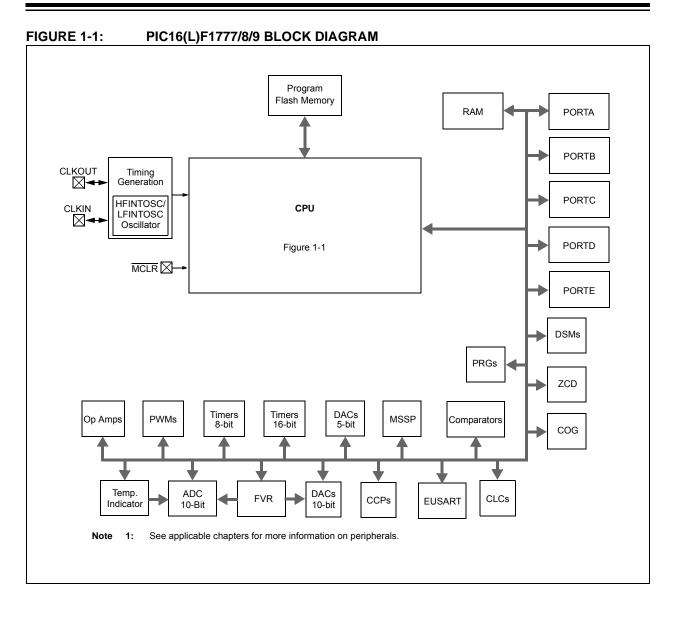


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	36
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 28x10b; D/A 4x5b, 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1779-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16(L)F1777/8/9

PIC16(L)F1777/8/9

3.4.5 CORE FUNCTION REGISTERS SUMMARY

The Core Function registers listed in Table 3-17 can be addressed from any Bank.

IADLE	. 5-17.				IERS SU			-			<u>.</u>
Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank (0-31										
x00h or x80h	INDF0		ng this locat /sical regist		ontents of F	SR0H/FSR	ROL to addro	ess data n	nemory	XXXX XXXX	uuuu uuuu
x01h or x81h	INDF1		ng this locat /sical regist		ontents of F	SR1H/FSR	1L to addr	ess data n	nemory	XXXX XXXX	uuuu uuuu
x02h or x82h	PCL	Program	Counter (P	C) Least Si	ignificant By	rte				0000 0000	0000 0000
x03h or x83h	STATUS	_	_	_	TO	PD	Z	DC	С	1 1000	q quuu
x04h or x84h	FSR0L	Indirect D	ata Memor	y Address	0 Low Point	er				0000 0000	uuuu uuuu
x05h or x85h	FSR0H	Indirect D	ata Memor	y Address	0 High Poin	ter				0000 0000	0000 0000
x06h or x86h	FSR1L	Indirect D	ata Memor	y Address	1 Low Point	er				0000 0000	uuuu uuuu
x07h or x87h	FSR1H	Indirect D	ata Memor	y Address	1 High Poin	ter				0000 0000	0000 0000
x08h or x88h	BSR	_	_	_	BSR4	BSR3	BSR2	BSR1	BSR0	0 0000	0 0000
x09h or x89h	WREG	Working F	Register							0000 0000	uuuu uuuu
x0Ah or x8Ah	PCLATH	_	Write Buff	er for the u	pper 7 bits	of the Prog	ram Counte	er		-000 0000	-000 0000
x0Bh or x8Bh	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 0000

TABLE 3-17: CORE FUNCTION REGISTERS SUMMARY⁽¹⁾

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from any bank.

TABLE 3-18: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

	LL 3-10. 3F			STER SOM				•	•		
Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Ban	k 28 (Continued)										
E27h	MD3CLPPS	_	_			MD3CLF	PPS<5:0>			00 1100	uu uuuu
E28h	MD3CHPPS	—	—			MD3CH	PPS<5:0>			00 1011	uu uuuu
E29h	MD3MODPPS	—	—			MD3MOE)PPS<5:0>			00 0101	uu uuuu
E2Ah	MD4CLPPS ⁽³⁾	—	—			MD4CLF	PPS<5:0>			00 1100	uu uuuu
E2Bh	MD4CHPPS ⁽³⁾	—	—			MD4CH	PPS<5:0>			00 1011	uu uuuu
E2Ch	MD4MODPPS ⁽³⁾	—	—			MD4MOE)PPS<5:0>			00 0101	uu uuuu
E2Dh	PRG1RPPS	—	—			PRG1RF	PPS<5:0>			00 0100	uu uuuu
E2Eh	PRG1FPPS	—	—			PRG1FF	PPS<5:0>			00 0101	uu uuuu
E2Fh	PRG2RPPS	—	—			PRG2RF	PPS<5:0>			01 0001	uu uuuu
E30h	PRG2FPPS	—	—		PRG2FPPS<5:0>						uu uuuu
E31h	PRG3RPPS	—	—		PRG3RPPS<5:0>						uu uuuu
E32h	PRG3FPPS	—	—		PRG3FPPS<5:0>						uu uuuu
	PRG4RPPS ⁽³⁾	—	—		PRG4RPPS<5:0>						uu uuuu
E34h	PRG4FPPS ⁽³⁾	—	—			PRG4FF	PPS<5:0>			01 0101	uu uuuu
E35h	CLC1IN0PPS	—	—			CLCINO	PPS<5:0>			00 0000	uu uuuu
E36h	CLC1IN1PPS	—	—			CLCIN1	PPS<5:0>			00 0001	uu uuuu
E37h	CLC1IN2PPS	—	—			CLCIN2	PPS<5:0>			00 1110	uu uuuu
E38h	CLC1IN3PPS	—	—			CLCIN3	PPS<5:0>			00 1111	uu uuuu
E39h	ADCACTPPS	—	—			ADCACT	PPS<5:0>			00 1100	uu uuuu
E3Ah	SSPCLKPPS	—	—			SSPCLK	PPS<5:0>			01 0011	uu uuuu
E3Bh	SSPDATPPS	—	—			SSPDAT	PPS<5:0>			01 0100	uu uuuu
E3Ch	SSPSSPPS	—	—			SSPSSF	PPS<5:0>			00 0101	uu uuuu
E3Dh	RXPPS		—			RXPP	S<5:0>			01 0111	uu uuuu
E3Eh	CKPPS					CKPP	S<5:0>			01 0110	uu uuuu
E3Fh	—				Unimple	emented				—	—
E6Fh											

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: Unimplemented, read as '1'.

2: Unimplemented on PIC16LF1777/8/9.

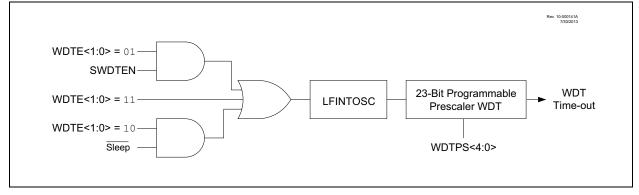
3: Unimplemented on PIC16(L)F1778.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
_	TMR8IE	TMR5GIE	TMR5IE	TMR3GIE	TMR3IE	TMR6IE	TRM4IE			
bit 7							bit (
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, read	as '0'				
u = Bit is uncł	nanged	x = Bit is unkr	iown	-n/n = Value a	t POR and BO	R/Value at all c	ther Resets			
'1' = Bit is set		'0' = Bit is clea	ared							
bit 7	Unimplemer	nted: Read as ')'							
bit 6	-	R8 to T8PR Ma		Enable bit						
		the Timer8 to Ta	•							
		the Timer8 to T								
bit 5	TMR5GIE: T	imer5 Gate Inte	rrupt Enable b	bit						
	1 = Enables the Timer5 gate acquisition interrupt									
	0 = Disables the Timer5 gate acquisition interrupt									
bit 4	TMR5IE: TM	: TMR5 to Overflow Interrupt Enable bit								
		the Timer5 to T5PR match interrupt								
	0 = Disables the Timer5 to T5PR match interrupt									
bit 3		TMR3GIE: Timer3 Gate Interrupt Enable bit								
	 1 = Enables the Timer3 gate acquisition interrupt 0 = Disables the Timer3 gate acquisition interrupt 									
bit 2		•	•							
	TMR3IE: TMR3 to Overflow Interrupt Enable bit 1 = Enables the Timer3 to T3PR match interrupt									
	1 = Disables the Timer3 to T3PR match interrupt 0 = Disables the Timer3 to T3PR match interrupt									
bit 1		TMR6IE: TMR6 to T6PR Match Interrupt Enable bit								
	1 = Enables the Timer6 to T6PR match interrupt									
		the Timer6 to T								
bit 0	TMR4IE: TM	R4 to T4PR Ma	tch Interrupt I	Enable bit						
		the Timer4 to T4								
	0 = Disables	the Timer4 to T	4PR match in	torrunt						

REGISTER 7-5: PIE4: PERIPHERAL INTERRUPT ENABLE REGISTER 4

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0				
CCP8IF ⁽¹⁾	CCP7IF	COG4IF	COG3IF	C8IF ⁽¹⁾	C7IF ⁽¹⁾	C6IF	C5IF				
bit 7							bit				
Legend:											
R = Readable		W = Writable		•	mented bit, read						
u = Bit is unch	anged	x = Bit is unki		-n/n = Value a	at POR and BO	R/Value at all o	ther Resets				
'1' = Bit is set		'0' = Bit is cle	ared								
bit 7		P8 Interrupt Fla	a hit								
	1 = Interrupt	•	y bit								
		is not pending									
bit 6	CCP7IF: CC	P7 Interrupt Fla	g bit								
	1 = Interrupt										
	-	is not pending									
bit 5		G4 Auto-Shutd	own Interrupt	Flag bit							
	1 = Interrupt	is pending is not pending									
bit 4	-	COG3IF: COG3 Auto-Shutdown Interrupt Flag bit									
	1 = Interrupt		· · ·								
		is not pending									
bit 3	C8IF: Compa	C8IF: Comparator C8 Interrupt Flag bit ⁽¹⁾									
	1 = Interrupt										
		is not pending	(<u>_</u> , , , , , (1)								
bit 2	•	arator C7 Interro	upt Flag bit								
	1 = Interrupt 0 = Interrupt	is not pending									
bit 1	C6IF: Comparator C6 Interrupt Flag bit										
	1 = Interrupt										
	0 = Interrupt	is not pending									
bit 0	•	arator C5 Interro	upt Flag bit								
	1 = Interrupt	is pending is not pending									
	u = interrupt	IN DOT DODDIDD									

REGISTER 7-12: PIR5: PERIPHERAL INTERRUPT REQUEST REGISTER 5


9.0 WATCHDOG TIMER (WDT)

The Watchdog Timer is a system timer that generates a Reset if the firmware does not issue a CLRWDT instruction within the time-out period. The Watchdog Timer is typically used to recover the system from unexpected events.

The WDT has the following features:

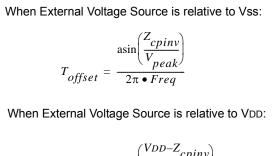
- · Independent clock source
- Multiple operating modes
 - WDT is always on
 - WDT is off when in Sleep
 - WDT is controlled by software
 - WDT is always off
- Configurable time-out period is from 1 ms to 256 seconds (nominal)
- Multiple Reset conditions
- Operation during Sleep

FIGURE 9-1: WATCHDOG TIMER BLOCK DIAGRAM

R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0
IOCBF7	IOCBF6	IOCBF5	IOCBF4	IOCBF3	IOCBF2	IOCBF1	IOCBF0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets					ther Resets		
'1' = Bit is set		'0' = Bit is clea	ared	HS - Bit is set	t in hardware		

REGISTER 13-6: IOCBF: INTERRUPT-ON-CHANGE PORTB FLAG REGISTER

bit 7-0 IOCBF<7:0>: Interrupt-on-Change PORTB Flag bits


1 = An enabled change was detected on the associated pin.

- Set when IOCBPx = 1 and a rising edge was detected on RBx, or when IOCBNx = 1 and a falling edge was detected on RBx.
- 0 = No change was detected, or the user cleared the detected change.

20.5.2 CORRECTION BY OFFSET CURRENT

When the waveform is varying relative to Vss then the zero cross is detected too early as the waveform falls and too late as the waveform rises. When the waveform is varying relative to VDD then the zero cross is detected too late as the waveform rises and too early as the waveform falls. The actual offset time can be determined for sinusoidal waveforms with the corresponding equations shown in Equation 20-4.

EQUATION 20-4: ZCD EVENT OFFSET

$$T_{offset} = \frac{\operatorname{asin}\left(\frac{\sqrt{DD-L}cpinv}{V_{peak}}\right)}{2\pi \bullet Freq}$$

This offset time can be compensated for by adding a pull-up or pull-down biasing resistor to the ZCD pin. A pull-up resistor is used when the external voltage source is varying relative to Vss. A pull-down resistor is used when the voltage is varying relative to VDD. The resistor adds a bias to the ZCD pin so that the target external voltage source must go to zero to pull the pin voltage to the ZCPINV switching voltage. The pull-up or pull-down value can be determined with the equations shown in Equation 20-5.

EQUATION 20-5: ZCD PULL-UP/DOWN

When External Signal is relative to Vss:
$R_{pullup} = \frac{R_{series}(V_{pullup} - Z_{cpinv})}{Z_{cpinv}}$
When External Signal is relative to VDD:
$R_{pulldown} = \frac{R_{series}(Z_{cpinv})}{(VDD - Z_{cpinv})}$

The pull-up and pull-down resistor values are significantly affected by small variations of ZCPINV. Measuring ZCPINV can be difficult, especially when the waveform is relative to VDD. However, by combining Equation 20-4 and Equation 20-5 the resistor value can be determined from the time difference between the ZCDOUT high and low periods. Note that the time difference, ΔT , is 4^*T_{offset} . The equation for determining the pull-up and pull-down resistor values from the high and low ZCDOUT periods is shown in Equation 20-6. The ZCDOUT signal can be directly observed on a pin by routing the ZCDOUT signal through one of the CLCs.

EQUATION 20-6:

$$R = R_{series} \left(\frac{V_{bias}}{V_{peak} \left(sin \left(\pi Freq \frac{(\Delta T)}{2} \right) \right)} - 1 \right)$$

R is pull-up or pull-down resistor

 $V_{\text{bias}} \text{ is } V_{\text{pullup}}$ when R is pull-up or VDD when R is pull-down

 ΔT is the ZCDOUT high and low period difference

20.6 Handling Vpeak variations

If the peak amplitude of the external voltage is expected to vary then the series resistor must be selected to keep the ZCD current source and sink below the design maximum range of ± 600 µA for the maximum expected voltage and high enough to be detected accurately at the minimum peak voltage. A general rule of thumb is that the maximum peak voltage can be no more than six times the minimum peak voltage. To ensure that the maximum current does not exceed ± 600 µA and the minimum is at least \pm 100 μ A, compute the series resistance as shown in Equation 20-7. The compensating pull-up for this series resistance can be determined with Equation 20-5 because the pull-up value is independent from the peak voltage.

EQUATION 20-7: SERIES R FOR V RANGE

$$R_{series} = \frac{V_{maxpeak} + V_{minpeak}}{7 \times 10^{-4}}$$

22.7 Timer1 Interrupt

The Timer1 register pair (TMR1H:TMR1L) increments to FFFFh and rolls over to 0000h. When Timer1 rolls over, the Timer1 interrupt flag bit of the PIR1 register is set. To enable the interrupt-on-rollover, you must set these bits:

- ON bit of the T1CON register
- TMR1IE bit of the PIE1 register
- PEIE bit of the INTCON register
- · GIE bit of the INTCON register

The interrupt is cleared by clearing the TMR1IF bit in the Interrupt Service Routine.

Note: The TMR1H:TMR1L register pair and the TMR1IF bit should be cleared before enabling interrupts.

22.8 Timer1 Operation During Sleep

Timer1 can only operate during Sleep when setup in Asynchronous Counter mode. In this mode, an external crystal or clock source can be used to increment the counter. To set up the timer to wake the device:

- ON bit of the T1CON register must be set
- TMR1IE bit of the PIE1 register must be set
- PEIE bit of the INTCON register must be set
- SYNC bit of the T1CON register must be set
- CS bits of the T1CON register must be configured
- OSCEN bit of the T1CON register must be configured

The device will wake-up on an overflow and execute the next instructions. If the GIE bit of the INTCON register is set, the device will call the Interrupt Service Routine.

Secondary oscillator will continue to operate in Sleep regardless of the SYNC bit setting.

22.9 CCP Capture/Compare Time Base

The CCP modules use the TMR1H:TMR1L register pair as the time base when operating in Capture or Compare mode.

In Capture mode, the value in the TMR1H:TMR1L register pair is copied into the CCPR1H:CCPR1L register pair on a configured event.

In Compare mode, an event is triggered when the value in the CCPR1H:CCPR1L register pair matches the value in the TMR1H:TMR1L register pair. This event can be an Auto-conversion Trigger.

For more information, see Section 24.0 "Capture/Compare/PWM Modules".

22.10 CCP Auto-Conversion Trigger

When any of the CCP's are configured to trigger an auto-conversion, the trigger will clear the TMR1H:TMR1L register pair. This auto-conversion does not cause a Timer1 interrupt. The CCP module may still be configured to generate a CCP interrupt.

In this mode of operation, the CCPR1H:CCPR1L register pair becomes the period register for Timer1.

Timer1 should be synchronized and Fosc/4 should be selected as the clock source in order to utilize the Auto-conversion Trigger. Asynchronous operation of Timer1 can cause an Auto-conversion Trigger to be missed.

In the event that a write to TMR1H or TMR1L coincides with an Auto-conversion Trigger from the CCP, the write will take precedence.

For more information, see **Section 24.2.1 "Auto-Con-version Trigger"**.

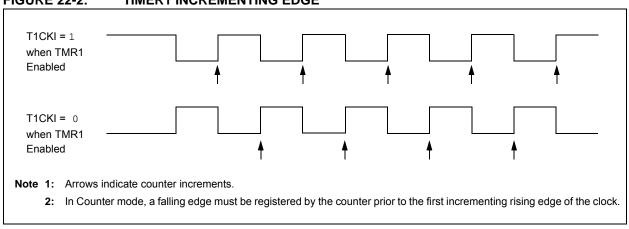


FIGURE 22-2: TIMER1 INCREMENTING EDGE

24.2 Compare Mode

The Compare mode function described in this section is available and identical for all CCP modules.

Compare mode makes use of the 16-bit Timer1 resource. The 16-bit value of the CCPRxH:CCPRxL register pair is constantly compared against the 16-bit value of the TMR1H:TMR1L register pair. When a match occurs, one of the following events can occur:

- · Toggle the CCPx output
- Set the CCPx output
- Clear the CCPx output
- · Pulse the CCPx output
- Generate a Software Interrupt
- Auto-conversion Trigger

The action on the pin is based on the value of the MODE<3:0> control bits of the CCPxCON register. At the same time, the interrupt flag CCPxIF bit is set.

All Compare modes can generate an interrupt.

Figure 24-2 shows a simplified diagram of the compare operation.

24.2.1 AUTO-CONVERSION TRIGGER

When Auto-Conversion Trigger mode is chosen (CCPxM<3:0> = 1011), the CCPx module does the following:

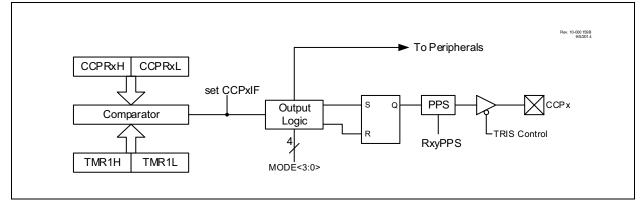
- Resets Timer1
- Starts an ADC conversion if ADC is enabled

The CCPx module does not assert control of the CCPx pin in this mode.

The Auto-conversion Trigger output of the CCP occurs immediately upon a match between the TMR1H, TMR1L register pair and the CCPRxH:CCPRxL register pair. The TMR1H:TMR1L register pair is not reset until the next rising edge of the Timer1 clock. The Auto-conversion Trigger output starts an ADC conversion (if the ADC module is enabled). This allows the CCPRxH:CCPRxL register pair to effectively provide a 16-bit programmable period register for Timer1.

Refer to **Section 16.2.5 "Auto-Conversion Trigger"** for more information.

- Note 1: The Auto-conversion Trigger from the CCP module does not set interrupt flag bit TMR1IF of the PIR1 register.
 - 2: Removing the match condition by changing the contents of the CCPRxH and CCPRxL register pair, between the clock edge that generates the Auto-conversion Trigger and the clock edge that generates the Timer1 Reset, will preclude the Reset from occurring.


24.2.2 CCPx PIN CONFIGURATION

The user must configure the CCPx pin as an output by clearing the associated TRIS bit.

The CCPx pin function can be moved to alternate pins using the PPS controls. See **Section 12.0 "Peripheral Pin Select (PPS) Module"** for more detail.

Note: Clearing the CCPxCON register will force the CCPx compare output latch to the default low level. This is not the PORT I/O data latch.

FIGURE 24-2: COMPARE MODE OPERATION BLOCK DIAGRAM

U-0 U-0 U-0 U-0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 _ CTS<3:0> ____ ____ ____ bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' u = Bit is unchanged -n/n = Value at POR and BOR/Value at all other Reset x = Bit is unknown '1' = Bit is set '0' = Bit is cleared bit 7-4 Unimplemented: Read as '0' bit 3-0 CTS<3:0>: Capture Trigger Input Selection bits 1101 = IOC event 1100 = LC4 output 1011 = LC3_output 1010 = LC2_output 1001 = LC1_output 1000 = C8_sync_out⁽¹⁾ 0111 = C7_sync_out⁽¹⁾ 0110 = C6_sync_out 0101 = C5_sync_out 0100 = C4_sync_out 0011 = C3_sync_out

REGISTER 24-4: CCPxCAP: CCPx CAPTURE INPUT SELECTION REGISTER

Note 1: PIC16LF1777/9 only.

0010 = C2_sync_out 0001 = C1 sync out

0000 = Pin selected with the CCPxPPS register

26.7 Register Definitions: PWM Control

Long bit name prefixes for the 16-bit PWM peripherals are shown in Table 26-2. Refer to **Section 1.1 "Register and Bit naming conventions"** for more information

TABLE 26-2:

Peripheral	Bit Name Prefix				
PWM5	PWM5				
PWM6	PWM6				
PWM11	PWM11				
PWM12 ⁽¹⁾	PWM12				

Note 1: PIC16(L)F1777/9 only.

REGISTER 26-1: PWMxCON: PWM CONTROL REGISTER

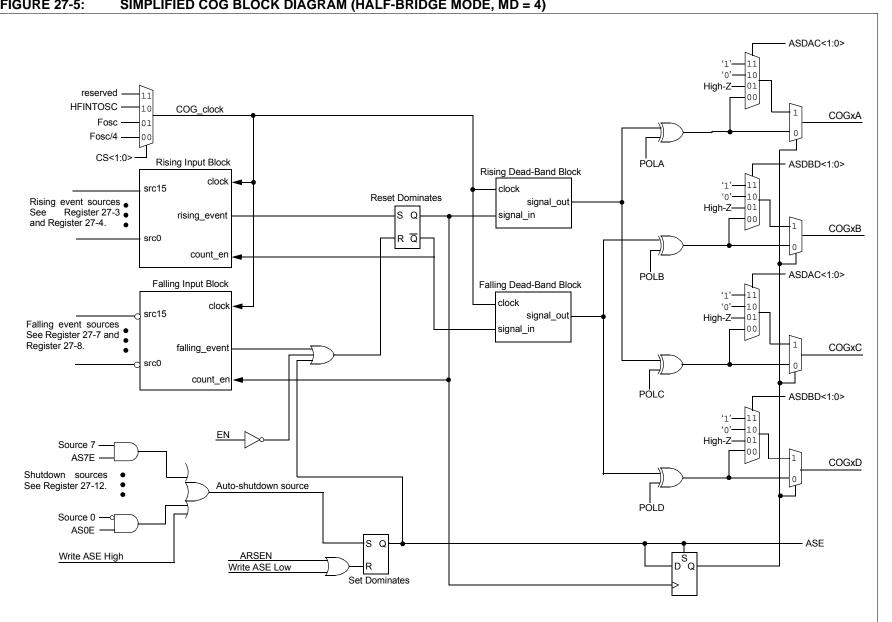
R/W-0/0	U-0	R/HS/HC-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0
EN	—	OUT	POL	MODE	E<1:0>	_	—
bit 7							bit 0

Legend:HC = Bit is cleared by hardwareHS = Bit is set by hardwareR = Readable bitW = Writable bitU = Unimplemented bit, read as '0'u = Bit is unchangedx = Bit is unknown'1' = Bit is set'0' = Bit is cleared

bit 7	EN: PWM Module Enable bit 1 = Module is enabled
	0 = Module is disabled
bit 6	Unimplemented: Read as '0'
bit 5	OUT: Output State of the PWM module
bit 4	 POL: PWM Output Polarity Control bit 1 = PWM output active state is low 0 = PWM output active state is high
bit 3-2	MODE<1:0>: PWM Mode Control bits 11 = Center Aligned mode 10 = Toggle On Match mode 01 = Set On Match mode 00 = Standard PWM mode
bit 1-0	Unimplemented: Read as '0'

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			DC<	15:8>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkn	nown	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

REGISTER 26-9: PWMxDCH: PWMx DUTY CYCLE COUNT HIGH REGISTER


bit 7-0 DC<15:8>: PWM Duty Cycle High bits Upper eight bits of PWM duty cycle count

REGISTER 26-10: PWMxDCL: PWMx DUTY CYCLE COUNT LOW REGISTER

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | DC< | 7:0> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 DC<7:0>: PWM Duty Cycle Low bits Lower eight bits of PWM duty cycle count

FIGURE 27-5: SIMPLIFIED COG BLOCK DIAGRAM (HALF-BRIDGE MODE, MD = 4)

PIC16(L)F1777/8/9

REGISTER 27-18: COGxPHR: COG RISING EVENT PHASE DELAY COUNT REGISTER

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	_			PHR	<5:0>		
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable I	oit	U = Unimplen	nented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkn	own	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared	q = Value dep	ends on condit	ion	

bit 7-6	Unimplemented: Read as '0'
---------	----------------------------

bit 5-0 PHR<5:0>: Rising Event Phase Delay Count Value bits

= Number of COGx clock periods to delay rising event

REGISTER 27-19: COGxPHF: COG FALLING EVENT PHASE DELAY COUNT REGISTER

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	_			PHF	<5:0>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-6 Unimplemented: Read as '0'

bit 5-0 PHF<5:0>: Falling Event Phase Delay Count Value bits

= Number of COGx clock periods to delay falling event

REGISTER 30-2: PRGxCON1: PROGRAMMABLE RAMP GENERATOR CONTROL 1 REGISTER

U-0	U-0	U-0	U-0	U-0	R-0	R/W-0/0	R/W-0/0
_	—	—	_	—	RDY	FPOL	RPOL
bit 7							bit (
Legend:							
R = Readable	bit	W = Writable b	it	U = Unimplem	ented bit, read as	s 'O'	
u = Bit is unchanged x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is clear	red	q = value depends on configuration bits			
bit 7-3	Unimplemente	ed: Read as '0'					
bit 2 RDY: Slope Generator Ready Status bit 1 = PRG is ready 0 = PRG is not ready							
bit 1 FPOL: Fall Event Polarity Select bit 1 = Set_falling timing input is active-low 0 = Set_falling timing input is active-high			active-low				
bit 0	RPOL: Rise Event Polarity Select bit						

REGISTER 30-3: PRGxINS: VOLTAGE INPUT SELECT REGISTER

1 = Set_rising timing input is active-low0 = Set_rising timing input is active-high

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	_	_		INS<	3:0>	
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = value depends on configuration bits

bit 7-4 Unimplemented: Read as '0'

bit 3-0 **INS<3:0>:** Voltage Input Select bits Selects source of voltage level at which the ramp starts. See Table 30-3.

TABLE 30-3: VOLTAGE INPUT SOURCES

INS<2:0>	PRG1 Voltage Source	PRG2 Voltage Source	PRG3 Voltage Source	PRG4 Voltage Source ⁽²⁾
1010-1111	Reserved	Reserved	Reserved	Reserved
1001(1)	Switched PRG1IN1/OPA2OUT	Switched PRG1IN1/OPA2OUT	Switched PRG3IN1/OPA4OUT ⁽²⁾	Switched PRG4IN1/OPA3OUT
1000 (1)	Switched PRG1IN0/OPA1OUT	Switched PRG1IN0/OPA1OUT	Switched PRG3IN0/OPA3OUT	Switched PRG4IN0/OPA4OUT
0111	Reserved	Reserved	Reserved	Reserved
0110	DAC4_output	DAC4_output	DAC8_output ⁽²⁾	DAC8_output
0101	DAC3_output	DAC3_output	DAC7_output	DAC7_output
0100	DAC2_output	DAC2_output	DAC6_output ⁽²⁾	DAC6_output
0011	DAC1_output	DAC1_output	DAC5_output	DAC5_output
0010	FVR_buffer1	FVR_buffer1	FVR_buffer2	FVR_buffer2
0001	PRG1IN1/OPA2OUT	PRG2IN1/OPA1OUT	PRG3IN1/OPA4OUT ⁽²⁾	PRG4IN1/OPA3OUT
0000	PRG1IN0/OPA1OUT	PRG2IN0/OPA2OUT	PRG3IN0/OPA3OUT	PRG4IN0/OPA4OUT
Nata di	l Innut course is suitched off when			ļ

Note 1: Input source is switched off when op amp override is forcing tri-state. See Section 29.3 "Override

Control". 2: PIC16(L)F1777/9 only.

DECFSZ	Decrement f, Skip if 0			
Syntax:	[label] DECFSZ f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$			
Operation:	(f) - 1 \rightarrow (destination); skip if result = 0			
Status Affected:	None			
Description:	The contents of register 'f' are decre- mented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', then a NOP is executed instead, making it a 2-cycle instruction.			

GOTO	Unconditional Branch				
Syntax:	[<i>label</i>] GOTO k				
Operands:	$0 \le k \le 2047$				
Operation:	$k \rightarrow PC<10:0>$ PCLATH<6:3> $\rightarrow PC<14:11>$				
Status Affected:	None				
Description:	GOTO is an unconditional branch. The 11-bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a 2-cycle instruction.				

INCFSZ	Increment f, Skip if 0			
Syntax:	[label] INCFSZ f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$			
Operation:	(f) + 1 \rightarrow (destination), skip if result = 0			
Status Affected:	None			
Description:	The contents of register 'f' are incre- mented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', a NOP is executed instead, making it a 2-cycle instruction.			

IORLW	Inclusive OR literal with W			
Syntax:	[<i>label</i>] IORLW k			
Operands:	$0 \leq k \leq 255$			
Operation:	(W) .OR. $k \rightarrow$ (W)			
Status Affected:	Z			
Description:	The contents of the W register are OR'ed with the 8-bit literal 'k'. The result is placed in the W register.			

INCF	Increment f				
Syntax:	[label] INCF f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$				
Operation:	(f) + 1 \rightarrow (destination)				
Status Affected:	Z				
Description:	The contents of register 'f' are incre- mented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.				

IORWF	Inclusive OR W with f				
Syntax:	[<i>label</i>] IORWF f,d				
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$				
Operation:	(W) .OR. (f) \rightarrow (destination)				
Status Affected:	Z				
Description:	Inclusive OR the W register with regis- ter 'f'. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.				

36.0 ELECTRICAL SPECIFICATIONS

36.1 Absolute Maximum Ratings^(†)

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on pins with respect to Vss	
on VDD pin	
PIC16F1777/8/9	0.3V to +6.5V
PIC16LF1777/8/9	0.3V to +4.0V
on MCLR pin	0.3V to +9.0V
on all other pins	-0.3V to (VDD + 0.3V)
Maximum current	
on Vss pin ⁽¹⁾	
-40°C \leq TA \leq +85°C	350 mA
-40°C \leq TA \leq +125°C	120 mA
on VDD pin ⁽¹⁾ PIC16(L)F1778 only	
-40°C \leq TA \leq +85°C	250 mA
-40°C \leq TA \leq +125°C	85 mA
on VDD pin ⁽¹⁾ PIC16(L)F1777/9 only	
-40°C \leq TA \leq +85°C	350 mA
-40°C \leq TA \leq +125°C	120 mA
Sunk by any standard I/O pin	50 mA
Sourced by any standard I/O pin	50 mA
Sunk by any High Current I/O pin	100 mA
Sourced by any High Current I/O pin	100 mA
Sourced by any Op Amp output pin	100 mA
Clamp current, IK (VPIN < 0 or VPIN > VDD)	±20 mA
Total power dissipation ⁽²⁾	800 mW

Note 1: Maximum current rating requires even load distribution across I/O pins. Maximum current rating may be limited by the device package power dissipation characterizations, see Table 36-6: Thermal Characteristics to calculate device specifications.

2: Power dissipation is calculated as follows: Pdis = VDD* {Idd- Σ Ioh} + Σ {VDD-Voh)*Ioh} + Σ (Vol*IoI).

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for extended periods may affect device reliability.

TABLE 36-11: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER AND BROWN-OUT RESET PARAMETERS

Standard Operating Conditions (unless otherwise stated)									
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions		
30	TMCL	MCLR Pulse Width (low)	2	—	_	μS			
31	TWDTLP	Low-Power Watchdog Timer Time-out Period	10	16	27	ms	VDD = 3.3V-5V 1:512 Prescaler used		
32	Tost	Oscillator Start-up Timer Period ⁽¹⁾		1024	_	Tosc			
33*	TPWRT	Power-up Timer Period, $\overline{PWRTE} = 0$	40	65	140	ms			
34*	Tioz	I/O high-impedance from MCLR Low or Watchdog Timer Reset		—	2.0	μS			
35	VBOR	Brown-out Reset Voltage ⁽²⁾	2.55	2.70	2.85	V	BORV = 0		
			2.30 1.80	2.45 1.90	2.60 2.10	V V	BORV = 1 (PIC16F1777/8/9) BORV = 1 (PIC16LF1777/8/9)		
35A	Vlpbor	Low-Power Brown-out	1.8	2.1	2.5	V	LPBOR = 1		
36*	VHYST	Brown-out Reset Hysteresis	0	25	75	mV	$-40^\circ C \le T A \le +85^\circ C$		
37*	TBORDC	Brown-out Reset DC Response Time	1	3	35	μS	$VDD \leq VBOR$		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: By design, the Oscillator Start-up Timer (OST) counts the first 1024 cycles, independent of frequency.

2: To ensure these voltage tolerances, VDD and Vss must be capacitively decoupled as close to the device as possible. 0.1 μ F and 0.01 μ F values in parallel are recommended.

PIC16(L)F1777/8/9

Note: Unless otherwise noted, VIN = 5V, Fosc = 300 kHz, CIN = 0.1 μ F, TA = 25°C.

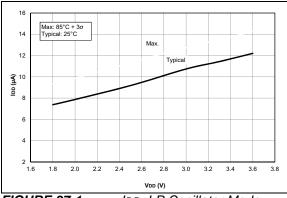


FIGURE 37-1: IDD, LP Oscillator Mode, Fosc = 32 kHz, PIC16LF1777/8/9 Only.

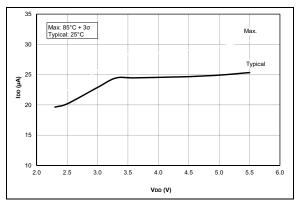


FIGURE 37-2: IDD, LP Oscillator Mode, Fosc = 32 kHz, PIC16F1777/8/9 Only.

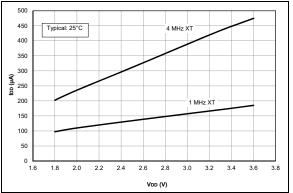


FIGURE 37-3: IDD Typical, XT and EXTRC Oscillator, PIC16LF1777/8/9 Only.

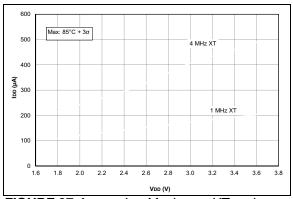


FIGURE 37-4: IDD Maximum, XT and EXTRC Oscillator, PIC16LF1777/8/9 Only.

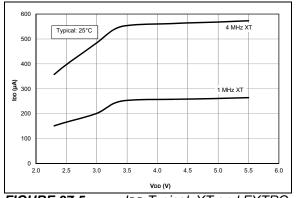


FIGURE 37-5: IDD Typical, XT and EXTRC Oscillator, PIC16F1777/8/9 Only.

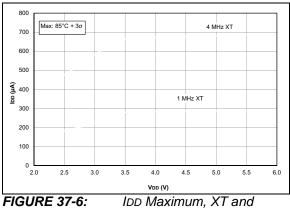


FIGURE 37-6: IDD Maximum, XT and EXTRC Oscillator, PIC16F1777/8/9 Only.