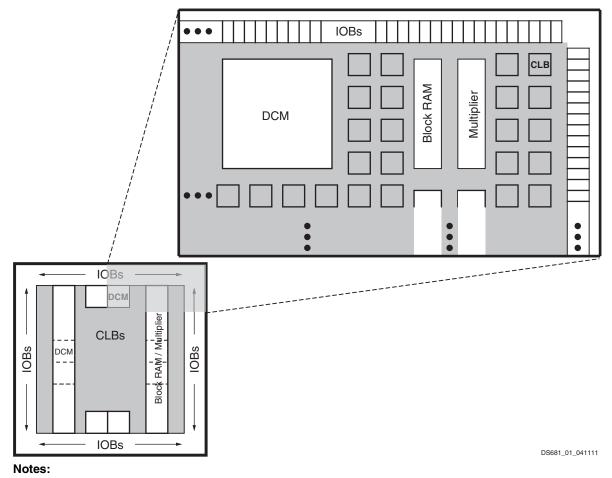


Welcome to <u>E-XFL.COM</u>

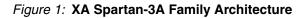
Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs


The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details


Details	
Product Status	Active
Number of LABs/CLBs	448
Number of Logic Elements/Cells	4032
Total RAM Bits	294912
Number of I/O	195
Number of Gates	200000
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 125°C (TJ)
Package / Case	256-LBGA
Supplier Device Package	256-FTBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xa3s200a-4ftg256q

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1. The XA3S700A and XA3S1400A have two additional DCMs on both the left and right sides as indicated by the dashed lines.

Configuration

XA Spartan-3A FPGAs are programmed by loading configuration data into robust, reprogrammable, static CMOS configuration latches (CCLs) that collectively control all functional elements and routing resources. The FPGA's configuration data is stored externally in a SPI serial Flash or some other non-volatile medium, either on or off the board. After applying power, the configuration data is written to the FPGA using any of five different modes:

- Serial Peripheral Interface (SPI) from an industry-standard SPI serial Flash
- Byte Peripheral Interface (BPI) Up from an industry-standard x8 or x8/x16 parallel NOR Flash
- Slave Serial, typically downloaded from a processor
- Slave Parallel, typically downloaded from a processor
- Boundary Scan (JTAG), typically downloaded from a processor or system tester

Additionally, each XA Spartan-3A FPGA contains a unique, factory-programmed Device DNA identifier useful for tracking purposes, anti-cloning designs, or IP protection.

Package Marking

Figure 2 shows the top marking for Spartan-3A FPGAs in BGA packages. The markings for the BGA packages are nearly identical to those for the quad-flat packages, except that the marking is rotated with respect to the ball A1 indicator.

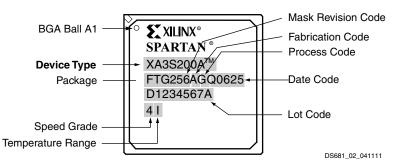


Figure 2: XA Spartan-3A FPGA BGA Package Marking Example

Ordering Information

XA Spartan-3A FPGAs are available in Pb-free packaging only for all device/package combinations.

Pb-Free Packaging

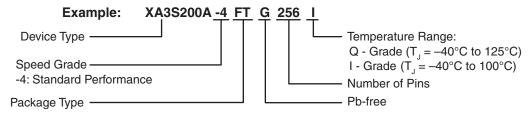
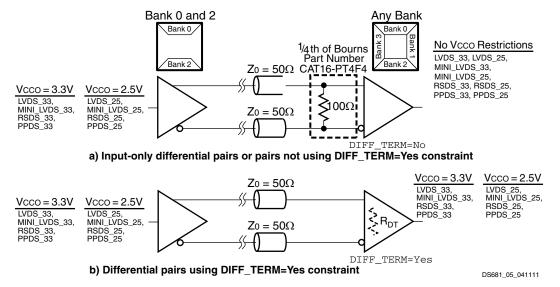


Figure 3: Ordering Information


Device		Speed Grade		Package Type / Number of Pins		Temperature Range (T _J)
XA3S200A	-4	Standard Performance	FTG256	256-ball Fine-Pitch Thin Ball Grid Array (FTBGA)	I	I-Grade (-40°C to 100°C)
XA3S400A			FGG400	400-ball Fine-Pitch Ball Grid Array (FBGA)	Q	Q-Grade (–40°C to 125°C)
XA3S700A			FGG484	484-ball Fine-Pitch Ball Grid Array (FBGA)		
XA3S1400A						

Notes:

1. The XA Spartan-3A FPGA product line is available in -4 Speed Grade only.

External Termination Requirements for Differential I/O

LVDS, RSDS, MINI_LVDS, and PPDS I/O Standards

BLVDS_25 I/O Standard

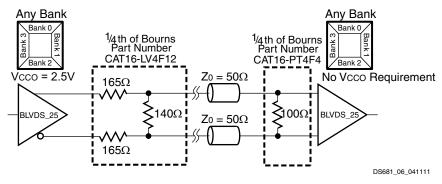


Figure 7: External Termination Resistors for BLVDS_25 I/O Standard

TMDS_33 I/O Standard

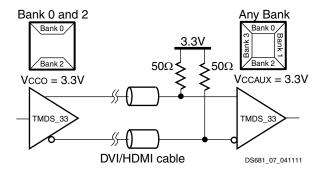


Figure 8: External Input Resistors Required for TMDS_33 I/O Standard

Input Propagation Times

Table 21: Propagation Times for the IOB Input Path

Symbol	Description	Conditions	IFD_ DELAY_ VALUE	Device	Speed Grade: -4 Max	Units
Propagatior	n Times					
T _{IOPLI}	The time it takes for data to travel	LVCMOS25 ⁽²⁾	0	XA3S200A	2.04	ns
	from the Input pin through the IFF latch to the I output with no input			XA3S400A	1.74	ns
	delay programmed			XA3S700A	1.74	ns
				XA3S1400A	1.97	ns
T _{IOPLID}	The time it takes for data to travel	LVCMOS25 ⁽²⁾	1	XA3S200A	2.43	ns
	from the Input pin through the IFF latch to the I output with the input		2		3.16	ns
	delay programmed		3		4.01	ns
		4		4.60	ns	
			5		4.43	ns
		6		5.46	ns	
			7		6.33	ns
			8		6.94	ns
			1	XA3S400A XA3S700A	2.25	ns
			2		2.90	ns
			3		3.66	ns
			4		4.19	ns
			5		4.18	ns
			6		5.03	ns
			7		5.88	ns
			8		6.42	ns
			1		2.18	ns
			2		3.06	ns
			3		3.95	ns
			4		4.54	ns
			5		4.37	ns
			6		5.42	ns
			7		6.33	ns
			8		6.96	ns
			1	XA3S1400A	2.40	ns
			2		3.15	ns
			3		3.99	ns
			4	1	4.55	ns
			5		4.42	ns
			6		5.32	ns
			7		6.21	ns
			8		6.80	ns

Notes:

- 1. The numbers in this table are tested using the methodology presented in Table 26 and are based on the operating conditions set forth in Table 8 and Table 11.
- 2. This propagation time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. When this is true, *add* the appropriate Input adjustment from Table 22.

Output Propagation Times

Table 23: Timing for the IOB Output Path

O h l	Description	O a maliti a ma	Davias	Speed Grade: -4	11
Symbol	Description	Conditions	Device	Max	Units
Clock-to-Out	put Times				
T _{IOCKP}	When reading from the Output Flip-Flop (OFF), the time from the active transition at the OCLK input to data appearing at the Output pin	LVCMOS25 ⁽²⁾ , 12 mA output drive, Fast slew rate	All	3.13	ns
Propagation	Times				
T _{IOOP}	The time it takes for data to travel from the IOB's O input to the Output pin	LVCMOS25 ⁽²⁾ , 12 mA output drive, Fast slew rate	All	2.91	ns
Set/Reset Tir	nes		4		
T _{IOSRP}	Time from asserting the OFF's SR input to setting/resetting data at the Output pin	LVCMOS25 ⁽²⁾ , 12 mA output drive, Fast slew	All	3.89	ns
T _{IOGSRQ}	Time from asserting the Global Set Reset (GSR) input on the STARTUP_SPARTAN3A primitive to setting/resetting data at the Output pin	- rate		9.65	ns

Notes:

1. The numbers in this table are tested using the methodology presented in Table 26 and are based on the operating conditions set forth in Table 8 and Table 11.

2. This time requires adjustment whenever a signal standard other than LVCMOS25 with 12 mA drive and Fast slew rate is assigned to the data Output. When this is true, *add* the appropriate Output adjustment from Table 25.

Three-State Output Propagation Times

Table 24: Timing for the IOB Three-State Path

Symbol	Description	Conditions	Device	Speed Grade: -4	Unito
Symbol	Description	Conditions	Device	Max	Units
Synchronous	s Output Enable/Disable Times				
Т _{ЮСКНZ}	Time from the active transition at the OTCLK input of the Three-state Flip-Flop (TFF) to when the Output pin enters the high-impedance state	LVCMOS25, 12 mA output drive, Fast slew rate	All	0.76	ns
T _{IOCKON} ⁽²⁾	Time from the active transition at TFF's OTCLK input to when the Output pin drives valid data	-		3.06	ns
Asynchrono	us Output Enable/Disable Times				
T _{GTS}	Time from asserting the Global Three State (GTS) input on the STARTUP_SPARTAN3A primitive to when the Output pin enters the high-impedance state	LVCMOS25, 12 mA output drive, Fast slew rate	All	10.36	ns
Set/Reset Tir	mes		L		
T _{IOSRHZ}	Time from asserting TFF's SR input to when the Output pin enters a high-impedance state	LVCMOS25, 12 mA output drive, Fast slew	All	1.86	ns
T _{IOSRON} ⁽²⁾	Time from asserting TFF's SR input at TFF to when the Output pin drives valid data	rate		3.82	ns

Notes:

1. The numbers in this table are tested using the methodology presented in Table 26 and are based on the operating conditions set forth in Table 8 and Table 11.

2. This time requires adjustment whenever a signal standard other than LVCMOS25 with 12 mA drive and Fast slew rate is assigned to the data Output. When this is true, *add* the appropriate Output adjustment from Table 25.

Table 25: Output Timing Adjustments for IOB (Cont'd)

Convert Output Time from LVCMOS25 with 12mA Drive and Fast Slew Rate to the	Add the Adjustment Below	Units	
Following Signal Standard (IOSTANDARD)	Speed Grade: -4		
Differential Standards			
LVDS_25	1.50	ns	
LVDS_33	0.47	ns	
BLVDS_25	0.11	ns	
MINI_LVDS_25	1.11	ns	
MINI_LVDS_33	0.41	ns	
LVPECL_25	Input Only		
LVPECL_33	Input Only		
RSDS_25	1.73	ns	
RSDS_33	0.64	ns	
TMDS_33	0.07	ns	
PPDS_25	1.28	ns	
PPDS_33	0.88	ns	
DIFF_HSTL_I_18	0.43	ns	
DIFF_HSTL_II_18	0.41	ns	
DIFF_HSTL_III_18	0.36	ns	
DIFF_HSTL_I	1.01	ns	
DIFF_HSTL_III	1.16	ns	
DIFF_SSTL18_I	0.49	ns	
DIFF_SSTL18_II	0.41	ns	
DIFF_SSTL2_I	0.91	ns	
DIFF_SSTL2_II	0.11	ns	
DIFF_SSTL3_I	1.18	ns	
DIFF_SSTL3_II	0.28	ns	

Notes:

1. The numbers in this table are tested using the methodology presented in Table 26 and are based on the operating conditions set forth in Table 8, Table 11, and Table 13.

2. These adjustments are used to convert output- and three-state-path times originally specified for the LVCMOS25 standard with 12 mA drive and Fast slew rate to times that correspond to other signal standards. Do not adjust times that measure when outputs go into a high-impedance state.

Table 26: Test Methods for Timing Measurement at I/Os

Signal Standard (IOSTANDARD)			Inputs		Out	puts	Inputs and Outputs	
(IOSTA	ANDARD)	V _{REF} (V)	V _L (V) V _H (V)		R _T (Ω) V _T (V)		V _M (V)	
Single-Ende	d							
LVTTL		_	0	3.3	1M	0	1.4	
LVCMOS33		_	0	3.3	1M	0	1.65	
LVCMOS25		_	0	2.5	1M	0	1.25	
LVCMOS18		-	0	1.8	1M	0	0.9	
LVCMOS15		-	0	1.5	1M	0	0.75	
LVCMOS12		-	0	1.2	1M	0	0.6	
PCI33_3	Rising	-	Note 3	Note 3	25	0	0.94	
	Falling				25	3.3	2.03	
HSTL_I	I.	0.75	V _{REF} – 0.5	V _{REF} + 0.5	50	0.75	V _{REF}	
HSTL_III		0.9	V _{REF} – 0.5	V _{REF} + 0.5	50	1.5	V _{REF}	
HSTL_I_18		0.9	V _{REF} – 0.5	V _{REF} + 0.5	50	0.9	V _{REF}	
HSTL_II_18		0.9	V _{REF} – 0.5	V _{REF} + 0.5	25	0.9	V _{REF}	
HSTL_III_18		1.1	V _{REF} – 0.5	V _{REF} + 0.5	50	1.8	V _{REF}	
SSTL18_I		0.9	V _{REF} – 0.5	V _{REF} + 0.5	50	0.9	V _{REF}	
SSTL18_II		0.9	V _{REF} – 0.5	V _{REF} + 0.5	25	0.9	V _{REF}	
SSTL2_I		1.25	V _{REF} – 0.75	V _{REF} + 0.75	50	1.25	V _{REF}	
SSTL2_II		1.25	V _{REF} – 0.75	V _{REF} + 0.75	25	1.25	V _{REF}	
SSTL3_I		1.5	V _{REF} – 0.75	V _{REF} + 0.75	50	1.5	V _{REF}	
SSTL3_II		1.5	V _{REF} – 0.75	V _{REF} + 0.75	25	1.5	V _{REF}	
Differential				i i			L	
LVDS_25		-	V _{ICM} – 0.125	V _{ICM} + 0.125	50	1.2	V _{ICM}	
LVDS_33		-	V _{ICM} – 0.125	V _{ICM} + 0.125	50	1.2	V _{ICM}	
BLVDS_25		_	V _{ICM} – 0.125	V _{ICM} + 0.125	1M	0	V _{ICM}	
MINI_LVDS_	25	-	V _{ICM} – 0.125	V _{ICM} + 0.125	50	1.2	V _{ICM}	
MINI_LVDS_	33	-	V _{ICM} – 0.125	V _{ICM} + 0.125	50	1.2	V _{ICM}	
LVPECL_25		_	V _{ICM} – 0.3	V _{ICM} + 0.3	N/A	N/A	V _{ICM}	
LVPECL_33		-	V _{ICM} – 0.3	V _{ICM} + 0.3	N/A	N/A	V _{ICM}	
RSDS_25		-	V _{ICM} – 0.1	V _{ICM} + 0.1	50	1.2	V _{ICM}	
RSDS_33		-	V _{ICM} – 0.1	V _{ICM} + 0.1	50	1.2	V _{ICM}	
TMDS_33		-	V _{ICM} - 0.1	V _{ICM} + 0.1	50	3.3	V _{ICM}	
PPDS_25		-	V _{ICM} – 0.1	V _{ICM} + 0.1	50	0.8	V _{ICM}	
PPDS_33		-	V _{ICM} – 0.1	V _{ICM} + 0.1	50	0.8	V _{ICM}	
DIFF_HSTL_	<u> </u>	0.75	V _{REF} – 0.5	V _{REF} + 0.5	50	0.75	V _{REF}	
DIFF_HSTL_	_111	0.9	V _{REF} – 0.5	V _{REF} + 0.5	50	1.5	V _{REF}	
DIFF_HSTL_	_I_18	0.9	V _{REF} – 0.5	V _{REF} + 0.5	50	0.9	V _{REF}	
DIFF_HSTL_	_II_18	0.9	V _{REF} – 0.5	V _{REF} + 0.5	50	0.9	V _{REF}	
DIFF_HSTL_	_III_18	1.1	V _{REF} – 0.5	V _{REF} + 0.5	50	1.8	V _{REF}	
DIFF_SSTL1	8_l	0.9	V _{REF} – 0.5	V _{REF} + 0.5	50	0.9	V _{REF}	

Simultaneously Switching Output Guidelines

This section provides guidelines for the recommended maximum allowable number of Simultaneous Switching Outputs (SSOs). These guidelines describe the maximum number of user I/O pins of a given output signal standard that should simultaneously switch in the same direction, while maintaining a safe level of switching noise. Meeting these guidelines for the stated test conditions ensures that the FPGA operates free from the adverse effects of ground and power bounce.

Ground or power bounce occurs when a large number of outputs simultaneously switch in the same direction. The output drive transistors all conduct current to a common voltage rail. Low-to-High transitions conduct to the V_{CCO} rail; High-to-Low transitions conduct to the GND rail. The resulting cumulative current transient induces a voltage difference across the inductance that exists between the die pad and the power supply or ground return. The inductance is associated with bonding wires, the package lead frame, and any other signal routing inside the package. Other variables contribute to SSO noise levels, including stray inductance on the PCB as well as capacitive loading at receivers. Any SSO-induced voltage consequently affects internal switching noise margins and ultimately signal quality.

Table 27 and Table 28 provide the essential SSO guidelines. For each device/package combination, Table 27 provides the number of equivalent V_{CCO} /GND pairs. For each output signal standard and drive strength, Table 28 recommends the maximum number of SSOs, switching in the same direction, allowed per V_{CCO} /GND pair within an I/O bank. The guidelines in Table 28 are categorized by package style, slew rate, and output drive current. Furthermore, the number of SSOs is specified by I/O bank. Generally, the left and right I/O banks (Banks 1 and 3) support higher output drive current.

Multiply the appropriate numbers from Table 27 and Table 28 to calculate the maximum number of SSOs allowed within an I/O bank. Exceeding these SSO guidelines might result in increased power or ground bounce, degraded signal integrity, or increased system jitter.

SSO_{MAX}/IO Bank = Table 27 x Table 28

The recommended maximum SSO values assumes that the FPGA is soldered on the printed circuit board and that the board uses sound design practices. The SSO values do not apply for FPGAs mounted in sockets, due to the lead inductance introduced by the socket.

Ball grid array packages are recommended for applications with a large number of simultaneously switching outputs.

Device	Package Style (Pb-free)					
Device	FTG256	FGG400	FGG484			
XA3S200A	4	-	-			
XA3S400A	4	5	-			
XA3S700A	-	5	5			
XA3S1400A	-	-	6			

Table 27: Equivalent V_{CCO}/GND Pairs per Bank

Signal Standard (IOSTANDARD)		Package Type: FTG256, FGG400, FGG484		
Signal Star	idard (IOSTANDARD)		Top, Bottom (Banks 0,2)	Left, Right (Banks 1,3)
Single-Ended Standards				
LVTTL	Slow	2	60	60
		4	41	41
		6	29	29
		8	22	22
		12	13	13
		16	11	11
		24	9	9
	Fast	2	10	10
		4	6	6
		6	5	5
		8	3	3
		12	3	3
		16	3	3
		24	2	2
	QuietIO	2	80	80
		4	48	48
		6	36	36
		8	27	27
		12	16	16
		16	13	13
		24	12	12
VCMOS33	Slow	2	76	76
		4	46	46
		6	27	27
		8	20	20
		12	13	13
		16	10	10
		24	_	9
	Fast	2	10	10
		4	8	8
		6	5	5
		8	4	4
		12	4	4
		16	2	2
		24	_	2
	QuietIO	2	76	76
		4	46	46
		6	32	32
		8	26	26
		12	18	18
		16	14	14
		24	_	10

Table 28: Recommended Number of Simultaneously Switching Outputs per V_{CCO}/GND Pair (V_{CCAUX}=3.3V)

Signal Standard (IOSTANDARD)		Package Type: FTG256, FGG400, FGG484		
		Top, Bottom (Banks 0,2)	Left, Right (Banks 1,3)	
LVCMOS25	Slow	2	76	76
		4	46	46
		6	33	33
		8	24	24
		12	18	18
		16	-	11
		24	-	7
	Fast	2	18	18
		4	14	14
		6	6	6
		8	6	6
		12	3	3
		16	_	3
		24	_	2
	QuietIO	2	76	76
		4	60	60
		6	48	48
		8	36	36
		12	36	36
		16	_	36
		24	_	8
LVCMOS18	Slow	2	64	64
		4	34	34
VCMOS18		6	22	22
		8	18	18
		12	_	13
		16	_	10
	Fast	2	18	18
		4	9	9
		6	7	7
		8	4	4
		12	-	4
		16	-	3
	QuietIO	2	64	64
		4	64	64
		6	48	48
		8	36	36
		12	-	36
		16	_	24

Table 28: Recommended Number of Simultaneously Switching Outputs per V_{CCO}/GND Pair (V_{CCAUX}=3.3V) (Cont'd)

Signal Standard (IOSTANDARD)		Package Type: FTG256, FGG400, FGG484		
Signal S	tandard (IOSTANDARD)		Top, Bottom (Banks 0,2)	Left, Right (Banks 1,3)
LVCMOS15	Slow	2	55	55
		4	31	31
		6	18	18
		8	-	15
		12	-	10
	Fast	2	25	25
		4	10	10
		6	6	6
		8	-	4
		12	-	3
	QuietIO	2	70	70
		4	40	40
		6	31	31
		8	-	31
		12	-	20
LVCMOS12	Slow	2	40	40
		4	-	25
		6	-	18
	Fast	2	31	31
		4	-	13
		6	-	9
	QuietIO	2	55	55
		4	-	36
Fa: Quie		6	-	36
PCI33_3			16	16
HSTL_I			-	20
HSTL_III			-	8
HSTL_I_18			17	17
HSTL_II_18			-	5
HSTL_III_18			10	8
SSTL18_I			7	15
SSTL18_II			-	9
SSTL2_I			18	18
SSTL2_II			-	9
 SSTL3_I			8	10
SSTL3_II			6	7

Table 28: Recommended Number of Simultaneously Switching Outputs per V_{CCO}/GND Pair (V_{CCAUX}=3.3V) (Cont'd)

Configurable Logic Block (CLB) Timing

Table 29: CLB (SLICEM) Timing

Symbol	Description	Speed (eed Grade: -4	
Symbol	Description	Min	Max	Units
Clock-to-Output	Times			
Т _{СКО}	When reading from the FFX (FFY) Flip-Flop, the time from the active transition at the CLK input to data appearing at the XQ (YQ) output	-	0.68	ns
Setup Times				I
T _{AS}	Time from the setup of data at the F or G input to the active transition at the CLK input of the CLB	0.36	Min Max - 0.68	
T _{DICK}	Time from the setup of data at the BX or BY input to the active transition at the CLK input of the CLB		-	ns
Hold Times				
T _{AH}	Time from the active transition at the CLK input to the point where data is last held at the F or G input		_	ns
T _{CKDI}	Time from the active transition at the CLK input to the point where data is last held at the BX or BY input		_	ns
Clock Timing				I
T _{CH}	The High pulse width of the CLB's CLK signal	0.75	-	ns
T _{CL}	The Low pulse width of the CLK signal	0.75	-	ns
F _{TOG}	Toggle frequency (for export control)	0	667	MHz
Propagation Time	es			
T _{ILO}	The time it takes for data to travel from the CLB's F (G) input to the X (Y) output	-	0.71	ns
Set/Reset Pulse \	Nidth			1
T _{RPW_CLB}	The minimum allowable pulse width, High or Low, to the CLB's SR input	1.61	_	ns

Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 8.

O-maked	Description	Speed C	Units	
Symbol	Description	Min	Max	Units
Clock-to-Output	Times			
Т _{SHCKO}	Time from the active edge at the CLK input to data appearing on the distributed RAM output	_	2.01	ns
Setup Times				
T _{DS}	Setup time of data at the BX or BY input before the active transition at the CLK input of the distributed RAM	-0.02	-	ns
T _{AS}	Setup time of the F/G address inputs before the active transition at the CLK 0.36		-	ns
T _{WS}	Setup time of the write enable input before the active transition at the CLK input of the distributed RAM	0.59	-	ns
Hold Times				
T _{DH}	Hold time of the BX and BY data inputs after the active transition at the CLK input of the distributed RAM	0.13	-	ns
T _{AH,} T _{WH}	Hold time of the F/G address inputs or the write enable input after the active transition at the CLK input of the distributed RAM	0.01	_	ns
Clock Pulse Widt	th			
T _{WPH} , T _{WPL}	Minimum High or Low pulse width at CLK input	1.01	-	ns

Table 30: CLB Distributed RAM Switching Characteristics

Table 31: CLB Shift Register Switching Characteristics

Ocume to a l	Description	Speed C	Unite	
Symbol	Description	Min	Max	Units
Clock-to-Output Ti	mes		-	
T _{REG}	Time from the active edge at the CLK input to data appearing on the shift register output	-	4.82	ns
Setup Times				
T _{SRLDS}	Setup time of data at the BX or BY input before the active transition at the CLK input of the shift register		-	ns
Hold Times			1	L
T _{SRLDH}	SRLDH Hold time of the BX or BY data input after the active transition at the CLK input of the shift register		-	ns
Clock Pulse Width				
T _{WPH} , T _{WPL}	Minimum High or Low pulse width at CLK input	1.01	-	ns

Clock Buffer/Multiplexer Switching Characteristics

Table 32: Clock Distribution Switching Characteristics

Symbol	Description	Speed G	irade: -4	Units
	Description	Min	Units	
T _{GIO}	Global clock buffer (BUFG, BUFGMUX, BUFGCE) I input to O-output delay	-	0.23	ns
T _{GSI}	Global clock multiplexer (BUFGMUX) select S-input setup to I0 and I1 inputs. Same as BUFGCE enable CE-input	-	0.63	ns
F _{BUFG}	Frequency of signals distributed on global buffers (all sides)	0	333	MHz

Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 8.

18 x 18 Embedded Multiplier Timing

Table 33: 18 x 18 Embedded Multiplier Timing

Cumhal	Description	Speed 0	Speed Grade: -4	
Symbol	Description	Min	Max	Units
Combinatorial Delay	y			
T _{MULT}	Combinational multiplier propagation delay from the A and B inputs to the P outputs, assuming 18-bit inputs and a 36-bit product (AREG, BREG, and PREG registers unused)	-	4.88	ns
Clock-to-Output Tin	nes			
T _{MSCKP_P}	CKP_P Clock-to-output delay from the active transition of the CLK input to valid data appearing on the P outputs when using the PREG register ^(2,3)		1.30	ns
T _{MSCKP_A} T _{MSCKP_B}	Clock-to-output delay from the active transition of the CLK input to valid data appearing on the P outputs when using either the AREG or BREG register ^(2,4)	_	4.97	ns
Setup Times				
T _{MSDCK_P}	SDCK_P Data setup time at the A or B input before the active transition at the CLK when using only the PREG output register (AREG, BREG registers unused) ⁽³⁾		_	ns
T _{MSDCK_A}	Data setup time at the A input before the active transition at the CLK when using the AREG input register $^{\rm (4)}$	0.00	_	ns
T _{MSDCK_B}	Data setup time at the B input before the active transition at the CLK when using the BREG input register $^{\rm (4)}$	0.00	_	ns
Hold Times			1	L
T _{MSCKD_P}	Data hold time at the A or B input after the active transition at the CLK when using only the PREG output register (AREG, BREG registers unused) ⁽³⁾	0.00	-	ns
T _{MSCKD_A}	Data hold time at the A input after the active transition at the CLK when using the AREG input $\mbox{register}^{(4)}$	0.45	-	ns
T _{MSCKD_B}	Data hold time at the B input after the active transition at the CLK when using the BREG input register $\!\!\!^{(4)}$	0.45	-	ns
Clock Frequency				
F _{MULT}	Internal operating frequency for a two-stage 18x18 multiplier using the AREG and BREG input registers and the PREG output register ⁽¹⁾	0	250	MHz

Notes:

1. Combinational delay is less and pipelined performance is higher when multiplying input data with less than 18 bits.

2. The PREG register is typically used in both single-stage and two-stage pipelined multiplier implementations.

3. The PREG register is typically used when inferring a single-stage multiplier.

4. Input registers AREG or BREG are typically used when inferring a two-stage multiplier.

5. The numbers in this table are based on the operating conditions set forth in Table 8.

Digital Clock Manager Timing

For specification purposes, the DCM consists of three key components: the Delay-Locked Loop (DLL), the Digital Frequency Synthesizer (DFS), and the Phase Shifter (PS).

Aspects of DLL operation play a role in all DCM applications. All such applications inevitably use the CLKIN and the CLKFB inputs connected to either the CLK0 or the CLK2X feedback, respectively. Thus, specifications in the DLL tables (Table 35 and Table 36) apply to any application that only employs the DLL component. When the DFS and/or the PS components are used together with the DLL, then the specifications listed in the DFS and PS tables (Table 37 through Table 40) supersede any corresponding ones in the DLL tables. DLL specifications that do not change with the addition of DFS or PS functions are presented in Table 35 and Table 36.

Period jitter and cycle-cycle jitter are two of many different ways of specifying clock jitter. Both specifications describe statistical variation from a mean value.

Period jitter is the worst-case deviation from the ideal clock period over a collection of millions of samples. In a histogram of period jitter, the mean value is the clock period.

Cycle-cycle jitter is the worst-case difference in clock period between adjacent clock cycles in the collection of clock periods sampled. In a histogram of cycle-cycle jitter, the mean value is zero.

Delay-Locked Loop

Table 35: Recommended Operating Conditions for the DLL

	Cumb ol	Description		Speed C	arade: -4	Units
	Symbol	Description		Min	Units	
Input Fre	equency Ranges					
F _{CLKIN}	CLKIN_FREQ_DLL	Frequency of the CLKIN clock input		5 ⁽²⁾	250 ⁽³⁾	MHz
Input Pu	Ise Requirements					
CLKIN_PULSE		CLKIN pulse width as a percentage of	$F_{CLKIN} \le 150 \text{ MHz}$	40%	60%	-
		the CLKIN period	$F_{CLKIN} > 150 \text{ MHz}$	45%	55%	-
Input Clo	ock Jitter Tolerance and De	lay Path Variation ⁽⁴⁾				
CLKIN_C	CYC_JITT_DLL_LF	Cycle-to-cycle jitter at the CLKIN	$F_{CLKIN} \le 150 \text{ MHz}$	-	±300	ps
CLKIN_CYC_JITT_DLL_HF		input	$F_{CLKIN} > 150 \text{ MHz}$	-	±150	ps
CLKIN_F	PER_JITT_DLL	Period jitter at the CLKIN input		-	±1	ns
CLKFB_DELAY_VAR_EXT Allowable variation of off-chip feedback del output to the CLKFB input		delay from the DCM	-	±1	ns	

Notes:

1. DLL specifications apply when any of the DLL outputs (CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, or CLKDV) are in use.

2. The DFS, when operating independently of the DLL, supports lower FCLKIN frequencies. See Table 37.

To support double the maximum effective FCLKIN limit, set the CLKIN_DIVIDE_BY_2 attribute to TRUE. This attribute divides the incoming clock period by two as it enters the DCM. The CLK2X output reproduces the clock frequency provided on the CLKIN input.
 OLKIN input it is a support of these limits are input and these limits are limit.

4. CLKIN input jitter beyond these limits might cause the DCM to lose lock.

5. The DCM specifications are guaranteed when both adjacent DCMs are locked.

Table 36: Switching Characteristics for the DLL

Symbol	Deserintis	Dovice	Spee	ed Grade: -4	Units		
Symbol	Description	n	Device	Min	Max	Units	
Output Frequency Range	es				·		
CLKOUT_FREQ_CLK0	Frequency for the CLK0 and CLK18) outputs	All	5	250	MHz	
CLKOUT_FREQ_CLK90	Frequency for the CLK90 and CLK2	70 outputs		5	200	MHz	
CLKOUT_FREQ_2X	Frequency for the CLK2X and CLK2	X180 outputs		10	334	MHz	
CLKOUT_FREQ_DV	Frequency for the CLKDV output			0.3125	166	MHz	
Output Clock Jitter ^(2,3,4)	1		l	I	l	1	
CLKOUT_PER_JITT_0	Period jitter at the CLK0 output		All	_	±100	ps	
CLKOUT_PER_JITT_90	Period jitter at the CLK90 output			_	±150	ps	
CLKOUT_PER_JITT_180	Period jitter at the CLK180 output			_	±150	ps	
CLKOUT_PER_JITT_270	Period jitter at the CLK270 output			_	±150	ps	
CLKOUT_PER_JITT_2X	Period jitter at the CLK2X and CLK2	X180 outputs		-	±[0.5% of CLKIN period + 100]	ps	
CLKOUT_PER_JITT_DV1	Period jitter at the CLKDV output wh division	Period jitter at the CLKDV output when performing integer division					
CLKOUT_PER_JITT_DV2	Period jitter at the CLKDV output whe	en performing non-integer	-	-	±[0.5% of CLKIN period + 100]	ps	
Duty Cycle ⁽⁴⁾							
CLKOUT_DUTY_CYCLE_ DLL	Duty cycle variation for the CLK0, Cl CLK2X, CLK2X180, and CLKDV out BUFGMUX and clock tree duty-cycle	puts, including the	All	_	±[1% of CLKIN period + 350]	ps	
Phase Alignment ⁽⁴⁾			1		I		
CLKIN_CLKFB_PHASE	Phase offset between the CLKIN and	d CLKFB inputs	All	_	±150	ps	
CLKOUT_PHASE_DLL	Phase offset between DLL outputs	CLK0 to CLK2X (not CLK2X180)	-	-	±[1% of CLKIN period + 100]	ps	
	-	All others	-	_	±[1% of CLKIN period + 150]	ps	
Lock Time				I.		r	
LOCK_DLL ⁽³⁾	When using the DLL alone: The time from deassertion at the DCM's	5 MHz \leq F _{CLKIN} \leq 15 MHz	All	_	5	ms	
Reset input to the rising tr at its LOCKED output. Wh DCM is locked, the CLKIN CLKFB signals are in pha		F _{CLKIN} > 15 MHz		-	600	μs	
Delay Lines	· · · · · · · · · · · · · · · · · · ·				1	J	
DCM_DELAY_STEP ⁽⁵⁾	Finest delay resolution, averaged ov	er all steps	All	15	35	ps	

Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 8 and Table 35.

2. Indicates the maximum amount of output jitter that the DCM adds to the jitter on the CLKIN input.

- 3. For optimal jitter tolerance and faster lock time, use the CLKIN_PERIOD attribute.
- 4. Some jitter and duty-cycle specifications include 1% of input clock period or 0.01 UI. For example, the data sheet specifies a maximum jitter of "±[1% of CLKIN period + 150]". Assume the CLKIN frequency is 100 MHz. The equivalent CLKIN period is 10 ns and 1% of 10 ns is 0.1 ns or 100 ps. According to the data sheet, the maximum jitter is ±[100 ps + 150 ps] = ±250ps.
- 5. The typical delay step size is 23 ps.

Configuration Clock (CCLK) Characteristics

Table 45: Master Mode CCLK Output Period by ConfigRate Option Setting

Symbol	Description	ConfigRate Setting	Temperature Range	Minimum	Maximum	Units
T _{CCLK1}	CCLK clock period by <i>ConfigRate</i> setting	1 (power-on value)	I-Grade/ Q-Grade	1,053	2,500	ns
T _{CCLK3}	-	3	I-Grade/ Q-Grade	351	833	ns
T _{CCLK6}		6	I-Grade/ Q-Grade	174	417	ns
T _{CCLK7}		7	I-Grade/ Q-Grade	148	357	ns
T _{CCLK8}		8	I-Grade/ Q-Grade	132	313	ns
T _{CCLK10}		10	I-Grade/ Q-Grade	104	250	ns
T _{CCLK12}		12	I-Grade/ Q-Grade	87	208	ns
T _{CCLK13}		13	I-Grade/ Q-Grade	80	192	ns
T _{CCLK17}	-	17	I-Grade/ Q-Grade	61	147	ns
T _{CCLK22}		22	I-Grade/ Q-Grade	47	114	ns
T _{CCLK25}		25	I-Grade/ Q-Grade	42	100	ns
T _{CCLK27}		27	I-Grade/ Q-Grade	35	93	ns
T _{CCLK33}		33	I-Grade/ Q-Grade	31	76	ns
T _{CCLK44}		44	I-Grade/ Q-Grade	24	57	ns
T _{CCLK50}		50	I-Grade/ Q-Grade	19	50	ns
T _{CCLK100}		100	I-Grade/ Q-Grade	9.4	25	ns

Notes:

1. Set the *ConfigRate* option value when generating a configuration bitstream.

Symbol	Description	<i>ConfigRate</i> Setting	Temperature Range	Minimum	Maximum	Units
F _{CCLK1}	Equivalent CCLK clock frequency by <i>ConfigRate</i> setting	1 (power-on value)	I-Grade/ Q-Grade	0.40	0.95	MHz
F _{CCLK3}	_	3	I-Grade/ Q-Grade	1.20	2.85	MHz
F _{CCLK6}	_	6	I-Grade/ Q-Grade	2.40	5.74	MHz
F _{CCLK7}	_	7	I-Grade/ Q-Grade	2.80	6.74	MHz
F _{CCLK8}	_	8	I-Grade/ Q-Grade	3.20	7.58	MHz
F _{CCLK10}	_	10	I-Grade/ Q-Grade	4.00	9.65	MHz
F _{CCLK12}	_	12	I-Grade/ Q-Grade	4.80	11.48	MHz
F _{CCLK13}	_	13	I-Grade/ Q-Grade	5.20	12.49	MHz
F _{CCLK17}	_	17	I-Grade/ Q-Grade	6.80	16.33	MHz
F _{CCLK22}	_	22	I-Grade/ Q-Grade	8.80	21.23	MHz
F _{CCLK25}	_	25	I-Grade/ Q-Grade	10.00	23.59	MHz
F _{CCLK27}	_	27	I-Grade/ Q-Grade	10.80	28.31	MHz
F _{CCLK33}	_	33	I-Grade/ Q-Grade	13.20	32.67	MHz
F _{CCLK44}		44	I-Grade/ Q-Grade	17.60	42.47	MHz
F _{CCLK50}		50	I-Grade/ Q-Grade	20.00	53.08	MHz
F _{CCLK100}		100	I-Grade/ Q-Grade	40.00	106.16	MHz

Table 46: Master Mode CCLK Output Frequency by ConfigRate Option Setting

Table 47: Master Mode CCLK Output Minimum Low and High Time

Symbol	Dosorin	Description ConfigRate Setting						Units											
Symbol							100	Units											
T _{MCCL} , T _{MCCH}	Master Mode CCLK Minimum Low and High Time	l-Grade/ Q-Grade	474	158	78.4	66.8	59.3	46.6	39.2	36.0	27.6	21.2	19.1	15.9	13.8	10.6	8.5	4.2	ns

Table 48: Slave Mode CCLK Input Low and High Time

Symbol	Description	Min	Max	Units
T _{SCCL,} T _{SCCH}	CCLK Low and High time	5	∞	ns

Master Serial and Slave Serial Mode Timing

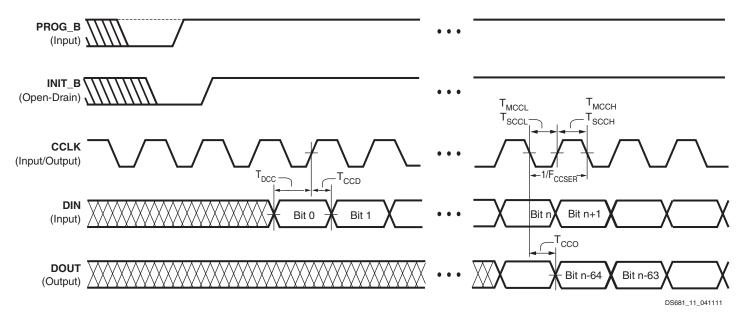


Figure 12: Waveforms for Master Serial and Slave Serial Configuration

Table 49: Timing for the Master Serial and Slave Serial Configuration Modes

Symbol	Deseri	Description					
Symbol	Descri	ption	Master	Min	Max	Units	
Clock-to-O	utput Times						
T _{CCO}	The time from the falling transition on the DOUT pin	ne CCLK pin to data appearing at the	Both	1.5	10	ns	
Setup Time	es		L		1	1	
T _{DCC}	The time from the setup of data at the CCLK pin	DIN pin to the rising transition at the	Both	7	-	ns	
Hold Time	S					•	
T _{CCD}	The time from the rising transition at th	e CCLK pin to the point when data is	Master	0		ns	
	last held at the DIN pin		Slave	1.0			
Clock Timi	ng						
т _{ссн}	High pulse width at the CCLK input pi	n	Master	S	ee Table 47		
			Slave	S	ee Table 48		
T _{CCL}	Low pulse width at the CCLK input pir	1	Master	See Table 47			
			Slave	S	ee Table 48		
F _{CCSER}	Frequency of the clock signal at the	Slave	0	100	MHz		
	CCLK input pin	With bitstream compression		0	100	MHz	

Notes:

- 1. The numbers in this table are based on the operating conditions set forth in Table 8.
- 2. For serial configuration with a daisy-chain of multiple FPGAs, the maximum limit is 25 MHz.

Revision History

The following table shows the revision history for this document.

Date	Version	Revision
04/30/08	1.0	Initial release.
05/07/08	1.0.1	Updated Figure 14, minor edits under Features and Package Marking, Table 20 and 21.
02/03/09	1.1	Updated Key Feature Differences from Commercial XC Devices, page 2. Removed MultiBoot description from Configuration, page 3. Updated to v1.41 in Table 3 and Table 16. Removed -5 high performance (commercial only) speed grade from Ordering Information, page 5. Replaced V_{ICM} with V_{CCAUX} in Note 7 of Table 13. Added versions 1.40 and 1.41 to Table 17. Updated Note 2 in Figure 11. Removed T_{IOOLP} from Table 23. Updated T_{IOCKHZ} and T_{IOCKON} in Table 24. Updated Table 22 and Table 25. Updated SSO number for left and right I/O banks of DIFF_SSTL18_II standard in Table 28. Updated T_{ACC} requirement in Table 54.
04/22/11	2.0	This revision goes along with XCN11019: Data Sheet Revisions for Xilinx Automotive (XA) Spartan-3A/-3A DSP FPGA Devices. Added I_{IK} to Table 4. Updated description for V_{IN} in Table 8 including adding Note 4. Also, added Note 2 to I_L in Table 9 to note potential leakage between pins of a differential pair. Updated Notes 5 and 6 in Table 13. Table 20: Updated tags to Note 3. In Table 42, corrected symbols for $T_{DNACLKH}$ and $T_{DNACLKL}$. Corrected symbols for $T_{SUSPEND_GTS}$ and $T_{SUSPEND_GWE}$ in Table 43. Revised standard title to: IEEE 1149.1/1532 JTAG Test Access Port Timing. Updated Notice of Disclaimer.

Notice of Disclaimer

The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and conditions of the Limited Warranties which can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in Critical Applications: http://www.xilinx.com/warranty.htm#critapps.

Automotive Applications Disclaimer

XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS APPLICATIONS RELATED TO: (I) THE DEPLOYMENT OF AIRBAGS, (II) CONTROL OF A VEHICLE, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR, OR (III) USES THAT COULD LEAD TO DEATH OR PERSONAL INJURY. CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX PRODUCTS IN SUCH APPLICATIONS.