/ST	CMOS	General purpose I/O.	
	AN11	AN	—	ADC Channel 11 input.	
	C3IN1+	AN	—	Comparator 3 positive input.	
	MD3CH ⁽¹⁾	TTL/ST	—	Data signal modulator 3 high carrier input.	
RB5/AN13/DAC5REF1-/	RB5	TTL/ST	CMOS	General purpose I/O.	
DAC7REF1-/C4IN2-/CCP7/	AN13	AN	—	ADC Channel 11 input.	
MD3MOD	DAC5REF1-	AN	—	DAC5 negative reference.	
	DAC7REF1-	AN	—	DAC7 negative reference.	
	C4IN2-	AN	—	Comparator 4 negative input.	
	CCP7 ⁽¹⁾	TTL/ST	—	CCP7 capture input.	
	MD3MOD ⁽¹⁾	TTL/ST	—	Data signal modulator modulation input.	
RB6/DAC5REF1+/DAC7REF1+/	RB6	TTL/ST	CMOS	General purpose I/O.	
C4IN1+/CLCIN2/ICSPCLK	DAC5REF1+	AN	—	DAC5 positive reference.	
	DAC7REF1+	AN	—	DAC7 positive reference.	
	C4IN1+	AN	—	Comparator 2 positive input.	
	CLCIN2 ⁽¹⁾	TTL/ST	_	CLC input 2.	
	ICSPCLK	ST		Serial Programming Clock.	

TABLE 1-3: PIC16(L)F1777/9 PINOUT DESCRIPTION (CONTINUED)

Legend:AN = Analog input or outputCMOS = CMOS compatible input or outputOD= Open-DrainTTL = TTL compatible inputST= Schmitt Trigger input with CMOS levelsI²C= Schmitt Trigger input with I²CHP = High PowerXTAL= Crystal levels

Note 1: Default peripheral input. Alternate pins can be selected as the peripheral input with the PPS input selection registers.

2: All pin digital outputs default to PORT latch data. Alternate outputs can be selected as the peripheral digital output with the PPS output selection registers.

3: These peripheral functions are bidirectional. The output pin selections must be the same as the input pin selections.

Name	Function	Input	Output	Description		
Name	Function	Туре	Туре	Description		
RC4/AN16/C5IN3-/C6IN3-/	RC4	TTL/ST	CMOS	General purpose I/O.		
PRG3R/T8IN/MD2CH/SDA	AN16	AN	_	ADC Channel 16 input.		
	C5IN3-	AN	_	Comparator 5 negative input.		
	C6IN3-	AN	—	Comparator 6 negative input.		
	PRG3R ⁽¹⁾	TTL/ST	_	Ramp generator set_rising input.		
	T8IN ⁽¹⁾	TTL/ST	_	Timer8 gate input.		
	MD2CH ⁽¹⁾	TTL/ST	—	Data signal modulator 2 high carrier input.		
	SDA	l ² C	OD	I ² C data input/output.		
RC5/AN17/OPA3IN0+/PRG3F/	RC5	TTL/ST	CMOS	General purpose I/O.		
T4IN/MD2MOD	AN17	AN	—	ADC Channel 17 input.		
	OPA3IN0	AN	_	Operational amplifier 3 inverting input.		
	PRG3F ⁽¹⁾	TTL/ST	_	Ramp generator set_falling input.		
	T4IN ⁽¹⁾	TTL/ST	—	Timer4 gate input.		
	MD2MOD ⁽¹⁾	TTL/ST	_	Data signal modulator modulation input.		
RC6/AN18/PRG3IN0/PRG4IN1/	RC6	TTL/ST	CMOS	General purpose I/O.		
C5IN1-/C6IN1-/C7IN1-/C8IN1-/	AN18	AN	—	ADC Channel 18 input.		
OPA3OUT/OPA4IN1+/OPA4IN1-	PRG3IN0	AN	_	Ramp generator 3 reference voltage input.		
	PRG4IN1	AN	_	Ramp generator 4 reference voltage input.		
	C5IN1-	AN	—	Comparator 5 negative input.		
	C6IN1-	AN	_	Comparator 6 negative input.		
	C7IN1-	AN	_	Comparator 7 negative input.		
	C8IN1-	AN	_	Comparator 8 negative input.		
	OPA3OUT	_	AN	Operational amplifier 3 output.		
	OPA4IN1+	AN	_	Operational amplifier 4 non-inverting input.		
	OPA4IN1-	AN		Operational amplifier 4 inverting input.		
RC7/AN19/OPA3IN0-	RC7	TTL/ST	CMOS	General purpose I/O.		
	AN19	AN	_	ADC Channel 19 input.		
	OPA3IN0-	AN	_	Operational amplifier 3 non-inverting input.		
RD0/AN20/OPA4IN0+	RD0	TTL/ST	CMOS	General purpose I/O.		
	AN20	AN		ADC Channel 20 input.		
	OPA4IN0+	AN	—	Operational amplifier 4 non-inverting input.		
				la instantant OD Once Desig		

TARI E 1-3.	PIC16(I) F1777/9 PINOLIT DESCRIPTION (CONTINUED)
TADLE 1-3.	FIG10(L)F1/1/19 FINOUT DESCRIFTION (CONTINUED)

Legend: AN = Analog input or output CMOS = CMOS compatible input or output = Open-Drain OD TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels I^2C = Schmitt Trigger input with I^2C HP = High Power

XTAL = Crystal levels

Note 1: Default peripheral input. Alternate pins can be selected as the peripheral input with the PPS input selection registers.

2: All pin digital outputs default to PORT latch data. Alternate outputs can be selected as the peripheral digital output with the PPS output selection registers.

3: These peripheral functions are bidirectional. The output pin selections must be the same as the input pin selections.

2.1 Automatic Interrupt Context Saving

During interrupts, certain registers are automatically saved in shadow registers and restored when returning from the interrupt. This saves stack space and user code. See **Section 7.5 "Automatic Context Saving"** for more information.

2.2 16-Level Stack with Overflow and Underflow

These devices have a hardware stack memory 15 bits wide and 16 words deep. A Stack Overflow or Underflow will set the appropriate bit (STKOVF or STKUNF) in the PCON register, and if enabled, will cause a software Reset. See **Section 3.6 "Stack**" for more details.

2.3 File Select Registers

There are two 16-bit File Select Registers (FSR). FSRs can access all file registers and program memory, which allows one Data Pointer for all memory. When an FSR points to program memory, there is one additional instruction cycle in instructions using INDF to allow the data to be fetched. General purpose memory can now also be addressed linearly, providing the ability to access contiguous data larger than 80 bytes. There are also new instructions to support the FSRs. See **Section 3.7 "Indirect Addressing"** for more details.

2.4 Instruction Set

There are 49 instructions for the enhanced mid-range CPU to support the features of the CPU. See **Section 35.0 "Instruction Set Summary"** for more details.

TABLE 3-14: PIC16(L)F1778 MEMORY MAP, BANK 27-30

D8Ch D8Dh D8Eh D8Fh		E0Ch E0Dh	PPSLOCK	E8Ch	_	F0Ch	_
D8Dh D8Eh D8Fh		E0Dh					
D8Eh D8Fh			INTPP5	E8Dh	—	F0Dh	—
D8Fh	PWWEN	E0Eh	T0CKIPPS	E8Eh	_	F0Eh	—
	PWMLD	E0Fh	T1CKIPPS	E8Fh	_	F0Fh	CLCDATA
	PWMOUT	E10h	T1GPPS	E90h	RA0PPS	F10h	CLC1CON
D91h	PWM5PHL	E11h	T3CKIPPS	E91h	RA1PPS	F11h	CLC1POL
D92h	PWM5PHH	E12h	T3GPPS	E92h	RA2PPS	F12h	CLC1SEL0
D93h	PWM5DCL	E13h	T5CKIPPS	E93h	RA3PPS	F13h	CLC1SEL1
D94h	PWM5DCH	E14h	T5GPPS	E94h	RA4PPS	F14h	CLC1SEL2
D95h	PWM5PRL	E15h	T2INPPS	E95h	RA5PPS	F15h	CLC1SEL3
D96h	PWM5PRH	E16h	T4INPPS	E96h	RA6PPS	F16h	CLC1GLS0
D97h	PWM5OFL	E17h	T6INPPS	E97h	RA7PPS	F17h	CLC1GLS1
D98h	PWM50FH	E18h	T8INPPS	E98h	RB0PPS	F18h	CLC1GLS2
D99h	PWM5TMRL	E19h	CCP1PPS	E99h	RB1PPS	F19h	CLC1GLS3
D9Ah	PWM5TMRH	E1Ah	CCP2PPS	E9Ah	RB2PPS	F1Ah	CLC2CON
D9Bh	PWM5CON	E1Bh	CCP7PPS	E9Bh	RB3PPS	F1Bh	CLC2POL
D9Ch	PWM5INTE	E1Ch	_	E9Ch	RB4PPS	F1Ch	CLC2SEL0
D9Dh	PWM5INTF	E1Dh	COG1INPPS	E9Dh	RB5PPS	F1Dh	CLC2SEL1
D9Eh	PWM5CLKCON	E1Eh	COG2INPPS	E9Eh	RB6PPS	F1Eh	CLC2SEL2
D9Fh	PWM5LDCON	E1Fh	COG3INPPS	E9Fh	RB7PPS	F1Fh	CLC2SEL3
DA0h	PWM50FCON	E20h	—	EA0h	RC0PPS	F20h	CLC2GLS0
DA1h	PWM6PHL	E21h	MD1CLPPS	EA1h	RC1PPS	F21h	CLC2GLS1
DA2h	PWM6PHH	E22h	MD1CHPPS	EA2h	RC2PPS	F22h	CLC2GLS2
DA3h	PWM6DCL	E23h	MD1MODPPS	EA3h	RC3PPS	F23h	CLC2GLS3
DA4h	PWM6DCH	E24h	MD2CLPPS	EA4h	RC4PPS	F24h	CLC3CON
DA5h	PWM6PRL	E25h	MD2CHPPS	EA5h	RC5PPS	F25h	CLC3POL
DA6h	PWM6PRH	E26h	MD2MODPPS	EA6h	RC6PPS	F26h	CLC3SEL0
DA7h	PWM6OFL	E27h	MD3CLPPS	EA7h	RC7PPS	F27h	CLC3SEL1
DA8h	PWM60FH	E28h	MD3CHPPS	EA8h	—	F28h	CLC3SEL2
DA9h	PWM6TMRL	E29h	MD3MODPPS	EA9h	—	F29h	CLC3SEL3
JAAh L	PWM6TMRH	E2Ah	—	EAAh	—	F2Ah	CLC3GLS0
JABh	PWM6CON	E2Bh	_	EABh	—	F2Bh	CLC3GLS1
JACh	PWM6INTE	E2Ch	—	EACh	—	F2Ch	CLC3GLS2
DADh	PWM6INTF	E2Dh	PRG1RPPS	EADh	—	F2Dh	CLC3GLS3
JAEh	PWM6CLKCON	E2Eh	PRG1FPPS	EAEh	—	F2Eh	CLC4CON
DAFh	PWM6LDCON	E2Fh	PRG2RPPS	EAFh	—	F2Fh	CLC4POL
DB0h	PWM60FC0N	E30h	PRG2FPPS	EB0h	—	F30h	CLC4SEL0
DB1h	PWM11PHL	E31h	PRG3FPPS	EB1h	—	F31h	CLC4SEL1
JB2n	PWM11PHH	E32h	PRG3RPPS	EB2n	—	F32h	CLC4SEL2
DB3h	PWM11DCL	E33h		EB3h	—	F33h	CLC4SEL3
DB4h	PWM11DCH	E34h	01.011/17777	EB4h	_	F34h	CLC4GLS0
JB5h	PWM11PRL	E35h	CLCINOPPS	EB5h	_	F35h	CLC4GLS1
JB6h	PWM11PRH	E360	CLCIN1PPS	EB6h		F36h	CLC4GLS2
JB/h	PWM110FL	E37h	CLCIN2PPS	EB7h	—	F37h	CLC4GLS3
JB8h	PWM110FH	E38h	CLCIN3PPS	EB8h	_	F38h	—
	PWM11TMRL	E39h	ADCACTPPS	EB9h	—	F39h	—
	PWM11TMRH	E3Ah	SSPCLKPPS	EBAN	—	F3Ah	—
	PWM11CON	E3Bh	SSPDATPPS	EBBh	—	F3Bh	—
DRCH	PWM11INTE	ESCH	SSPSSPPS	EBCh	—	F3Ch	—
	PWM11IN IF	E3Dh	RXPPS	EBDh	—	F3Dh	_
	PWM11CLKCON	EJEN	CKPPS	EBEh		F3Eh	—
	PWM11LDCON	E3Fh	—	EBFh	_	F3Fh	—
	PWM110FCON	⊑40n		ECON		F40N	
C1h	_		-		—		_
DEFh		E6Fh		EEFh		F6Fh	
	11.2	l otob bote	memoryleastions	rood oo '	o'		

TABLE 3-18: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Ban	k 28										
E0Ch	—		_	—							
 E0Bh											
E0Ch	PPSLOCK	_	_	_	_	PPSLOCKED	0	0			
E0Dh	INTPPS	_	_			INTPP	S<5:0>	•	•	00 1000	uu uuuu
E0Eh	TOCKIPPS	_	_			TOCKIP	PS<5:0>			00 0100	uu uuuu
E0Fh	T1CKIPPS	—	_			T1CKIP	PS<5:0>			01 0000	uu uuuu
E10h	T1GPPS	—	_			T1GPP	S<5:0>			00 1101	uu uuuu
E11h	T3CKIPPS	—	_			T3CKIP	PS<5:0>			01 0000	uu uuuu
E12h	T3GPPS	—	_			T3GPP	S<5:0>			01 0000	uu uuuu
E13h	T5CKIPPS	—				T5CKIP	PS<5:0>			01 0000	uu uuuu
E14h	T5GPPS	_				T5GPP	S<5:0>			00 1100	uu uuuu
E15h	T2INPPS	_				T2INPF	PS<5:0>			01 0011	uu uuuu
E16h	T4INPPS	_				T4INPF	PS<5:0>			01 0101	uu uuuu
E17h	T6INPPS	_				T6INPF	PS<5:0>			01 0100	uu uuuu
E18h	T8INPPS	_				T8INPF	PS<5:0>			01 0010	uu uuuu
E19h	CCP1PPS	—	_			CCP1PI	PS<5:0>			01 0010	uu uuuu
E1Ah	CCP2PPS	—	_			CCP2PI	PS<5:0>			01 0001	uu uuuu
E1Bh	CCP7PPS	—	_			CCP7PI	PS<5:0>			00 1101	uu uuuu
E1Ch	CCP8PPS ⁽³⁾	—	_			CCP8PI	PS<5:0>			00 1101	uu uuuu
E1Dh	COGIN1PPS	—	_			COG1P	PS<5:0>			00 1000	uu uuuu
E1Eh	COG2INPPS	—	_			COG2P	PS<5:0>			00 1001	uu uuuu
E1Fh	COG3INPPS	—	_			COG3P	PS<5:0>			00 1010	uu uuuu
E20h	COG4INPPS ⁽³⁾	—	_			COG4P	PS<5:0>			00 1010	uu uuuu
E21h	MD1CLPPS	—	_			MD1CLF	PS<5:0>			00 0100	uu uuuu
E22h	MD1CHPPS	—	_			MD1CHF	PPS<5:0>			00 0011	uu uuuu
E23h	MD1MODPPS	_	_			MD1MOD	PPS<5:0>			00 0101	uu uuuu
E24h	MD2CLPPS	_	_			MD2CLF	PS<5:0>			00 0100	uu uuuu
E25h	MD2CHPPS	_	_			MD2CHF	PPS<5:0>			00 0011	uu uuuu
E26h	MD2MODPPS					MD2MOD	PPS<5:0>			00 0101	uu uuuu
Legen	d: x = unknown,	u = unchanged, g	= value depends o	n condition, - = uni	mplemented, read	as '0', r = reserve	d.				

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Unimplemented, read as '1'. Note 1:

> 2: Unimplemented on PIC16LF1777/8/9.

3: Unimplemented on PIC16(L)F1778. PIC16(L)F1777/8/9

8.0 POWER-DOWN MODE (SLEEP)

The Power-Down mode is entered by executing a SLEEP instruction.

Upon entering Sleep mode, the following conditions exist:

- 1. WDT will be cleared but keeps running, if enabled for operation during Sleep.
- 2. PD bit of the STATUS register is cleared.
- 3. TO bit of the STATUS register is set.
- 4. CPU clock is disabled.
- 5. 31 kHz LFINTOSC is unaffected and peripherals that operate from it may continue operation in Sleep.
- 6. Timer1 and peripherals that operate from Timer1 continue operation in Sleep when the Timer1 clock source selected is:
 - LFINTOSC
 - T1CKI
 - Secondary oscillator
- 7. ADC is unaffected, if the dedicated FRC oscillator is selected.
- I/O ports maintain the status they had before SLEEP was executed (driving high, low or high-impedance).
- 9. Resets other than WDT are not affected by Sleep mode.

Refer to individual chapters for more details on peripheral operation during Sleep.

To minimize current consumption, the following conditions should be considered:

- I/O pins should not be floating
- External circuitry sinking current from I/O pins
- · Internal circuitry sourcing current from I/O pins
- Current draw from pins with internal weak pull-ups
- Modules using 31 kHz LFINTOSC
- Modules using secondary oscillator

I/O pins that are high-impedance inputs should be pulled to VDD or Vss externally to avoid switching currents caused by floating inputs.

Examples of internal circuitry that might be sourcing current include modules such as the DAC and FVR modules. See Section 17.0 "5-Bit Digital-to-Analog Converter (DAC) Module" and Section 14.0 "Fixed Voltage Reference (FVR)" for more information on these modules.

8.1 Wake-up from Sleep

The device can wake-up from Sleep through one of the following events:

- 1. External Reset input on MCLR pin, if enabled
- 2. BOR Reset, if enabled
- 3. POR Reset
- 4. Watchdog Timer, if enabled
- 5. Any external interrupt
- 6. Interrupts by peripherals capable of running during Sleep (see individual peripheral for more information)

The first three events will cause a device Reset. The last three events are considered a continuation of program execution. To determine whether a device Reset or wake-up event occurred, refer to **Section 6.12 "Determining the Cause of a Reset"**.

When the SLEEP instruction is being executed, the next instruction (PC + 1) is prefetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be enabled. Wake-up will occur regardless of the state of the GIE bit. If the GIE bit is disabled, the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is enabled, the device executes the instruction after the SLEEP instruction, the device will then call the Interrupt Service Routine. In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

The WDT is cleared when the device wakes up from Sleep, regardless of the source of wake-up.

11.1.7 PORTA FUNCTIONS AND OUTPUT PRIORITIES

Each PORTA pin is multiplexed with other functions.

Each pin defaults to the PORT latch data after reset. Other functions are selected with the peripheral pin select logic. See **Section 12.0** "**Peripheral Pin Select (PPS) Module**" for more information.

Analog input functions, such as ADC and comparator inputs are not shown in the peripheral pin select lists. These inputs are active when the I/O pin is set for Analog mode using the ANSELA register. Digital output functions may continue to control the pin when it is in Analog mode.

11.3 PORTB Registers

11.3.1 DATA REGISTER

PORTB is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISB (Register 11-10). Setting a TRISB bit (= 1) will make the corresponding PORTB pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin). Example 11-1 shows how to initialize an I/O port.

Reading the PORTB register (Register 11-9) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATB).

11.3.2 DIRECTION CONTROL

The TRISB register (Register 11-10) controls the PORTB pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISB register are maintained set when using them as analog inputs. I/O pins configured as analog inputs always read '0'.

11.3.3 OPEN-DRAIN CONTROL

The ODCONB register (Register 11-14) controls the open-drain feature of the port. Open-drain operation is independently selected for each pin. When an ODCONB bit is set, the corresponding port output becomes an open-drain driver capable of sinking current only. When an ODCONB bit is cleared, the corresponding port output pin is the standard push-pull drive capable of sourcing and sinking current.

11.3.4 SLEW RATE CONTROL

The SLRCONB register (Register 11-15) controls the slew rate option for each port pin. Slew rate control is independently selectable for each port pin. When an SLRCONB bit is set, the corresponding port pin drive is slew rate limited. When an SLRCONB bit is cleared, The corresponding port pin drive slews at the maximum rate possible.

11.3.5 INPUT THRESHOLD CONTROL

The INLVLB register (Register 11-16) controls the input voltage threshold for each of the available PORTB input pins. A selection between the Schmitt Trigger CMOS or the TTL Compatible thresholds is available. The input threshold is important in determining the value of a read of the PORTB register and also the level at which an interrupt-on-change occurs, if that feature is enabled. See Table 36-4: I/O Ports for more information on threshold levels.

Note: Changing the input threshold selection should be performed while all peripheral modules are disabled. Changing the threshold level during the time a module is active may inadvertently generate a transition associated with an input pin, regardless of the actual voltage level on that pin.

11.3.6 ANALOG CONTROL

The ANSELB register (Register 11-12) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELB bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELB bits has no effect on digital output functions. A pin with TRIS clear and ANSELB set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

Note:	The ANSELB bits default to the Analog
	mode after reset. To use any pins as
	digital general purpose or peripheral
	inputs, the corresponding ANSEL bits
	must be initialized to '0' by user software.

11.3.7 PORTB FUNCTIONS AND OUTPUT PRIORITIES

Each pin defaults to the PORT latch data after reset. Other functions are selected with the peripheral pin select logic. See **Section 12.0** "**Peripheral Pin Select (PPS) Module**" for more information. Analog input functions, such as ADC and op amp inputs, are not shown in the peripheral pin select lists. These inputs are active when the I/O pin is set for Analog mode using the ANSELB register. Digital output functions may continue to control the pin when it is in Analog mode.

11.3.8 HIGH CURRENT DRIVE CONTROL

The output drivers on RB1 and RB0 are capable of sourcing and sinking up to 100 mA. This extra drive capacity can be enabled and disabled with the control bits in the HIDRVB register (Register 11-17).

14.4 **Register Definitions: FVR Control**

REGISTER 14-1: FVRCON: FIXED VOLTAGE REFERENCE CONTROL REGISTER

R/W-0/0	R-q/q	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
FVREN	FVRRDY ⁽¹⁾	TSEN ⁽³⁾	TSRNG ⁽³⁾	CDAFVR<1:0>		ADFV	R<1:0>
bit 7							bit 0

Legend:			
R = Reada	ble bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is u	nchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is s	set	'0' = Bit is cleared	q = Value depends on condition
bit 7	FVREN: Fi	ked Voltage Reference Enab	ble bit
	1 = Fixed \ 0 = Fixed \	/oltage Reference is enable /oltage Reference is disable	d d
bit 6	FVRRDY: F	Fixed Voltage Reference Rea	adv Flag bit ⁽¹⁾
	1 = Fixed \	/oltage Reference output is	ready for use
	0 = Fixed	/oltage Reference output is	not ready or not enabled
bit 5	TSEN: Tem	perature Indicator Enable bi	(3)
	1 = Tempe	rature Indicator is enabled	
bit 4	TSRNG: Te	mperature Indicator Range	Selection bit ⁽³⁾
	1 = VOUT =	VDD - 4VT (High Range)	
	0 = VOUT =	VDD - 2VT (Low Range)	
bit 3-2	CDAFVR<1	:0>: Comparator/DAC FVR	Buffer Gain Selection bits
	11 = Comp	arator/DAC FVR Buffer Gair	is 4x, with output VCDAFVR = 4x VFVR ⁽²⁾
	01 = Comp	arator/DAC FVR Buffer Gair	is 1x, with output VCDAFVR = $1x$ VFVR
	00 = Comp	arator/DAC FVR Buffer is of	f
bit 1-0	ADFVR<1:	0>: ADC FVR Buffer Gain S	election bits
	11 = ADC F	FVR Buffer Gain is 4x, with c	butput VADEVR = 4x VEVR ⁽²⁾
	01 = ADC F	FVR Buffer Gain is 1x, with c	putput VADEVR = 2x VEVR
	00 = ADC F	VR Buffer is off	•
Note 1:	FVRRDY is alwa	ays '1' on PIC16F1773/6 onl	V.
2.	Eived Voltage D	forance output cannot avec	

- **2:** Fixed Voltage Reference output cannot exceed VDD.
- 3: See Section 15.0 "Temperature Indicator Module" for additional information.

TABLE 14-2: SUMMARY OF REGISTERS ASSOCIATED WITH FIXED VOLTAGE REFERENCE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	′R<1:0>	ADFVF	<1:0>	223

Legend: Shaded cells are not used with the Fixed Voltage Reference.

R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W/HC-0/u	R-x/x	R/W-0/u	R/W-0/u		
GE	GPOL	GTM	GSPM	GGO/ DONE	GVAL	GSS<	:1:0>		
bit 7	•					•	bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'			
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets		
'1' = Bit is set		'0' = Bit is clea	ared	HC = Bit is cl	eared by hardw	vare			
bit 7	GE: Timer1 G <u>If TMR1ON =</u> This bit is igno <u>If TMR1ON =</u> 1 = Timer1 co 0 = Timer1 co	Gate Enable bit <u>0</u> : ored <u>1</u> : ounting is conti ounting is conti	rolled by the T as of Timer1 g	imer1 gate func ate function	tion				
bit 6	GPOL: Timer 1 = Timer1 g 0 = Timer1 g	1 Gate Polarity ate is active-hig ate is active-lo	y bit gh (Timer1 cou w (Timer1 cou	unts when gate nts when gate i	is high) s low)				
bit 5	GTM: Timer1 1 = Timer1 G 0 = Timer1 G Timer1 gate fl	Gate Toggle M Gate Toggle mo Gate Toggle mo Lip-flop toggles	lode bit de is enabled de is disabled on every rising	and toggle flip- g edge.	flop is cleared				
bit 4	GSPM: Timer	1 Gate Single-	Pulse Mode b	it					
	1 = Timer1 G 0 = Timer1 G	Bate Single-Puls Bate Single-Puls	se mode is en se mode is dis	abled and is co abled	ntrolling Timer1	l gate			
bit 3	GGO/DONE:	Timer1 Gate S	ingle-Pulse A	cquisition Statu	s bit				
	1 = Timer1 g 0 = Timer1 g	ate single-pulse ate single-pulse	e acquisition is e acquisition h	s ready, waiting as completed c	for an edge or has not been	started			
bit 2	GVAL: Timer	1 Gate Value S	tatus bit						
	Indicates the Unaffected by	current state of / Timer1 Gate I	f the Timer1 ga Enable (TMR1	ate that could b GE)	e provided to T	MR1H:TMR1L			
bit 1-0	GSS<1:0>: ⊺	imer1 Gate So	urce Select bit	S					
	GSS<1:0>: Imer1 Gate Source Select bits 11 = Comparator 2 optionally synchronized output (sync_C2OUT) 10 = Comparator 1 optionally synchronized output (sync_C1OUT) 01 = Timer0 overflow output 00 = Timer1 gate pin								

REGISTER 22-2: T1GCON: TIMER1 GATE CONTROL REGISTER

U-0 U-0 U-0 U-0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 _ CTS<3:0> ____ ____ ____ bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' u = Bit is unchanged -n/n = Value at POR and BOR/Value at all other Reset x = Bit is unknown '1' = Bit is set '0' = Bit is cleared bit 7-4 Unimplemented: Read as '0' bit 3-0 CTS<3:0>: Capture Trigger Input Selection bits 1101 = IOC event 1100 = LC4 output 1011 = LC3_output 1010 = LC2_output 1001 = LC1_output 1000 = C8_sync_out⁽¹⁾ 0111 = C7_sync_out⁽¹⁾ 0110 = C6_sync_out 0101 = C5_sync_out 0100 = C4_sync_out 0011 = C3_sync_out

REGISTER 24-4: CCPxCAP: CCPx CAPTURE INPUT SELECTION REGISTER

Note 1: PIC16LF1777/9 only.

0010 = C2_sync_out 0001 = C1 sync out

0000 = Pin selected with the CCPxPPS register

REGISTER 26-11: PWMxPRH: PWMx PERIOD COUNT HIGH REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			PR<	15:8>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'	
u = Bit is unch	anged	x = Bit is unkn	iown	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-0 **PR<15:8>**: PWM Period High bits Upper eight bits of PWM period count

REGISTER 26-12: PWMxPRL: PWMx PERIOD COUNT LOW REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			PR<	<7:0>			
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable b	bit	U = Unimple	mented bit, read	d as '0'	

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **PR<7:0>**: PWM Period Low bits Lower eight bits of PWM period count

R/W-0/0	R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0				R/W-0/0 R/W-0/0 R/W-0/0 R/W-						
FSIM7	FSIM6	FSIM5	FSIM4	FSIM3	FSIM2	FSIM1	FSIM0				
bit 7							bit 0				
Legend:											
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'								
u = Bit is unchanged x = Bit is unknown			iown	-n/n = Value at POR and BOR/Value at all other Resets							
'1' = Bit is set '0' = Bit is cleared			ared	q = Value depends on condition							

REGISTER 27-9: COGxFSIM0: COG FALLING EVENT SOURCE INPUT MODE REGISTER

bit 7-0 FSIM<7:0>: Falling Event Input Source <n> Mode bits⁽¹⁾. See Table 27-5. FIS<n> = 1: 1 = Source <n> output high-to-low transition will cause a falling event after falling event phase delay 0 = Source <n> output low level will cause an immediate falling event FIS<n> = 0: Source <n> output has no effect on falling event

Note 1: Any combination of <n> bits can be selected.

REGISTER 27-10: COGxFSIM1: COG FALLING EVENT SOURCE INPUT MODE REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| FSIM15 | FSIM14 | FSIM13 | FSIM12 | FSIM11 | FSIM10 | FSIM9 | FSIM8 |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 15-8
FSIM<15:8>: Falling Event Input Source <n> Mode bits⁽¹⁾. See Table 27-5.
FIS<n> = 1:
1 = Source <n> output high-to-low transition will cause a falling event after falling event phase delay
0 = Source <n> output low level will cause an immediate falling event
FIS<n> = 0:
Source <n> output has no effect on falling event

Note 1: Any combination of <n> bits can be selected.

	REGISTER 27-14:	COGxDBR: C	COG RISING EVE	NT DEAD-BAND	COUNT REGISTER
--	-----------------	------------	----------------	--------------	----------------

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
			DBR<5:0>							
bit 7	-						bit 0			
Legend:										
R = Readable bit W = Wri		W = Writable	bit	U = Unimplen	U = Unimplemented bit, read as '0'					
u = Bit is unchanged x = Bit is		x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Re						
'1' = Bit is set '0' = Bit is cleared				q = Value depends on condition						

bit 7-6	Unimplemented: Read as '0'
bit 5-0	DBR<5:0>: Rising Event Dead-Band Count Value bits
	<u>RDBS = 1:</u> = Number of delay chain element periods to delay primary output after rising event <u>RDBS = 0:</u>
	 Number of COGx clock periods to delay primary output after rising event

REGISTER 27-15: COGxDBF: COG FALLING EVENT DEAD-BAND COUNT REGISTER

U-0	U-0	R/W-0/0	R/W-0/0								
			DBF<5:0>								
bit 7							bit 0				

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-6 Unimplemented: Read as '0'

DBF<5:0>: Falling Event Dead-Band Count Value bits

FDBS = 1:

bit 5-0

= Number of delay chain element periods to delay complementary output after falling event input FDBS = 0:

= Number of COGx clock periods to delay complementary output after falling event input

32.5.7 GENERAL CALL ADDRESS SUPPORT

The addressing procedure for the I^2C bus is such that the first byte after the Start condition usually determines which device will be the slave addressed by the master device. The exception is the general call address which can address all devices. When this address is used, all devices should, in theory, respond with an acknowledge.

The general call address is a reserved address in the I²C protocol, defined as address 0x00. When the GCEN bit of the SSPxCON2 register is set, the slave module will automatically ACK the reception of this address regardless of the value stored in SSPxADD. After the slave clocks in an address of all zeros with the R/W bit clear, an interrupt is generated and slave SSPxBUF software can read and respond. Figure 32-24 shows reception а general call sequence.

In 10-bit Address mode, the UA bit will not be set on the reception of the general call address. The slave will prepare to receive the second byte as data, just as it would in 7-bit mode. If the AHEN bit of the SSPxCON3 register is set, just as with any other address reception, the slave hardware will stretch the clock after the eighth falling edge of SCL. The slave must then set its ACKDT value and release the clock with communication progressing as it would normally.

32.5.8 SSP MASK REGISTER

An SSP Mask (SSPxMSK) register (Register 32-5) is available in I²C Slave mode as a mask for the value held in the SSPSR register during an address comparison operation. A zero ('0') bit in the SSPxMSK register has the effect of making the corresponding bit of the received address a "don't care".

This register is reset to all '1's upon any Reset condition and, therefore, has no effect on standard SSP operation until written with a mask value.

The SSP Mask register is active during:

• 7-bit Address mode: address compare of A<7:1>.

10-bit Address mode: address compare of A<7:0> only. The SSP mask has no effect during the reception of the first (high) byte of the address.

					SYNC	C = 0, BRGH	, BRGH = 0, BRG16 = 0						
BAUD RATE	Fosc = 32.000 MHz			Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc = 11.0592 MHz			
	Actual Rate	% Error	SPxBRG value (decimal)	Actual Rate	% Error	SPxBRG value (decimal)	Actual Rate	% Error	SPxBRG value (decimal)	Actual Rate	% Error	SPxBRG value (decimal)	
300	_		_	_	_			_	_		_	_	
1200		—	—	1221	1.73	255	1200	0.00	239	1200	0.00	143	
2400	2404	0.16	207	2404	0.16	129	2400	0.00	119	2400	0.00	71	
9600	9615	0.16	51	9470	-1.36	32	9600	0.00	29	9600	0.00	17	
10417	10417	0.00	47	10417	0.00	29	10286	-1.26	27	10165	-2.42	16	
19.2k	19.23k	0.16	25	19.53k	1.73	15	19.20k	0.00	14	19.20k	0.00	8	
57.6k	55.55k	-3.55	3	—	_		57.60k	0.00	7	57.60k	0.00	2	
115.2k	—	—	_	—	—		_	—	—	—	—		

TABLE 33-5: BAUD RATES FOR ASYNCHRONOUS MODES

	SYNC = 0, BRGH = 0, BRG16 = 0												
BAUD	Fosc = 8.000 MHz			Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fos	Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPxBRG value (decimal)	Actual Rate	% Error	SPxBRG value (decimal)	Actual Rate	% Error	SPxBRG value (decimal)	Actual Rate	% Error	SPxBRG value (decimal)	
300	_	_	_	300	0.16	207	300	0.00	191	300	0.16	51	
1200	1202	0.16	103	1202	0.16	51	1200	0.00	47	1202	0.16	12	
2400	2404	0.16	51	2404	0.16	25	2400	0.00	23	—	—	—	
9600	9615	0.16	12	—	_	_	9600	0.00	5	—	—	_	
10417	10417	0.00	11	10417	0.00	5	_	_	_	_	_	_	
19.2k	—	—	—	—	_	—	19.20k	0.00	2	—	—	—	
57.6k	—	—	—	—	_	—	57.60k	0.00	0	—	—	—	
115.2k	—	_	_	—	—	_	_	_	—	_	—		

	SYNC = 0, BRGH = 1, BRG16 = 0												
BAUD RATE	Fosc = 32.000 MHz			Fosc	Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc = 11.0592 MHz		
	Actual Rate	% Error	SPxBRG value (decimal)	Actual Rate	% Error	SPxBRG value (decimal)	Actual Rate	% Error	SPxBRG value (decimal)	Actual Rate	% Error	SPxBRG value (decimal)	
300	—	_		—	—	—	-	—	—	_	—	—	
1200	—	_	_	—	_	—	—	—	—	—	—	—	
2400	—	—	—	—	—	—	—	—	—	—	_	_	
9600	9615	0.16	207	9615	0.16	129	9600	0.00	119	9600	0.00	71	
10417	10417	0.00	191	10417	0.00	119	10378	-0.37	110	10473	0.53	65	
19.2k	19.23k	0.16	103	19.23k	0.16	64	19.20k	0.00	59	19.20k	0.00	35	
57.6k	57.14k	-0.79	34	56.82k	-1.36	21	57.60k	0.00	19	57.60k	0.00	11	
115.2k	117.64k	2.12	16	113.64k	-1.36	10	115.2k	0.00	9	115.2k	0.00	5	

TABLE 36-4: I/O PORTS (CONTINUED) (CONTINUED)

Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions		
		Capacitive Loading Specs on Output Pins							
D101*	COSC2	OSC2 pin	_	_	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1		
D101A*	Сю	All I/O pins	_	_	50	pF			

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In EXTRC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in EXTRC mode.

2: Negative current is defined <u>as current sourced by the pin.</u>

3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

4: Including OSC2 in CLKOUT mode.

TABLE 36-27:	I ² C BUS DATA REQUIREMENTS
--------------	--

Standard Operating Conditions (unless otherwise stated)								
Param. No.	Symbol	Characteristic		Min.	Max.	Units	Conditions	
SP100*	Тнідн	Clock high time	100 kHz mode	4.0		μS	Device must operate at a minimum of 1.5 MHz	
			400 kHz mode	0.6	—	μS	Device must operate at a minimum of 10 MHz	
			SSP module	1.5Tcy				
SP101*	TLOW	Clock low time	100 kHz mode	4.7		μS	Device must operate at a minimum of 1.5 MHz	
			400 kHz mode	1.3		μS	Device must operate at a minimum of 10 MHz	
			SSP module	1.5Tcy	_			
SP102*	TR	SDA and SCL rise time	100 kHz mode	_	1000	ns		
			400 kHz mode	20 + 0.1Св	300	ns	CB is specified to be from 10-400 pF	
SP103*	TF	SDA and SCL fall time	100 kHz mode	_	250	ns		
			400 kHz mode	20 + 0.1Св	250	ns	CB is specified to be from 10-400 pF	
SP106*	THD:DAT	Data input hold time	100 kHz mode	0		ns		
			400 kHz mode	0	0.9	μS		
SP107*	TSU:DAT	Data input setup time	100 kHz mode	250		ns	(Note 2)	
			400 kHz mode	100		ns		
SP109*	ΤΑΑ	Output valid from clock	100 kHz mode	_	3500	ns	(Note 1)	
			400 kHz mode	—		ns		
SP110*	TBUF	Bus free time	100 kHz mode	4.7		μS	Time the bus must be free	
			400 kHz mode	1.3	_	μS	before a new transmission can start	
SP111	Св	CB Bus capacitive loading			400	pF		

* These parameters are characterized but not tested.

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

2: A Fast mode (400 kHz) I²C bus device can be used in a Standard mode (100 kHz) I²C bus system, but the requirement Tsu:DAT \ge 250 ns must then be met. This will automatically be the case if the device does not stretch the low period of the SCL signal. If such a device does stretch the low period of the SCL signal, it must output the next data bit to the SDA line TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCL line is released.

PIC16(L)F1777/8/9

Note: Unless otherwise noted, VIN = 5V, Fosc = 300 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 37-49: IPD, ADC Non-Converting, PIC16F1777/8/9 Only.

FIGURE 37-50: IPD, Comparator, NP Mode (VREGPM = 0), PIC16LF1777/8/9 Only.

FIGURE 37-51: IPD, Comparator, NP Mode (VREGPM = 0), PIC16F1777/8/9 Only.

FIGURE 37-53: Voн vs. Ioн Over Temperature, VDD = 5.0V, PIC16F1777/8/9 Only.

FIGURE 37-54: VOL vs. IOL Over Temperature, VDD = 3.0V.

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	E		0.65 BSC	
Contact Pad Spacing	С		7.20	
Contact Pad Width (X28)	X1			0.45
Contact Pad Length (X28)	Y1			1.75
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2073A